Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
datasets:
|
| 3 |
+
- go_emotions
|
| 4 |
+
language:
|
| 5 |
+
- en
|
| 6 |
+
library_name: transformers
|
| 7 |
+
model-index:
|
| 8 |
+
- name: text-classification-goemotions
|
| 9 |
+
results:
|
| 10 |
+
- task:
|
| 11 |
+
name: Text Classification
|
| 12 |
+
type: text-classification
|
| 13 |
+
dataset:
|
| 14 |
+
name: go_emotions
|
| 15 |
+
type: multilabel_classification
|
| 16 |
+
config: simplified
|
| 17 |
+
split: test
|
| 18 |
+
args: simplified
|
| 19 |
+
metrics:
|
| 20 |
+
- name: F1
|
| 21 |
+
type: f1
|
| 22 |
+
value: 0.487
|
| 23 |
+
---
|
| 24 |
+
|
| 25 |
+
# Text Classification GoEmotions
|
| 26 |
+
|
| 27 |
+
This model is a onnx quantized fined-tuned version of [nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large](https://huggingface.co/nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large) on the on the [go_emotions](https://huggingface.co/datasets/go_emotions) dataset using [tasinho/text-classification-goemotions](https://huggingface.co/tasinhoque/text-classification-goemotions) as teacher model.
|
| 28 |
+
|
| 29 |
+
# Load the Model
|
| 30 |
+
|
| 31 |
+
```py
|
| 32 |
+
import os
|
| 33 |
+
import numpy as np
|
| 34 |
+
import json
|
| 35 |
+
|
| 36 |
+
from tokenizers import Tokenizer
|
| 37 |
+
from onnxruntime import InferenceSession
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
# !git clone https://huggingface.co/Ngit/MiniLMv2-L6-H384-goemotions-v2-onnx
|
| 41 |
+
|
| 42 |
+
model_name = "Ngit/MiniLMv2-L6-H384-goemotions-v2-onnx"
|
| 43 |
+
tokenizer = Tokenizer.from_pretrained(model_name)
|
| 44 |
+
tokenizer.enable_padding(
|
| 45 |
+
pad_token="<pad>",
|
| 46 |
+
pad_id=1,
|
| 47 |
+
)
|
| 48 |
+
tokenizer.enable_truncation(max_length=256)
|
| 49 |
+
batch_size = 16
|
| 50 |
+
|
| 51 |
+
texts = ["I am angry",]
|
| 52 |
+
outputs = []
|
| 53 |
+
model = InferenceSession("MiniLMv2-L6-H384-goemotions-v2-onnx\model_optimized_quantized.onnx", providers=['CUDAExecutionProvider'])
|
| 54 |
+
|
| 55 |
+
with open(os.path.join("MiniLMv2-L6-H384-goemotions-v2-onnx", "config.json"), "r") as f:
|
| 56 |
+
config = json.load(f)
|
| 57 |
+
|
| 58 |
+
output_names = [output.name for output in model.get_outputs()]
|
| 59 |
+
input_names = [input.name for input in model.get_inputs()]
|
| 60 |
+
|
| 61 |
+
for subtexts in np.array_split(np.array(texts), len(texts) // batch_size + 1):
|
| 62 |
+
encodings = tokenizer.encode_batch(list(subtexts))
|
| 63 |
+
inputs = {
|
| 64 |
+
"input_ids": np.vstack(
|
| 65 |
+
[encoding.ids for encoding in encodings], dtype=np.int64
|
| 66 |
+
),
|
| 67 |
+
"attention_mask": np.vstack(
|
| 68 |
+
[encoding.attention_mask for encoding in encodings], dtype=np.int64
|
| 69 |
+
),
|
| 70 |
+
"token_type_ids": np.vstack(
|
| 71 |
+
[encoding.type_ids for encoding in encodings], dtype=np.int64
|
| 72 |
+
),
|
| 73 |
+
}
|
| 74 |
+
|
| 75 |
+
for input_name in input_names:
|
| 76 |
+
if input_name not in inputs:
|
| 77 |
+
raise ValueError(f"Input name {input_name} not found in inputs")
|
| 78 |
+
|
| 79 |
+
inputs = {input_name: inputs[input_name] for input_name in input_names}
|
| 80 |
+
output = np.squeeze(
|
| 81 |
+
np.stack(
|
| 82 |
+
model.run(output_names=output_names, input_feed=inputs)
|
| 83 |
+
),
|
| 84 |
+
axis=0,
|
| 85 |
+
)
|
| 86 |
+
outputs.append(output)
|
| 87 |
+
|
| 88 |
+
outputs = np.concatenate(outputs, axis=0)
|
| 89 |
+
scores = 1 / (1 + np.exp(-outputs))
|
| 90 |
+
results = []
|
| 91 |
+
for item in scores:
|
| 92 |
+
labels = []
|
| 93 |
+
scores = []
|
| 94 |
+
for idx, s in enumerate(item):
|
| 95 |
+
labels.append(config["id2label"][str(idx)])
|
| 96 |
+
scores.append(float(s))
|
| 97 |
+
results.append({"labels": labels, "scores": scores})
|
| 98 |
+
|
| 99 |
+
results
|
| 100 |
+
```
|
| 101 |
+
# Training hyperparameters
|
| 102 |
+
|
| 103 |
+
The following hyperparameters were used during training:
|
| 104 |
+
- learning_rate: 6e-05
|
| 105 |
+
- train_batch_size: 64
|
| 106 |
+
- eval_batch_size: 64
|
| 107 |
+
- seed: 42
|
| 108 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 109 |
+
- lr_scheduler_type: linear
|
| 110 |
+
- num_epochs: 40
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
# Metrics (comparison with teacher model)
|
| 114 |
+
|
| 115 |
+
| Teacher (params) | Student (params) | Set | Score (teacher) | Score (student) |
|
| 116 |
+
|--------------------|-------------|----------|--------| --------|
|
| 117 |
+
| tasinhoque/text-classification-goemotions (355M) | MiniLMv2-L6-H384-goemotions-v2 | Validation | 0.514252 |0.484898 |
|
| 118 |
+
| tasinhoque/text-classification-goemotions (33M) | MiniLMv2-L6-H384-goemotions-v2 (original model) | Test | 0.501937 | 0.486890 |
|
| 119 |
+
|
| 120 |
+
# Training Code, Evaluation & Deployment
|
| 121 |
+
|
| 122 |
+
Check
|
| 123 |
+
|