metadata
base_model:
- Qwen/Qwen2.5-VL-7B-Instruct
license: mit
library_name: transformers
pipeline_tag: image-text-to-text
GUI-Actor-7B with Qwen2.5-VL-7B as backbone VLM
This model was introduced in the paper GUI-Actor: Coordinate-Free Visual Grounding for GUI Agents. It is developed based on Qwen2.5-VL-7B-Instruct , augmented by an attention-based action head and finetuned to perform GUI grounding using the dataset here.
For more details on model design and evaluation, please check: 🏠 Project Page | 💻 Github Repo | 📑 Paper.
Model Name | Hugging Face Link |
---|---|
GUI-Actor-7B-Qwen2-VL | 🤗 Hugging Face |
GUI-Actor-2B-Qwen2-VL | 🤗 Hugging Face |
GUI-Actor-7B-Qwen2.5-VL | 🤗 Hugging Face |
GUI-Actor-3B-Qwen2.5-VL | 🤗 Hugging Face |
GUI-Actor-Verifier-2B | 🤗 Hugging Face |
📊 Performance Comparison on GUI Grounding Benchmarks
Table 1. Main results on ScreenSpot-Pro, ScreenSpot, and ScreenSpot-v2 with Qwen2-VL as the backbone. † indicates scores obtained from our own evaluation of the official models on Huggingface.
Method | Backbone VLM | ScreenSpot-Pro | ScreenSpot | ScreenSpot-v2 |
---|---|---|---|---|
72B models: | ||||
AGUVIS-72B | Qwen2-VL | - | 89.2 | - |
UGround-V1-72B | Qwen2-VL | 34.5 | 89.4 | - |
UI-TARS-72B | Qwen2-VL | 38.1 | 88.4 | 90.3 |
7B models: | ||||
OS-Atlas-7B | Qwen2-VL | 18.9 | 82.5 | 84.1 |
AGUVIS-7B | Qwen2-VL | 22.9 | 84.4 | 86.0† |
UGround-V1-7B | Qwen2-VL | 31.1 | 86.3 | 87.6† |
UI-TARS-7B | Qwen2-VL | 35.7 | 89.5 | 91.6 |
GUI-Actor-7B | Qwen2-VL | 40.7 | 88.3 | 89.5 |
GUI-Actor-7B + Verifier | Qwen2-VL | 44.2 | 89.7 | 90.9 |
2B models: | ||||
UGround-V1-2B | Qwen2-VL | 26.6 | 77.1 | - |
UI-TARS-2B | Qwen2-VL | 27.7 | 82.3 | 84.7 |
GUI-Actor-2B | Qwen2-VL | 36.7 | 86.5 | 88.6 |
GUI-Actor-2B + Verifier | Qwen2-VL | 41.8 | 86.9 | 89.3 |
Table 2. Main results on the ScreenSpot-Pro and ScreenSpot-v2 with Qwen2.5-VL as the backbone.
Method | Backbone VLM | ScreenSpot-Pro | ScreenSpot-v2 |
---|---|---|---|
7B models: | |||
Qwen2.5-VL-7B | Qwen2.5-VL | 27.6 | 88.8 |
Jedi-7B | Qwen2.5-VL | 39.5 | 91.7 |
GUI-Actor-7B | Qwen2.5-VL | 44.6 | 92.1 |
GUI-Actor-7B + Verifier | Qwen2.5-VL | 47.7 | 92.5 |
3B models: | |||
Qwen2.5-VL-3B | Qwen2.5-VL | 25.9 | 80.9 |
Jedi-3B | Qwen2.5-VL | 36.1 | 88.6 |
GUI-Actor-3B | Qwen2.5-VL | 42.2 | 91.0 |
GUI-Actor-3B + Verifier | Qwen2.5-VL | 45.9 | 92.4 |
🚀 Usage
import torch
from qwen_vl_utils import process_vision_info
from datasets import load_dataset
from transformers import AutoProcessor
from gui_actor.constants import chat_template
from gui_actor.modeling_qwen25vl import Qwen2_5_VLForConditionalGenerationWithPointer
from gui_actor.inference import inference
# load model
model_name_or_path = "microsoft/GUI-Actor-7B-Qwen2.5-VL"
data_processor = AutoProcessor.from_pretrained(model_name_or_path)
tokenizer = data_processor.tokenizer
model = Qwen2_5_VLForConditionalGenerationWithPointer.from_pretrained(
model_name_or_path,
torch_dtype=torch.bfloat16,
device_map="cuda:0",
attn_implementation="flash_attention_2"
).eval()
# prepare example
dataset = load_dataset("rootsautomation/ScreenSpot")["test"]
example = dataset[0]
print(f"Intruction: {example['instruction']}")
print(f"ground-truth action region (x1, y1, x2, y2): {[round(i, 2) for i in example['bbox']]}")
conversation = [
{
"role": "system",
"content": [
{
"type": "text",
"text": "You are a GUI agent. Given a screenshot of the current GUI and a human instruction, your task is to locate the screen element that corresponds to the instruction. You should output a PyAutoGUI action that performs a click on the correct position. To indicate the click location, we will use some special tokens, which is used to refer to a visual patch later. For example, you can output: pyautogui.click(<your_special_token_here>).",
}
]
},
{
"role": "user",
"content": [
{
"type": "image",
"image": example["image"], # PIL.Image.Image or str to path
# "image_url": "https://xxxxx.png" or "https://xxxxx.jpg" or "file://xxxxx.png" or "", will be split by "base64,"
},
{
"type": "text",
"text": example["instruction"]
},
],
},
]
# inference
pred = inference(conversation, model, tokenizer, data_processor, use_placeholder=True, topk=3)
px, py = pred["topk_points"][0]
print(f"Predicted click point: [{round(px, 4)}, {round(py, 4)}]")
# >> Model Response
# Intruction: close this window
# ground-truth action region (x1, y1, x2, y2): [0.9479, 0.1444, 0.9938, 0.2074]
# Predicted click point: [0.9709, 0.1548]
📝 Citation
@article{wu2025guiactor,
title={GUI-Actor: Coordinate-Free Visual Grounding for GUI Agents},
author={Qianhui Wu and Kanzhi Cheng and Rui Yang and Chaoyun Zhang and Jianwei Yang and Huiqiang Jiang and Jian Mu and Baolin Peng and Bo Qiao and Reuben Tan and Si Qin and Lars Liden and Qingwei Lin and Huan Zhang and Tong Zhang and Jianbing Zhang and Dongmei Zhang and Jianfeng Gao},
year={2025},
eprint={2506.03143},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://www.arxiv.org/pdf/2506.03143},
}