Upload config.py
Browse files
config.py
ADDED
@@ -0,0 +1,422 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Diffusion pipeline configuration module."""
|
3 |
+
|
4 |
+
import gc
|
5 |
+
import typing as tp
|
6 |
+
from dataclasses import dataclass, field
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from diffusers.pipelines import (
|
10 |
+
AutoPipelineForText2Image,
|
11 |
+
DiffusionPipeline,
|
12 |
+
FluxKontextPipeline,
|
13 |
+
FluxControlPipeline,
|
14 |
+
FluxFillPipeline,
|
15 |
+
SanaPipeline,
|
16 |
+
)
|
17 |
+
from omniconfig import configclass
|
18 |
+
from torch import nn
|
19 |
+
from transformers import PreTrainedModel, PreTrainedTokenizer, T5EncoderModel
|
20 |
+
|
21 |
+
from deepcompressor.data.utils.dtype import eval_dtype
|
22 |
+
from deepcompressor.quantizer.processor import Quantizer
|
23 |
+
from deepcompressor.utils import tools
|
24 |
+
from deepcompressor.utils.hooks import AccumBranchHook, ProcessHook
|
25 |
+
|
26 |
+
from ....nn.patch.linear import ConcatLinear, ShiftedLinear
|
27 |
+
from ....nn.patch.lowrank import LowRankBranch
|
28 |
+
from ..nn.patch import (
|
29 |
+
replace_fused_linear_with_concat_linear,
|
30 |
+
replace_up_block_conv_with_concat_conv,
|
31 |
+
shift_input_activations,
|
32 |
+
)
|
33 |
+
|
34 |
+
__all__ = ["DiffusionPipelineConfig"]
|
35 |
+
|
36 |
+
|
37 |
+
@configclass
|
38 |
+
@dataclass
|
39 |
+
class LoRAConfig:
|
40 |
+
"""LoRA configuration.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
path (`str`):
|
44 |
+
The path of the LoRA branch.
|
45 |
+
weight_name (`str`):
|
46 |
+
The weight name of the LoRA branch.
|
47 |
+
alpha (`float`):
|
48 |
+
The alpha value of the LoRA branch.
|
49 |
+
"""
|
50 |
+
|
51 |
+
path: str
|
52 |
+
weight_name: str
|
53 |
+
alpha: float = 1.0
|
54 |
+
|
55 |
+
|
56 |
+
@configclass
|
57 |
+
@dataclass
|
58 |
+
class DiffusionPipelineConfig:
|
59 |
+
"""Diffusion pipeline configuration.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
name (`str`):
|
63 |
+
The name of the pipeline.
|
64 |
+
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
65 |
+
The data type of the pipeline.
|
66 |
+
device (`str`, *optional*, defaults to `"cuda"`):
|
67 |
+
The device of the pipeline.
|
68 |
+
shift_activations (`bool`, *optional*, defaults to `False`):
|
69 |
+
Whether to shift activations.
|
70 |
+
"""
|
71 |
+
|
72 |
+
_pipeline_factories: tp.ClassVar[
|
73 |
+
dict[str, tp.Callable[[str, str, torch.dtype, torch.device, bool], DiffusionPipeline]]
|
74 |
+
] = {}
|
75 |
+
_text_extractors: tp.ClassVar[
|
76 |
+
dict[
|
77 |
+
str,
|
78 |
+
tp.Callable[
|
79 |
+
[DiffusionPipeline, tuple[type[PreTrainedModel], ...]],
|
80 |
+
list[tuple[str, PreTrainedModel, PreTrainedTokenizer]],
|
81 |
+
],
|
82 |
+
]
|
83 |
+
] = {}
|
84 |
+
|
85 |
+
name: str
|
86 |
+
path: str = ""
|
87 |
+
dtype: torch.dtype = field(
|
88 |
+
default_factory=lambda s=torch.float32: eval_dtype(s, with_quant_dtype=False, with_none=False)
|
89 |
+
)
|
90 |
+
device: str = "cuda"
|
91 |
+
shift_activations: bool = False
|
92 |
+
lora: LoRAConfig | None = None
|
93 |
+
family: str = field(init=False)
|
94 |
+
task: str = "text-to-image"
|
95 |
+
|
96 |
+
def __post_init__(self):
|
97 |
+
self.family = self.name.split("-")[0]
|
98 |
+
|
99 |
+
if self.name == "flux.1-canny-dev":
|
100 |
+
self.task = "canny-to-image"
|
101 |
+
elif self.name == "flux.1-depth-dev":
|
102 |
+
self.task = "depth-to-image"
|
103 |
+
elif self.name == "flux.1-fill-dev":
|
104 |
+
self.task = "inpainting"
|
105 |
+
|
106 |
+
def build(
|
107 |
+
self, *, dtype: str | torch.dtype | None = None, device: str | torch.device | None = None
|
108 |
+
) -> DiffusionPipeline:
|
109 |
+
"""Build the diffusion pipeline.
|
110 |
+
|
111 |
+
Args:
|
112 |
+
dtype (`str` or `torch.dtype`, *optional*):
|
113 |
+
The data type of the pipeline.
|
114 |
+
device (`str` or `torch.device`, *optional*):
|
115 |
+
The device of the pipeline.
|
116 |
+
|
117 |
+
Returns:
|
118 |
+
`DiffusionPipeline`:
|
119 |
+
The diffusion pipeline.
|
120 |
+
"""
|
121 |
+
if dtype is None:
|
122 |
+
dtype = self.dtype
|
123 |
+
if device is None:
|
124 |
+
device = self.device
|
125 |
+
_factory = self._pipeline_factories.get(self.name, self._default_build)
|
126 |
+
return _factory(
|
127 |
+
name=self.name, path=self.path, dtype=dtype, device=device, shift_activations=self.shift_activations
|
128 |
+
)
|
129 |
+
|
130 |
+
def extract_text_encoders(
|
131 |
+
self, pipeline: DiffusionPipeline, supported: tuple[type[PreTrainedModel], ...] = (T5EncoderModel,)
|
132 |
+
) -> list[tuple[str, PreTrainedModel, PreTrainedTokenizer]]:
|
133 |
+
"""Extract the text encoders and tokenizers from the pipeline.
|
134 |
+
|
135 |
+
Args:
|
136 |
+
pipeline (`DiffusionPipeline`):
|
137 |
+
The diffusion pipeline.
|
138 |
+
supported (`tuple[type[PreTrainedModel], ...]`, *optional*, defaults to `(T5EncoderModel,)`):
|
139 |
+
The supported text encoder types. If not specified, all text encoders will be extracted.
|
140 |
+
|
141 |
+
Returns:
|
142 |
+
`list[tuple[str, PreTrainedModel, PreTrainedTokenizer]]`:
|
143 |
+
The list of text encoder name, model, and tokenizer.
|
144 |
+
"""
|
145 |
+
_extractor = self._text_extractors.get(self.name, self._default_extract_text_encoders)
|
146 |
+
return _extractor(pipeline, supported)
|
147 |
+
|
148 |
+
@classmethod
|
149 |
+
def register_pipeline_factory(
|
150 |
+
cls,
|
151 |
+
names: str | tuple[str, ...],
|
152 |
+
/,
|
153 |
+
factory: tp.Callable[[str, str, torch.dtype, torch.device, bool], DiffusionPipeline],
|
154 |
+
*,
|
155 |
+
overwrite: bool = False,
|
156 |
+
) -> None:
|
157 |
+
"""Register a pipeline factory.
|
158 |
+
|
159 |
+
Args:
|
160 |
+
names (`str` or `tuple[str, ...]`):
|
161 |
+
The name of the pipeline.
|
162 |
+
factory (`Callable[[str, str,torch.dtype, torch.device, bool], DiffusionPipeline]`):
|
163 |
+
The pipeline factory function.
|
164 |
+
overwrite (`bool`, *optional*, defaults to `False`):
|
165 |
+
Whether to overwrite the existing factory for the pipeline.
|
166 |
+
"""
|
167 |
+
if isinstance(names, str):
|
168 |
+
names = [names]
|
169 |
+
for name in names:
|
170 |
+
if name in cls._pipeline_factories and not overwrite:
|
171 |
+
raise ValueError(f"Pipeline factory {name} already exists.")
|
172 |
+
cls._pipeline_factories[name] = factory
|
173 |
+
|
174 |
+
@classmethod
|
175 |
+
def register_text_extractor(
|
176 |
+
cls,
|
177 |
+
names: str | tuple[str, ...],
|
178 |
+
/,
|
179 |
+
extractor: tp.Callable[
|
180 |
+
[DiffusionPipeline, tuple[type[PreTrainedModel], ...]],
|
181 |
+
list[tuple[str, PreTrainedModel, PreTrainedTokenizer]],
|
182 |
+
],
|
183 |
+
*,
|
184 |
+
overwrite: bool = False,
|
185 |
+
) -> None:
|
186 |
+
"""Register a text extractor.
|
187 |
+
|
188 |
+
Args:
|
189 |
+
names (`str` or `tuple[str, ...]`):
|
190 |
+
The name of the pipeline.
|
191 |
+
extractor (`Callable[[DiffusionPipeline], list[tuple[str, PreTrainedModel, PreTrainedTokenizer]]`):
|
192 |
+
The text extractor function.
|
193 |
+
overwrite (`bool`, *optional*, defaults to `False`):
|
194 |
+
Whether to overwrite the existing extractor for the pipeline.
|
195 |
+
"""
|
196 |
+
if isinstance(names, str):
|
197 |
+
names = [names]
|
198 |
+
for name in names:
|
199 |
+
if name in cls._text_extractors and not overwrite:
|
200 |
+
raise ValueError(f"Text extractor {name} already exists.")
|
201 |
+
cls._text_extractors[name] = extractor
|
202 |
+
|
203 |
+
def load_lora( # noqa: C901
|
204 |
+
self, pipeline: DiffusionPipeline, smooth_cache: dict[str, torch.Tensor] | None = None
|
205 |
+
) -> DiffusionPipeline:
|
206 |
+
smooth_cache = smooth_cache or {}
|
207 |
+
model = pipeline.unet if hasattr(pipeline, "unet") else pipeline.transformer
|
208 |
+
assert isinstance(model, nn.Module)
|
209 |
+
if self.lora is not None:
|
210 |
+
logger = tools.logging.getLogger(__name__)
|
211 |
+
logger.info(f"Load LoRA branches from {self.lora.path}")
|
212 |
+
lora_state_dict, alphas = pipeline.lora_state_dict(
|
213 |
+
self.lora.path, return_alphas=True, weight_name=self.lora.weight_name
|
214 |
+
)
|
215 |
+
tools.logging.Formatter.indent_inc()
|
216 |
+
for name, module in model.named_modules():
|
217 |
+
if isinstance(module, (nn.Linear, ConcatLinear, ShiftedLinear)):
|
218 |
+
lora_a_key, lora_b_key = f"transformer.{name}.lora_A.weight", f"transformer.{name}.lora_B.weight"
|
219 |
+
if lora_a_key in lora_state_dict:
|
220 |
+
assert lora_b_key in lora_state_dict
|
221 |
+
logger.info(f"+ Load LoRA branch for {name}")
|
222 |
+
tools.logging.Formatter.indent_inc()
|
223 |
+
a = lora_state_dict.pop(lora_a_key)
|
224 |
+
b = lora_state_dict.pop(lora_b_key)
|
225 |
+
assert isinstance(a, torch.Tensor)
|
226 |
+
assert isinstance(b, torch.Tensor)
|
227 |
+
assert a.shape[1] == module.in_features
|
228 |
+
assert b.shape[0] == module.out_features
|
229 |
+
if isinstance(module, ConcatLinear):
|
230 |
+
logger.debug(
|
231 |
+
f"- split LoRA branch into {len(module.linears)} parts ({module.in_features_list})"
|
232 |
+
)
|
233 |
+
m_splits = module.linears
|
234 |
+
a_splits = a.split(module.in_features_list, dim=1)
|
235 |
+
b_splits = [b] * len(a_splits)
|
236 |
+
else:
|
237 |
+
m_splits, a_splits, b_splits = [module], [a], [b]
|
238 |
+
for m, a, b in zip(m_splits, a_splits, b_splits, strict=True):
|
239 |
+
assert a.shape[0] == b.shape[1]
|
240 |
+
if isinstance(m, ShiftedLinear):
|
241 |
+
s, m = m.shift, m.linear
|
242 |
+
logger.debug(f"- shift LoRA input by {s.item() if s.numel() == 1 else s}")
|
243 |
+
else:
|
244 |
+
s = None
|
245 |
+
assert isinstance(m, nn.Linear)
|
246 |
+
device, dtype = m.weight.device, m.weight.dtype
|
247 |
+
a, b = a.to(device=device, dtype=torch.float64), b.to(device=device, dtype=torch.float64)
|
248 |
+
if s is not None:
|
249 |
+
if s.numel() == 1:
|
250 |
+
s = torch.matmul(b, a.sum(dim=1).mul_(s.double())).mul_(self.lora.alpha)
|
251 |
+
else:
|
252 |
+
s = torch.matmul(b, torch.matmul(a, s.view(1, -1).double())).mul_(self.lora.alpha)
|
253 |
+
if hasattr(m, "in_smooth_cache_key"):
|
254 |
+
logger.debug(f"- smooth LoRA input using {m.in_smooth_cache_key} smooth scale")
|
255 |
+
ss = smooth_cache[m.in_smooth_cache_key].to(device=device, dtype=torch.float64)
|
256 |
+
a = a.mul_(ss.view(1, -1))
|
257 |
+
del ss
|
258 |
+
if hasattr(m, "out_smooth_cache_key"):
|
259 |
+
logger.debug(f"- smooth LoRA output using {m.out_smooth_cache_key} smooth scale")
|
260 |
+
ss = smooth_cache[m.out_smooth_cache_key].to(device=device, dtype=torch.float64)
|
261 |
+
b = b.div_(ss.view(-1, 1))
|
262 |
+
if s is not None:
|
263 |
+
s = s.div_(ss.view(-1))
|
264 |
+
del ss
|
265 |
+
branch_hook, quant_hook = None, None
|
266 |
+
for hook in m._forward_pre_hooks.values():
|
267 |
+
if isinstance(hook, AccumBranchHook) and isinstance(hook.branch, LowRankBranch):
|
268 |
+
branch_hook = hook
|
269 |
+
if isinstance(hook, ProcessHook) and isinstance(hook.processor, Quantizer):
|
270 |
+
quant_hook = hook
|
271 |
+
if branch_hook is not None:
|
272 |
+
logger.debug("- fuse with existing LoRA branch")
|
273 |
+
assert isinstance(branch_hook.branch, LowRankBranch)
|
274 |
+
_a = branch_hook.branch.a.weight.data
|
275 |
+
_b = branch_hook.branch.b.weight.data
|
276 |
+
if branch_hook.branch.alpha != self.lora.alpha:
|
277 |
+
a, b = a.to(dtype=dtype), b.mul_(self.lora.alpha).to(dtype=dtype)
|
278 |
+
_b = _b.to(dtype=torch.float64).mul_(branch_hook.branch.alpha).to(dtype=dtype)
|
279 |
+
alpha = 1
|
280 |
+
else:
|
281 |
+
a, b = a.to(dtype=dtype), b.to(dtype=dtype)
|
282 |
+
alpha = self.lora.alpha
|
283 |
+
branch_hook.branch = LowRankBranch(
|
284 |
+
m.in_features,
|
285 |
+
m.out_features,
|
286 |
+
rank=a.shape[0] + branch_hook.branch.rank,
|
287 |
+
alpha=alpha,
|
288 |
+
).to(device=device, dtype=dtype)
|
289 |
+
branch_hook.branch.a.weight.data[: a.shape[0], :] = a
|
290 |
+
branch_hook.branch.b.weight.data[:, : b.shape[1]] = b
|
291 |
+
branch_hook.branch.a.weight.data[a.shape[0] :, :] = _a
|
292 |
+
branch_hook.branch.b.weight.data[:, b.shape[1] :] = _b
|
293 |
+
else:
|
294 |
+
logger.debug("- create a new LoRA branch")
|
295 |
+
branch = LowRankBranch(
|
296 |
+
m.in_features, m.out_features, rank=a.shape[0], alpha=self.lora.alpha
|
297 |
+
)
|
298 |
+
branch = branch.to(device=device, dtype=dtype)
|
299 |
+
branch.a.weight.data.copy_(a.to(dtype=dtype))
|
300 |
+
branch.b.weight.data.copy_(b.to(dtype=dtype))
|
301 |
+
# low rank branch hook should be registered before the quantization hook
|
302 |
+
if quant_hook is not None:
|
303 |
+
logger.debug(f"- remove quantization hook from {name}")
|
304 |
+
quant_hook.remove(m)
|
305 |
+
logger.debug(f"- register LoRA branch to {name}")
|
306 |
+
branch.as_hook().register(m)
|
307 |
+
if quant_hook is not None:
|
308 |
+
logger.debug(f"- re-register quantization hook to {name}")
|
309 |
+
quant_hook.register(m)
|
310 |
+
if s is not None:
|
311 |
+
assert m.bias is not None
|
312 |
+
m.bias.data.copy_((m.bias.double().sub_(s)).to(dtype))
|
313 |
+
del m_splits, a_splits, b_splits, a, b, s
|
314 |
+
gc.collect()
|
315 |
+
torch.cuda.empty_cache()
|
316 |
+
tools.logging.Formatter.indent_dec()
|
317 |
+
tools.logging.Formatter.indent_dec()
|
318 |
+
if len(lora_state_dict) > 0:
|
319 |
+
logger.warning(f"Unused LoRA weights: {lora_state_dict.keys()}")
|
320 |
+
branches = nn.ModuleList()
|
321 |
+
for _, module in model.named_modules():
|
322 |
+
for hook in module._forward_hooks.values():
|
323 |
+
if isinstance(hook, AccumBranchHook) and isinstance(hook.branch, LowRankBranch):
|
324 |
+
branches.append(hook.branch)
|
325 |
+
model.register_module("_low_rank_branches", branches)
|
326 |
+
|
327 |
+
@staticmethod
|
328 |
+
def _default_build(
|
329 |
+
name: str, path: str, dtype: str | torch.dtype, device: str | torch.device, shift_activations: bool
|
330 |
+
) -> DiffusionPipeline:
|
331 |
+
if not path:
|
332 |
+
if name == "sdxl":
|
333 |
+
path = "stabilityai/stable-diffusion-xl-base-1.0"
|
334 |
+
elif name == "sdxl-turbo":
|
335 |
+
path = "stabilityai/sdxl-turbo"
|
336 |
+
elif name == "pixart-sigma":
|
337 |
+
path = "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS"
|
338 |
+
elif name == "flux.1-kontext-dev":
|
339 |
+
path = "black-forest-labs/FLUX.1-Kontext-dev"
|
340 |
+
elif name == "flux.1-dev":
|
341 |
+
path = "black-forest-labs/FLUX.1-dev"
|
342 |
+
elif name == "flux.1-canny-dev":
|
343 |
+
path = "black-forest-labs/FLUX.1-Canny-dev"
|
344 |
+
elif name == "flux.1-depth-dev":
|
345 |
+
path = "black-forest-labs/FLUX.1-Depth-dev"
|
346 |
+
elif name == "flux.1-fill-dev":
|
347 |
+
path = "black-forest-labs/FLUX.1-Fill-dev"
|
348 |
+
elif name == "flux.1-schnell":
|
349 |
+
path = "black-forest-labs/FLUX.1-schnell"
|
350 |
+
else:
|
351 |
+
raise ValueError(f"Path for {name} is not specified.")
|
352 |
+
if name in ["flux.1-kontext-dev"]:
|
353 |
+
pipeline = FluxKontextPipeline.from_pretrained(path, torch_dtype=dtype)
|
354 |
+
elif name in ["flux.1-canny-dev", "flux.1-depth-dev"]:
|
355 |
+
pipeline = FluxControlPipeline.from_pretrained(path, torch_dtype=dtype)
|
356 |
+
elif name == "flux.1-fill-dev":
|
357 |
+
pipeline = FluxFillPipeline.from_pretrained(path, torch_dtype=dtype)
|
358 |
+
elif name.startswith("sana-"):
|
359 |
+
if dtype == torch.bfloat16:
|
360 |
+
pipeline = SanaPipeline.from_pretrained(path, variant="bf16", torch_dtype=dtype, use_safetensors=True)
|
361 |
+
pipeline.vae.to(dtype)
|
362 |
+
pipeline.text_encoder.to(dtype)
|
363 |
+
else:
|
364 |
+
pipeline = SanaPipeline.from_pretrained(path, torch_dtype=dtype)
|
365 |
+
else:
|
366 |
+
pipeline = AutoPipelineForText2Image.from_pretrained(path, torch_dtype=dtype)
|
367 |
+
|
368 |
+
# Debug output
|
369 |
+
print(">>> DEVICE:", device)
|
370 |
+
print(">>> PIPELINE TYPE:", type(pipeline))
|
371 |
+
|
372 |
+
# Try to move each component using .to_empty()
|
373 |
+
for name in ["unet", "transformer", "vae", "text_encoder"]:
|
374 |
+
module = getattr(pipeline, name, None)
|
375 |
+
if isinstance(module, torch.nn.Module):
|
376 |
+
try:
|
377 |
+
print(f">>> Moving {name} to {device} using to_empty()")
|
378 |
+
module.to_empty(device)
|
379 |
+
except Exception as e:
|
380 |
+
print(f">>> WARNING: {name}.to_empty({device}) failed: {e}")
|
381 |
+
try:
|
382 |
+
print(f">>> Falling back to {name}.to({device})")
|
383 |
+
module.to(device)
|
384 |
+
except Exception as ee:
|
385 |
+
print(f">>> ERROR: {name}.to({device}) also failed: {ee}")
|
386 |
+
|
387 |
+
# Identify main model (for patching)
|
388 |
+
model = getattr(pipeline, "unet", None) or getattr(pipeline, "transformer", None)
|
389 |
+
if model is not None:
|
390 |
+
replace_fused_linear_with_concat_linear(model)
|
391 |
+
replace_up_block_conv_with_concat_conv(model)
|
392 |
+
if shift_activations:
|
393 |
+
shift_input_activations(model)
|
394 |
+
else:
|
395 |
+
print(">>> WARNING: No model (unet/transformer) found for patching")
|
396 |
+
|
397 |
+
return pipeline
|
398 |
+
|
399 |
+
@staticmethod
|
400 |
+
def _default_extract_text_encoders(
|
401 |
+
pipeline: DiffusionPipeline, supported: tuple[type[PreTrainedModel], ...]
|
402 |
+
) -> list[tuple[str, PreTrainedModel, PreTrainedTokenizer]]:
|
403 |
+
"""Extract the text encoders and tokenizers from the pipeline.
|
404 |
+
|
405 |
+
Args:
|
406 |
+
pipeline (`DiffusionPipeline`):
|
407 |
+
The diffusion pipeline.
|
408 |
+
supported (`tuple[type[PreTrainedModel], ...]`, *optional*, defaults to `(T5EncoderModel,)`):
|
409 |
+
The supported text encoder types. If not specified, all text encoders will be extracted.
|
410 |
+
|
411 |
+
Returns:
|
412 |
+
`list[tuple[str, PreTrainedModel, PreTrainedTokenizer]]`:
|
413 |
+
The list of text encoder name, model, and tokenizer.
|
414 |
+
"""
|
415 |
+
results: list[tuple[str, PreTrainedModel, PreTrainedTokenizer]] = []
|
416 |
+
for key in vars.__dict__.keys():
|
417 |
+
if key.startswith("text_encoder"):
|
418 |
+
suffix = key[len("text_encoder") :]
|
419 |
+
encoder, tokenizer = getattr(pipeline, f"text_encoder{suffix}"), getattr(pipeline, f"tokenizer{suffix}")
|
420 |
+
if not supported or isinstance(encoder, supported):
|
421 |
+
results.append((key, encoder, tokenizer))
|
422 |
+
return results
|