|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from sageattn import sageattn_blackwell |
|
from torch.nn.attention import SDPBackend, sdpa_kernel |
|
|
|
|
|
def get_rtol_atol(actual, expect): |
|
actual = actual.float() |
|
expect = expect.float() |
|
diff = (actual - expect).abs() |
|
eps = torch.tensor( |
|
torch.finfo(actual.dtype).eps, device=actual.device, dtype=actual.dtype |
|
) |
|
rdiff = diff / torch.maximum(torch.maximum(actual.abs(), expect.abs()), eps) |
|
return ( |
|
f"mean_rtol={rdiff.mean().item():.3g} " |
|
f"max_rtol={rdiff.max().item():.3g} " |
|
f"mean_atol={diff.max().item():.3g} " |
|
f"max_atol={diff.max().item():.3g}" |
|
) |
|
|
|
|
|
def main(): |
|
batch_size = 4 |
|
head_num = 32 |
|
seq_len = 64 |
|
head_dim = 128 |
|
dtype = torch.float16 |
|
|
|
q = torch.randn(batch_size, head_num, seq_len, head_dim, device="cuda", dtype=dtype) |
|
k = torch.randn_like(q) |
|
v = torch.randn_like(q) |
|
print("q", tuple(q.shape), q.device, q.dtype) |
|
|
|
|
|
torch.backends.cuda.enable_math_sdp(True) |
|
with sdpa_kernel(SDPBackend.MATH): |
|
out_math = F.scaled_dot_product_attention(q, k, v) |
|
|
|
out_sage = sageattn_blackwell(q, k, v, is_causal=False) |
|
print("sage vs math:", get_rtol_atol(out_sage, out_math)) |
|
print("The above (except max_rtol) should be < 0.1 (on RTX 50xx)") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |