File size: 4,176 Bytes
05d7726
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4454c6
05d7726
 
 
 
eecf412
05d7726
eecf412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05d7726
 
 
 
 
 
 
 
 
 
eecf412
05d7726
 
 
 
 
 
 
 
 
 
 
eecf412
05d7726
eecf412
05d7726
 
 
 
 
 
 
 
 
eecf412
05d7726
 
eecf412
05d7726
 
eecf412
05d7726
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98c72cd
e4454c6
05d7726
e4454c6
05d7726
e35cc62
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
datasets:
- go_emotions
language:
- en
library_name: transformers
model-index:
- name: text-classification-goemotions
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: go_emotions
      type: multilabel_classification
      config: simplified
      split: test
      args: simplified
    metrics:
    - name: F1
      type: f1
      value: 0.482
---

# Text Classification GoEmotions

This a ONNX quantized model and is fined-tuned version of [nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large](https://huggingface.co/nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large) on the on the [go_emotions](https://huggingface.co/datasets/go_emotions) dataset using [tasinho/text-classification-goemotions](https://huggingface.co/tasinhoque/text-classification-goemotions) as teacher model.

# Usage

## Transformers





## No-transformers

### Installation
```bash
pip install tokenizers
pip install onnxruntime
git clone https://huggingface.co/minuva/MiniLMv2-goemotions-v2-onnx
```

### Load the Model

```py
import os
import numpy as np
import json

from tokenizers import Tokenizer
from onnxruntime import InferenceSession


model_name = "minuva/MiniLMv2-goemotions-v2-onnx"

tokenizer = Tokenizer.from_pretrained(model_name)
tokenizer.enable_padding(
    pad_token="<pad>",
    pad_id=1,
)
tokenizer.enable_truncation(max_length=256)
batch_size = 16

texts = ["I am angry",]
outputs = []
model = InferenceSession("MiniLMv2-goemotions-v2-onnx/model_optimized_quantized.onnx", providers=['CUDAExecutionProvider'])

with open(os.path.join("MiniLMv2-goemotions-v2-onnx", "config.json"), "r") as f:
            config = json.load(f)

output_names = [output.name for output in model.get_outputs()]
input_names = [input.name for input in model.get_inputs()]

for subtexts in np.array_split(np.array(texts), len(texts) // batch_size + 1):
            encodings = tokenizer.encode_batch(list(subtexts))
            inputs = {
                "input_ids": np.vstack(
                    [encoding.ids for encoding in encodings],
                ),
                "attention_mask": np.vstack(
                    [encoding.attention_mask for encoding in encodings],
                ),
                "token_type_ids": np.vstack(
                    [encoding.type_ids for encoding in encodings],
                ),
            }

            for input_name in input_names:
                if input_name not in inputs:
                    raise ValueError(f"Input name {input_name} not found in inputs")

            inputs = {input_name: inputs[input_name] for input_name in input_names}
            output = np.squeeze(
                np.stack(
                    model.run(output_names=output_names, input_feed=inputs)
                ),
                axis=0,
            )
            outputs.append(output)

outputs = np.concatenate(outputs, axis=0)
scores = 1 / (1 + np.exp(-outputs))
results = []
for item in scores:
    labels = []
    scores = []
    for idx, s in enumerate(item):
        labels.append(config["id2label"][str(idx)])
        scores.append(float(s))
    results.append({"labels": labels, "scores": scores})

results
```
# Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear


# Metrics (comparison with teacher model)

| Teacher (params)    |   Student (params)     | Set         | Score (teacher)    |    Score (student)      |
|--------------------|-------------|----------|--------| --------|
| tasinhoque/text-classification-goemotions (355M) |      MiniLMv2-L6-H384-goemotions-v2-onnx    | Validation  | 0.514252 | 0.4780 |
| tasinhoque/text-classification-goemotions (33M) |      MiniLMv2-L6-H384-goemotions-v2-onnx (original model)   | Test  | 0.501937 |  0.482 |

# Deployment

Check [our repository](https://github.com/minuva/emotion-prediction-serverless) to see how to easily deploy this model in a serverless environment with fast CPU inference and light resource utilization.