#!/usr/bin/env python3 # Based on # https://raw.githubusercontent.com/woct0rdho/SageAttention/refs/heads/main/tests/test_sageattn.py # https://huggingface.co/jt-zhang/SageAttention3 import torch import torch.nn.functional as F from sageattn import sageattn_blackwell from torch.nn.attention import SDPBackend, sdpa_kernel def get_rtol_atol(actual, expect): actual = actual.float() expect = expect.float() diff = (actual - expect).abs() eps = torch.tensor( torch.finfo(actual.dtype).eps, device=actual.device, dtype=actual.dtype ) rdiff = diff / torch.maximum(torch.maximum(actual.abs(), expect.abs()), eps) return ( f"mean_rtol={rdiff.mean().item():.3g} " f"max_rtol={rdiff.max().item():.3g} " f"mean_atol={diff.max().item():.3g} " f"max_atol={diff.max().item():.3g}" ) def main(): batch_size = 4 head_num = 32 seq_len = 64 head_dim = 128 dtype = torch.float16 q = torch.randn(batch_size, head_num, seq_len, head_dim, device="cuda", dtype=dtype) k = torch.randn_like(q) v = torch.randn_like(q) print("q", tuple(q.shape), q.device, q.dtype) # 'Mathematically correct' implementation torch.backends.cuda.enable_math_sdp(True) with sdpa_kernel(SDPBackend.MATH): out_math = F.scaled_dot_product_attention(q, k, v) out_sage = sageattn_blackwell(q, k, v, is_causal=False) print("sage vs math:", get_rtol_atol(out_sage, out_math)) print("The above (except max_rtol) should be < 0.1 (on RTX 50xx)") if __name__ == "__main__": main()