xlab-eacc's picture
Add files using upload-large-folder tool
8879b68 verified
metadata
license: gemma
library_name: mlx
pipeline_tag: text-generation
extra_gated_heading: Access Gemma on Hugging Face
extra_gated_prompt: >-
  To access Gemma on Hugging Face, you’re required to review and agree to
  Google’s usage license. To do this, please ensure you’re logged in to Hugging
  Face and click below. Requests are processed immediately.
extra_gated_button_content: Acknowledge license
base_model: google/gemma-3n-E2B-it
tags:
  - automatic-speech-recognition
  - automatic-speech-translation
  - audio-text-to-text
  - video-text-to-text
  - mlx

mlx-community/gemma-3n-E2B-it-lm-bf16

This model mlx-community/gemma-3n-E2B-it-lm-bf16 was converted to MLX format from google/gemma-3n-E2B-it using mlx-lm version 0.25.2.

Use with mlx

pip install mlx-lm
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/gemma-3n-E2B-it-lm-bf16")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)