machinez commited on
Commit
f1f114e
·
verified ·
1 Parent(s): 6490c7d

Update README.md

Browse files

updates to model card with download instructions

Files changed (1) hide show
  1. README.md +37 -2
README.md CHANGED
@@ -18,14 +18,16 @@ python3 ~/convert_mistral_weights_to_hf-22B.py --input_dir ~/Codestral-22B-v0.1/
18
 
19
  Then measurements.json was created using [exllamav2](https://github.com/turboderp/exllamav2/blob/master/doc/convert.md)
20
  ```
21
- python convert.py -i ~/models/Codestral-22B-v0.1-hf/ -o /tmp/exl2/ -nr -om ~/models/Machinez_Codestral-22B-v0.1-exl2/measurement.json
22
  ```
23
 
24
  Finally quantized (eg. 4.0bpw)
25
  ```
26
- python convert.py -i ~/models/Codestral-22B-v0.1-hf/ -o /tmp/exl2/ -nr -m ~/models/Machinez_Codestral-22B-v0.1-exl2/measurement.json -cf ~/models/Machinez_Codestral-22B-v0.1-exl2_4.0bpw/ -b 4.0
27
  ```
28
 
 
 
29
  # Model Card for Codestral-22B-v0.1
30
 
31
  Codestrall-22B-v0.1 is trained on a diverse dataset of 80+ programming languages, including the most popular ones, such as Python, Java, C, C++, JavaScript, and Bash (more details in the [Blogpost](https://mistral.ai/news/codestral/)). The model can be queried:
@@ -121,6 +123,39 @@ num1, num2):
121
  # return the sum
122
  ```
123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124
  ## Limitations
125
 
126
  The Codestral-22B-v0.1 does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
 
18
 
19
  Then measurements.json was created using [exllamav2](https://github.com/turboderp/exllamav2/blob/master/doc/convert.md)
20
  ```
21
+ python3 convert.py -i ~/models/Codestral-22B-v0.1-hf/ -o /tmp/exl2/ -nr -om ~/models/Machinez_Codestral-22B-v0.1-exl2/measurement.json
22
  ```
23
 
24
  Finally quantized (eg. 4.0bpw)
25
  ```
26
+ python3 convert.py -i ~/models/Codestral-22B-v0.1-hf/ -o /tmp/exl2/ -nr -m ~/models/Machinez_Codestral-22B-v0.1-exl2/measurement.json -cf ~/models/Machinez_Codestral-22B-v0.1-exl2_4.0bpw/ -b 4.0
27
  ```
28
 
29
+
30
+
31
  # Model Card for Codestral-22B-v0.1
32
 
33
  Codestrall-22B-v0.1 is trained on a diverse dataset of 80+ programming languages, including the most popular ones, such as Python, Java, C, C++, JavaScript, and Bash (more details in the [Blogpost](https://mistral.ai/news/codestral/)). The model can be queried:
 
123
  # return the sum
124
  ```
125
 
126
+ ## Download instructions
127
+
128
+ With git:
129
+
130
+ ```shell
131
+ git clone --single-branch --branch 4_0 https://huggingface.co/machinez/Codestral-22B-v0.1-exl2-exl2
132
+ ```
133
+
134
+ With huggingface hub:
135
+
136
+ ```shell
137
+ pip3 install -U "huggingface_hub[cli]"
138
+ ```
139
+
140
+ ## (optional)
141
+ ```shell
142
+ git config --global credential.helper 'store --file ~/.my-credentials'
143
+ huggingface-cli login
144
+ ```
145
+
146
+ To download the `main` (only useful if you only care about measurement.json) branch to a folder called `machinez_Codestral-22B-v0.1-exl2`:
147
+
148
+ ```shell
149
+ mkdir machinez_Codestral-22B-v0.1-exl2
150
+ huggingface-cli download machinez/Codestral-22B-v0.1-exl2 --local-dir machinez_Codestral-22B-v0.1-exl2 --local-dir-use-symlinks False
151
+ ```
152
+
153
+ To download from a different branch, add the `--revision` parameter:
154
+
155
+ ```shell
156
+ mkdir machinez_Codestral-22B-v0.1-exl2_4.0bpw
157
+ huggingface-cli download machinez/Codestral-22B-v0.1-exl2 --revision 6_0 --local-dir machinez_Codestral-22B-v0.1-exl2_6.0bpw --local-dir-use-symlinks False
158
+
159
  ## Limitations
160
 
161
  The Codestral-22B-v0.1 does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to