sentiment_test23feb

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5188
  • Y True: [2 2 1 0 1 2 0 1 0 2 0 1 1 0 1 2 1 2 1 1 2 2 0 0 2 1 1 2 0 0 0 0 1 2 2 0 1 1 1 2 1 1 0 0 2 1 2 0 1 2 2 2 1 2 1 2 0 1 1 2 0 1 1 1 0 0 1 1 1 0 0 0 2 0 1 1 0 1 2 0 0 1 0 2 1 1 0 0 1 0 2 0 1 1 0 2 1 0 2 2 2 0 1 0 1 0 1 0 0 1 1 1 1 2 1 2 0 1 2 0 0 0 2 1 1 0 1 0 1 0 2 0 0 1 1 1 1 0 0 1 0 2 1 1 0 1 1 1 1 2 0 1 1 2 1 2 2 1 2 1 0 2 0 0 0 0 2 0 0 0 2 1 0 2 1 0 2 0 0 2 0 1 0 2 2 1 1 0 1 0 2 1 0 0 0 2 2 1 0 1 0 0 0 2 1 0 1 2 0 2 1 1 2 1 1 2 0 0 1 0 1 2 2 2 1 1 0 2 1 0]
  • Y Pred: [0 1 1 0 1 2 0 2 0 1 0 1 2 0 1 1 1 1 1 1 2 1 0 0 1 1 1 2 0 0 0 0 1 0 2 0 1 1 1 2 1 1 1 0 2 1 1 0 1 2 2 2 1 0 1 2 0 1 1 2 0 1 2 1 0 0 1 1 1 0 0 0 2 0 1 1 2 1 2 0 0 0 0 2 1 1 0 0 1 0 2 0 1 1 0 2 1 0 1 2 0 0 1 0 1 0 1 0 0 1 2 2 1 2 1 2 0 1 2 0 0 0 0 2 0 0 1 0 1 0 1 0 0 1 1 1 1 0 0 1 0 1 1 1 0 2 1 1 1 2 0 1 1 2 1 2 1 1 2 1 0 2 0 0 0 0 2 0 0 0 1 1 0 2 1 2 0 0 0 2 0 1 2 2 2 1 1 0 1 2 0 1 0 0 0 0 2 1 0 1 0 0 0 0 1 0 1 1 0 2 1 1 2 1 1 1 0 0 1 0 1 0 1 0 1 1 0 2 1 2]
  • Accuracy: 0.8217
  • F1: 0.8146
  • Precision: 0.8154
  • Recall: 0.8217
  • Confusion Matrix: [[76 1 5] [ 2 79 7] [11 15 34]]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 5

Training results

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support