File size: 7,240 Bytes
6490c7d
 
 
 
 
 
 
673306e
 
6490c7d
 
 
 
e96f3e8
6490c7d
 
 
 
 
 
 
 
f1f114e
6490c7d
 
 
 
f1f114e
6490c7d
 
12fd1bd
673306e
12fd1bd
 
673306e
12fd1bd
f6075ef
12fd1bd
f1f114e
6490c7d
 
673306e
6490c7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f114e
 
 
 
 
d12b24d
f1f114e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97dbe33
f1f114e
6490c7d
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
---
inference: false
license: other
license_name: mnpl
license_link: https://mistral.ai/licences/MNPL-0.1.md
tags:
- code
- text-generation-inference
- mistral
language:
- code
---

Converted from Mistral to Huggingface safetensors using [Hugglingface's transformers Mistral](https://github.com/huggingface/transformers/blob/main/src/transformers/models/mistral/convert_mistral_weights_to_hf.py) script
```
pip install protobuf sentencepiece torch transformers accelerate

python3 ~/convert_mistral_weights_to_hf-22B.py --input_dir ~/Codestral-22B-v0.1/ --model_size 22B --output_dir ~/models/Codestral-22B-v0.1-hf/ --is_v3 --safe_serialization
```

Then measurements.json was created using [exllamav2](https://github.com/turboderp/exllamav2/blob/master/doc/convert.md)
```
python3 convert.py -i ~/models/Codestral-22B-v0.1-hf/ -o /tmp/exl2/ -nr -om ~/models/Machinez_Codestral-22B-v0.1-exl2/measurement.json
```

Finally quantized (eg. 4.0bpw)
```
python3 convert.py -i ~/models/Codestral-22B-v0.1-hf/ -o /tmp/exl2/ -nr -m ~/models/Machinez_Codestral-22B-v0.1-exl2/measurement.json -cf ~/models/Machinez_Codestral-22B-v0.1-exl2_4.0bpw/ -b 4.0
```

## Quantization
- [3.0bpw](https://huggingface.co/machinez/Codestral-22B-v0.1-exl2/tree/3_0) 8.75gb
- [4.0bpw](https://huggingface.co/machinez/Codestral-22B-v0.1-exl2/tree/4_0) 11.5gb
- [5.0bpw](https://huggingface.co/machinez/Codestral-22B-v0.1-exl2/tree/5_0) 14.0gb
- [5.5bpw](https://huggingface.co/machinez/Codestral-22B-v0.1-exl2/tree/5_5) 15.6gb
- [6.0bpw](https://huggingface.co/machinez/Codestral-22B-v0.1-exl2/tree/6_0) 17.0gb
- [7.0bpw](https://huggingface.co/machinez/Codestral-22B-v0.1-exl2/tree/7_0) 19.7gb
- [8.0bpw](https://huggingface.co/machinez/Codestral-22B-v0.1-exl2/tree/8_0) 21.0gb

# Model Card for Codestral-22B-v0.1

Codestral-22B-v0.1 is trained on a diverse dataset of 80+ programming languages, including the most popular ones, such as Python, Java, C, C++, JavaScript, and Bash (more details in the [Blogpost](https://mistral.ai/news/codestral/)). The model can be queried:
- As instruct, for instance to answer any questions about a code snippet (write documentation, explain, factorize) or to generate code following specific indications
- As Fill in the Middle (FIM), to predict the middle tokens between a prefix and a suffix (very useful for software development add-ons like in VS Code)


## Installation

It is recommended to use `mistralai/Codestral-22B-v0.1` with [mistral-inference](https://github.com/mistralai/mistral-inference).

```
pip install mistral_inference
```

## Download

```py
from huggingface_hub import snapshot_download
from pathlib import Path

mistral_models_path = Path.home().joinpath('mistral_models', 'Codestral-22B-v0.1')
mistral_models_path.mkdir(parents=True, exist_ok=True)

snapshot_download(repo_id="mistralai/Codestral-22B-v0.1", allow_patterns=["params.json", "consolidated.safetensors", "tokenizer.model.v3"], local_dir=mistral_models_path)
```

### Chat

After installing `mistral_inference`, a `mistral-chat` CLI command should be available in your environment.

```
mistral-chat $HOME/mistral_models/Codestral-22B-v0.1 --instruct --max_tokens 256
```

Will generate an answer to "Write me a function that computes fibonacci in Rust" and should give something along the following lines:

```
Sure, here's a simple implementation of a function that computes the Fibonacci sequence in Rust. This function takes an integer `n` as an argument and returns the `n`th Fibonacci number.

fn fibonacci(n: u32) -> u32 {
    match n {
        0 => 0,
        1 => 1,
        _ => fibonacci(n - 1) + fibonacci(n - 2),
    }
}

fn main() {
    let n = 10;
    println!("The {}th Fibonacci number is: {}", n, fibonacci(n));
}

This function uses recursion to calculate the Fibonacci number. However, it's not the most efficient solution because it performs a lot of redundant calculations. A more efficient solution would use a loop to iteratively calculate the Fibonacci numbers.
```


### Fill-in-the-middle (FIM)

After installing `mistral_inference` and running `pip install --upgrade mistral_common` to make sure to have mistral_common>=1.2 installed:

```py
from mistral_inference.model import Transformer
from mistral_inference.generate import generate
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.tokens.instruct.request import FIMRequest

tokenizer = MistralTokenizer.v3()
model = Transformer.from_folder("~/codestral-22B-240529")

prefix = """def add("""
suffix = """    return sum"""

request = FIMRequest(prompt=prefix, suffix=suffix)

tokens = tokenizer.encode_fim(request).tokens

out_tokens, _ = generate([tokens], model, max_tokens=256, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
result = tokenizer.decode(out_tokens[0])

middle = result.split(suffix)[0].strip()
print(middle)
```

Should give something along the following lines:

```
num1, num2):

    # Add two numbers
    sum = num1 + num2

    # return the sum
```

## Download instructions

With git:

```shell
git clone --single-branch --branch 4_0 https://huggingface.co/machinez/Codestral-22B-v0.1-exl2
```

With huggingface hub:

```shell
pip3 install -U "huggingface_hub[cli]"
```

## (optional)
```shell
git config --global credential.helper 'store --file ~/.my-credentials'
huggingface-cli login
```

To download the `main` (only useful if you only care about measurement.json) branch to a folder called `machinez_Codestral-22B-v0.1-exl2`:

```shell
mkdir machinez_Codestral-22B-v0.1-exl2
huggingface-cli download machinez/Codestral-22B-v0.1-exl2 --local-dir machinez_Codestral-22B-v0.1-exl2 --local-dir-use-symlinks False
```

To download from a different branch, add the `--revision` parameter:

```shell
mkdir machinez_Codestral-22B-v0.1-exl2_4.0bpw
huggingface-cli download machinez/Codestral-22B-v0.1-exl2 --revision 6_0 --local-dir machinez_Codestral-22B-v0.1-exl2_6.0bpw --local-dir-use-symlinks False
```

## Limitations

The Codestral-22B-v0.1 does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.

## License

Codestral-22B-v0.1 is released under the `MNLP-0.1` license.

## The Mistral AI Team

Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Bam4d, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Henri Roussez, Jean-Malo Delignon, Jia Li, Justus Murke, Kartik Khandelwal, Lawrence Stewart, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Marjorie Janiewicz, Mickael Seznec, Nicolas Schuhl, Patrick von Platen, Romain Sauvestre, Pierre Stock, Sandeep Subramanian, Saurabh Garg, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibaut Lavril, Thibault Schueller, Timothée Lacroix, Théophile Gervet, Thomas Wang, Valera Nemychnikova, Wendy Shang, William El Sayed, William Marshall