Update README.md
Browse files
README.md
CHANGED
|
@@ -1,8 +1,9 @@
|
|
| 1 |
-
---
|
| 2 |
-
library_name: transformers
|
| 3 |
-
datasets:
|
| 4 |
-
- bigcode/the-stack-v2
|
| 5 |
-
|
|
|
|
| 6 |
|
| 7 |
# Model Card for Model ID
|
| 8 |
|
|
@@ -22,8 +23,44 @@ Input should take this format when tokenized:
|
|
| 22 |
|
| 23 |
f"{tokenizer.sep_token}{code_snippet}{tokenizer.cls_token}"
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
|
|
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
### Model Description
|
| 28 |
|
| 29 |
<!-- Provide a longer summary of what this model is. -->
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
datasets:
|
| 4 |
+
- bigcode/the-stack-v2
|
| 5 |
+
license: bigcode-openrail-m
|
| 6 |
+
---
|
| 7 |
|
| 8 |
# Model Card for Model ID
|
| 9 |
|
|
|
|
| 23 |
|
| 24 |
f"{tokenizer.sep_token}{code_snippet}{tokenizer.cls_token}"
|
| 25 |
|
| 26 |
+
### How to use
|
| 27 |
+
```python
|
| 28 |
+
from transformers import AutoModel
|
| 29 |
+
from transformers import AutoTokenizer
|
| 30 |
+
|
| 31 |
+
#import the model
|
| 32 |
+
model = AutoModel.from_pretrained("andreagurioli1995/ModularStarEncoder-finetuned", trust_remote_code=True)
|
| 33 |
+
|
| 34 |
+
#import the tokenizer
|
| 35 |
+
tokenizer = AutoTokenizer.from_pretrained("andreagurioli1995/ModularStarEncoder-finetuned")
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
language = "yourlanguagelowercased"
|
| 39 |
+
|
| 40 |
+
#instruction in case of code embedding in a code language
|
| 41 |
+
instruction_code = f"Represent this {language} code snippet for retrieval:"
|
| 42 |
+
|
| 43 |
+
#instruction in case of code embedding in English
|
| 44 |
+
instruction_natural_language = "Represent this code description for retrieving supporting snippets of code:"
|
| 45 |
+
|
| 46 |
+
code_snippet = "your code to embed here"
|
| 47 |
+
|
| 48 |
+
#You should follow this pattern to embed a snippet of code or natural language queries
|
| 49 |
+
sentence = f"{tokenizer.sep_token}{instruction_code}{tokenizer.sep_token}{code_snippet)}{tokenizer.cls_token}"
|
| 50 |
+
|
| 51 |
+
#Tokenizing your sentence
|
| 52 |
+
tokenized_sensence = tokenizer(sentence, return_tensors="pt",truncation=True, max_length=2048)
|
| 53 |
+
|
| 54 |
+
#Embedding the tokenized sentence
|
| 55 |
+
embedded_sentence = model(**sentence)
|
| 56 |
+
```
|
| 57 |
|
| 58 |
+
You will get as an output three elements:
|
| 59 |
|
| 60 |
+
- projected_pooled_normalized: a list of the projected, pooled, and normalized embeddings from the five exit points;
|
| 61 |
+
- raw_hidden_states: raw representation from all the hidden states of the model, without pooling, normalization, and projection
|
| 62 |
+
- attentions: attention scores from the encoder
|
| 63 |
+
|
| 64 |
### Model Description
|
| 65 |
|
| 66 |
<!-- Provide a longer summary of what this model is. -->
|