Update README.md
Browse files
README.md
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
-
---
|
| 2 |
-
library_name: transformers
|
| 3 |
-
datasets:
|
| 4 |
-
- bigcode/the-stack-v2
|
| 5 |
-
license: bigcode-openrail-m
|
| 6 |
-
---
|
| 7 |
|
| 8 |
# Model Card for Model ID
|
| 9 |
|
|
@@ -29,24 +29,17 @@ from transformers import AutoModel
|
|
| 29 |
from transformers import AutoTokenizer
|
| 30 |
|
| 31 |
#import the model
|
| 32 |
-
model = AutoModel.from_pretrained("andreagurioli1995/ModularStarEncoder
|
| 33 |
|
| 34 |
#import the tokenizer
|
| 35 |
-
tokenizer = AutoTokenizer.from_pretrained("andreagurioli1995/ModularStarEncoder
|
| 36 |
|
| 37 |
|
| 38 |
-
language = "yourlanguagelowercased"
|
| 39 |
-
|
| 40 |
-
#instruction in case of code embedding in a code language
|
| 41 |
-
instruction_code = f"Represent this {language} code snippet for retrieval:"
|
| 42 |
-
|
| 43 |
-
#instruction in case of code embedding in English
|
| 44 |
-
instruction_natural_language = "Represent this code description for retrieving supporting snippets of code:"
|
| 45 |
|
| 46 |
code_snippet = "your code to embed here"
|
| 47 |
|
| 48 |
-
#You should follow this pattern to embed a snippet of code
|
| 49 |
-
sentence = f"{tokenizer.sep_token}{
|
| 50 |
|
| 51 |
#Tokenizing your sentence
|
| 52 |
tokenized_sensence = tokenizer(sentence, return_tensors="pt",truncation=True, max_length=2048)
|
|
@@ -55,10 +48,13 @@ tokenized_sensence = tokenizer(sentence, return_tensors="pt",truncation=True, ma
|
|
| 55 |
embedded_sentence = model(**sentence)
|
| 56 |
```
|
| 57 |
|
| 58 |
-
You will get as an output
|
| 59 |
|
| 60 |
-
-
|
| 61 |
-
-
|
|
|
|
|
|
|
|
|
|
| 62 |
- attentions: attention scores from the encoder
|
| 63 |
|
| 64 |
### Model Description
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
datasets:
|
| 4 |
+
- bigcode/the-stack-v2
|
| 5 |
+
license: bigcode-openrail-m
|
| 6 |
+
---
|
| 7 |
|
| 8 |
# Model Card for Model ID
|
| 9 |
|
|
|
|
| 29 |
from transformers import AutoTokenizer
|
| 30 |
|
| 31 |
#import the model
|
| 32 |
+
model = AutoModel.from_pretrained("andreagurioli1995/ModularStarEncoder", trust_remote_code=True)
|
| 33 |
|
| 34 |
#import the tokenizer
|
| 35 |
+
tokenizer = AutoTokenizer.from_pretrained("andreagurioli1995/ModularStarEncoder")
|
| 36 |
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
code_snippet = "your code to embed here"
|
| 40 |
|
| 41 |
+
#You should follow this pattern to embed a snippet of code
|
| 42 |
+
sentence = f"{tokenizer.sep_token}{code_snippet}{tokenizer.cls_token}
|
| 43 |
|
| 44 |
#Tokenizing your sentence
|
| 45 |
tokenized_sensence = tokenizer(sentence, return_tensors="pt",truncation=True, max_length=2048)
|
|
|
|
| 48 |
embedded_sentence = model(**sentence)
|
| 49 |
```
|
| 50 |
|
| 51 |
+
You will get as an output six elements:
|
| 52 |
|
| 53 |
+
- last_hidden_state: the representation of the last hidden state from the model;
|
| 54 |
+
- hidden_states: raw representation from all the hidden states of the model, without pooling, normalization, and projection
|
| 55 |
+
- loss: loss value if a ground truth is given (None if used in inference)
|
| 56 |
+
- prediction_logits: prediction scores from masked language modeling head
|
| 57 |
+
- seq_relationship_scores: prediction scores of in-context loss (concatenate multiple samples with the separator token if you want a meaningful score)
|
| 58 |
- attentions: attention scores from the encoder
|
| 59 |
|
| 60 |
### Model Description
|