Upload struct.py
Browse files
struct.py
ADDED
@@ -0,0 +1,2019 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Utility functions for Diffusion Models."""
|
3 |
+
|
4 |
+
import enum
|
5 |
+
import typing as tp
|
6 |
+
from abc import abstractmethod
|
7 |
+
from collections import OrderedDict, defaultdict
|
8 |
+
from dataclasses import dataclass, field
|
9 |
+
|
10 |
+
# region imports
|
11 |
+
import torch.nn as nn
|
12 |
+
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU, SwiGLU
|
13 |
+
from diffusers.models.attention import BasicTransformerBlock, FeedForward, JointTransformerBlock
|
14 |
+
from diffusers.models.attention_processor import Attention, SanaLinearAttnProcessor2_0
|
15 |
+
from diffusers.models.embeddings import (
|
16 |
+
CombinedTimestepGuidanceTextProjEmbeddings,
|
17 |
+
CombinedTimestepTextProjEmbeddings,
|
18 |
+
ImageHintTimeEmbedding,
|
19 |
+
ImageProjection,
|
20 |
+
ImageTimeEmbedding,
|
21 |
+
PatchEmbed,
|
22 |
+
PixArtAlphaTextProjection,
|
23 |
+
TextImageProjection,
|
24 |
+
TextImageTimeEmbedding,
|
25 |
+
TextTimeEmbedding,
|
26 |
+
TimestepEmbedding,
|
27 |
+
)
|
28 |
+
from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormSingle, AdaLayerNormZero
|
29 |
+
from diffusers.models.resnet import Downsample2D, ResnetBlock2D, Upsample2D
|
30 |
+
from diffusers.models.transformers.pixart_transformer_2d import PixArtTransformer2DModel
|
31 |
+
from diffusers.models.transformers.sana_transformer import GLUMBConv, SanaTransformer2DModel, SanaTransformerBlock
|
32 |
+
from diffusers.models.transformers.transformer_2d import Transformer2DModel
|
33 |
+
from diffusers.models.transformers.transformer_flux import (
|
34 |
+
FluxSingleTransformerBlock,
|
35 |
+
FluxTransformer2DModel,
|
36 |
+
FluxTransformerBlock,
|
37 |
+
FluxAttention
|
38 |
+
)
|
39 |
+
from diffusers.models.transformers.transformer_sd3 import SD3Transformer2DModel
|
40 |
+
from diffusers.models.unets.unet_2d import UNet2DModel
|
41 |
+
from diffusers.models.unets.unet_2d_blocks import (
|
42 |
+
CrossAttnDownBlock2D,
|
43 |
+
CrossAttnUpBlock2D,
|
44 |
+
DownBlock2D,
|
45 |
+
UNetMidBlock2D,
|
46 |
+
UNetMidBlock2DCrossAttn,
|
47 |
+
UpBlock2D,
|
48 |
+
)
|
49 |
+
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
50 |
+
from diffusers.pipelines import (
|
51 |
+
FluxControlPipeline,
|
52 |
+
FluxFillPipeline,
|
53 |
+
FluxPipeline,
|
54 |
+
FluxKontextPipeline,
|
55 |
+
PixArtAlphaPipeline,
|
56 |
+
PixArtSigmaPipeline,
|
57 |
+
SanaPipeline,
|
58 |
+
StableDiffusion3Pipeline,
|
59 |
+
StableDiffusionPipeline,
|
60 |
+
StableDiffusionXLPipeline,
|
61 |
+
)
|
62 |
+
|
63 |
+
from deepcompressor.nn.patch.conv import ConcatConv2d, ShiftedConv2d
|
64 |
+
from deepcompressor.nn.patch.linear import ConcatLinear, ShiftedLinear
|
65 |
+
from deepcompressor.nn.struct.attn import (
|
66 |
+
AttentionConfigStruct,
|
67 |
+
AttentionStruct,
|
68 |
+
BaseTransformerStruct,
|
69 |
+
FeedForwardConfigStruct,
|
70 |
+
FeedForwardStruct,
|
71 |
+
TransformerBlockStruct,
|
72 |
+
)
|
73 |
+
from deepcompressor.nn.struct.base import BaseModuleStruct
|
74 |
+
from deepcompressor.utils.common import join_name
|
75 |
+
|
76 |
+
from .attention import DiffusionAttentionProcessor
|
77 |
+
|
78 |
+
# endregion
|
79 |
+
|
80 |
+
|
81 |
+
__all__ = ["DiffusionModelStruct", "DiffusionBlockStruct", "DiffusionModelStruct"]
|
82 |
+
|
83 |
+
|
84 |
+
DIT_BLOCK_CLS = tp.Union[
|
85 |
+
BasicTransformerBlock,
|
86 |
+
JointTransformerBlock,
|
87 |
+
FluxSingleTransformerBlock,
|
88 |
+
FluxTransformerBlock,
|
89 |
+
SanaTransformerBlock,
|
90 |
+
]
|
91 |
+
UNET_BLOCK_CLS = tp.Union[
|
92 |
+
DownBlock2D,
|
93 |
+
CrossAttnDownBlock2D,
|
94 |
+
UNetMidBlock2D,
|
95 |
+
UNetMidBlock2DCrossAttn,
|
96 |
+
UpBlock2D,
|
97 |
+
CrossAttnUpBlock2D,
|
98 |
+
]
|
99 |
+
DIT_CLS = tp.Union[
|
100 |
+
Transformer2DModel,
|
101 |
+
PixArtTransformer2DModel,
|
102 |
+
SD3Transformer2DModel,
|
103 |
+
FluxTransformer2DModel,
|
104 |
+
SanaTransformer2DModel,
|
105 |
+
]
|
106 |
+
UNET_CLS = tp.Union[UNet2DModel, UNet2DConditionModel]
|
107 |
+
MODEL_CLS = tp.Union[DIT_CLS, UNET_CLS]
|
108 |
+
UNET_PIPELINE_CLS = tp.Union[StableDiffusionPipeline, StableDiffusionXLPipeline]
|
109 |
+
DIT_PIPELINE_CLS = tp.Union[
|
110 |
+
StableDiffusion3Pipeline,
|
111 |
+
PixArtAlphaPipeline,
|
112 |
+
PixArtSigmaPipeline,
|
113 |
+
FluxPipeline,
|
114 |
+
FluxKontextPipeline,
|
115 |
+
FluxControlPipeline,
|
116 |
+
FluxFillPipeline,
|
117 |
+
SanaPipeline,
|
118 |
+
]
|
119 |
+
PIPELINE_CLS = tp.Union[UNET_PIPELINE_CLS, DIT_PIPELINE_CLS]
|
120 |
+
|
121 |
+
ATTENTION_CLS = tp.Union[
|
122 |
+
# existing types...
|
123 |
+
FluxAttention,
|
124 |
+
]
|
125 |
+
|
126 |
+
@dataclass(kw_only=True)
|
127 |
+
class DiffusionModuleStruct(BaseModuleStruct):
|
128 |
+
def named_key_modules(self) -> tp.Generator[tuple[str, str, nn.Module, BaseModuleStruct, str], None, None]:
|
129 |
+
if isinstance(self.module, (nn.Linear, nn.Conv2d)):
|
130 |
+
yield self.key, self.name, self.module, self.parent, self.fname
|
131 |
+
else:
|
132 |
+
for name, module in self.module.named_modules():
|
133 |
+
if name and isinstance(module, (nn.Linear, nn.Conv2d)):
|
134 |
+
module_name = join_name(self.name, name)
|
135 |
+
field_name = join_name(self.fname, name)
|
136 |
+
yield self.key, module_name, module, self.parent, field_name
|
137 |
+
|
138 |
+
|
139 |
+
@dataclass(kw_only=True)
|
140 |
+
class DiffusionBlockStruct(BaseModuleStruct):
|
141 |
+
@abstractmethod
|
142 |
+
def iter_attention_structs(self) -> tp.Generator["DiffusionAttentionStruct", None, None]: ...
|
143 |
+
|
144 |
+
@abstractmethod
|
145 |
+
def iter_transformer_block_structs(self) -> tp.Generator["DiffusionTransformerBlockStruct", None, None]: ...
|
146 |
+
|
147 |
+
|
148 |
+
@dataclass(kw_only=True)
|
149 |
+
class DiffusionModelStruct(DiffusionBlockStruct):
|
150 |
+
pre_module_structs: OrderedDict[str, DiffusionModuleStruct] = field(init=False, repr=False)
|
151 |
+
post_module_structs: OrderedDict[str, DiffusionModuleStruct] = field(init=False, repr=False)
|
152 |
+
|
153 |
+
@property
|
154 |
+
@abstractmethod
|
155 |
+
def num_blocks(self) -> int: ...
|
156 |
+
|
157 |
+
@property
|
158 |
+
@abstractmethod
|
159 |
+
def block_structs(self) -> list[DiffusionBlockStruct]: ...
|
160 |
+
|
161 |
+
@abstractmethod
|
162 |
+
def get_prev_module_keys(self) -> tuple[str, ...]: ...
|
163 |
+
|
164 |
+
@abstractmethod
|
165 |
+
def get_post_module_keys(self) -> tuple[str, ...]: ...
|
166 |
+
|
167 |
+
@abstractmethod
|
168 |
+
def _get_iter_block_activations_args(
|
169 |
+
self, **input_kwargs
|
170 |
+
) -> tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]: ...
|
171 |
+
|
172 |
+
def _get_iter_pre_module_activations_args(
|
173 |
+
self,
|
174 |
+
) -> tuple[list[nn.Module], list[DiffusionModuleStruct], list[bool], list[bool]]:
|
175 |
+
layers, layer_structs, recomputes, use_prev_layer_outputs = [], [], [], []
|
176 |
+
for layer_struct in self.pre_module_structs.values():
|
177 |
+
layers.append(layer_struct.module)
|
178 |
+
layer_structs.append(layer_struct)
|
179 |
+
recomputes.append(False)
|
180 |
+
use_prev_layer_outputs.append(False)
|
181 |
+
return layers, layer_structs, recomputes, use_prev_layer_outputs
|
182 |
+
|
183 |
+
def _get_iter_post_module_activations_args(
|
184 |
+
self,
|
185 |
+
) -> tuple[list[nn.Module], list[DiffusionModuleStruct], list[bool], list[bool]]:
|
186 |
+
layers, layer_structs, recomputes, use_prev_layer_outputs = [], [], [], []
|
187 |
+
for layer_struct in self.post_module_structs.values():
|
188 |
+
layers.append(layer_struct.module)
|
189 |
+
layer_structs.append(layer_struct)
|
190 |
+
recomputes.append(False)
|
191 |
+
use_prev_layer_outputs.append(False)
|
192 |
+
return layers, layer_structs, recomputes, use_prev_layer_outputs
|
193 |
+
|
194 |
+
def get_iter_layer_activations_args(
|
195 |
+
self, skip_pre_modules: bool, skip_post_modules: bool, **input_kwargs
|
196 |
+
) -> tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]:
|
197 |
+
"""
|
198 |
+
Get the arguments for iterating over the layers and their activations.
|
199 |
+
|
200 |
+
Args:
|
201 |
+
skip_pre_modules (`bool`):
|
202 |
+
Whether to skip the pre-modules
|
203 |
+
skip_post_modules (`bool`):
|
204 |
+
Whether to skip the post-modules
|
205 |
+
|
206 |
+
Returns:
|
207 |
+
`tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]`:
|
208 |
+
the layers, the layer structs, the recomputes, and the use_prev_layer_outputs
|
209 |
+
"""
|
210 |
+
layers, structs, recomputes, uses = [], [], [], []
|
211 |
+
if not skip_pre_modules:
|
212 |
+
layers, structs, recomputes, uses = self._get_iter_pre_module_activations_args()
|
213 |
+
_layers, _structs, _recomputes, _uses = self._get_iter_block_activations_args(**input_kwargs)
|
214 |
+
layers.extend(_layers)
|
215 |
+
structs.extend(_structs)
|
216 |
+
recomputes.extend(_recomputes)
|
217 |
+
uses.extend(_uses)
|
218 |
+
if not skip_post_modules:
|
219 |
+
_layers, _structs, _recomputes, _uses = self._get_iter_post_module_activations_args()
|
220 |
+
layers.extend(_layers)
|
221 |
+
structs.extend(_structs)
|
222 |
+
recomputes.extend(_recomputes)
|
223 |
+
uses.extend(_uses)
|
224 |
+
return layers, structs, recomputes, uses
|
225 |
+
|
226 |
+
def named_key_modules(self) -> tp.Generator[tp.Tuple[str, str, nn.Module, BaseModuleStruct, str], None, None]:
|
227 |
+
for module in self.pre_module_structs.values():
|
228 |
+
yield from module.named_key_modules()
|
229 |
+
for block in self.block_structs:
|
230 |
+
yield from block.named_key_modules()
|
231 |
+
for module in self.post_module_structs.values():
|
232 |
+
yield from module.named_key_modules()
|
233 |
+
|
234 |
+
def iter_attention_structs(self) -> tp.Generator["AttentionStruct", None, None]:
|
235 |
+
for block in self.block_structs:
|
236 |
+
yield from block.iter_attention_structs()
|
237 |
+
|
238 |
+
def iter_transformer_block_structs(self) -> tp.Generator["DiffusionTransformerBlockStruct", None, None]:
|
239 |
+
for block in self.block_structs:
|
240 |
+
yield from block.iter_transformer_block_structs()
|
241 |
+
|
242 |
+
def get_named_layers(
|
243 |
+
self, skip_pre_modules: bool, skip_post_modules: bool, skip_blocks: bool = False
|
244 |
+
) -> OrderedDict[str, DiffusionBlockStruct | DiffusionModuleStruct]:
|
245 |
+
named_layers = OrderedDict()
|
246 |
+
if not skip_pre_modules:
|
247 |
+
named_layers.update(self.pre_module_structs)
|
248 |
+
if not skip_blocks:
|
249 |
+
for block in self.block_structs:
|
250 |
+
named_layers[block.name] = block
|
251 |
+
if not skip_post_modules:
|
252 |
+
named_layers.update(self.post_module_structs)
|
253 |
+
return named_layers
|
254 |
+
|
255 |
+
@staticmethod
|
256 |
+
def _default_construct(
|
257 |
+
module: tp.Union[PIPELINE_CLS, MODEL_CLS],
|
258 |
+
/,
|
259 |
+
parent: tp.Optional[BaseModuleStruct] = None,
|
260 |
+
fname: str = "",
|
261 |
+
rname: str = "",
|
262 |
+
rkey: str = "",
|
263 |
+
idx: int = 0,
|
264 |
+
**kwargs,
|
265 |
+
) -> "DiffusionModelStruct":
|
266 |
+
if isinstance(module, UNET_PIPELINE_CLS):
|
267 |
+
module = module.unet
|
268 |
+
elif isinstance(module, DIT_PIPELINE_CLS):
|
269 |
+
module = module.transformer
|
270 |
+
if isinstance(module, UNET_CLS):
|
271 |
+
return UNetStruct.construct(module, parent=parent, fname=fname, rname=rname, rkey=rkey, idx=idx, **kwargs)
|
272 |
+
elif isinstance(module, DIT_CLS):
|
273 |
+
return DiTStruct.construct(module, parent=parent, fname=fname, rname=rname, rkey=rkey, idx=idx, **kwargs)
|
274 |
+
raise NotImplementedError(f"Unsupported module type: {type(module)}")
|
275 |
+
|
276 |
+
@classmethod
|
277 |
+
def _get_default_key_map(cls) -> dict[str, set[str]]:
|
278 |
+
unet_key_map = UNetStruct._get_default_key_map()
|
279 |
+
dit_key_map = DiTStruct._get_default_key_map()
|
280 |
+
flux_key_map = FluxStruct._get_default_key_map()
|
281 |
+
key_map: dict[str, set[str]] = defaultdict(set)
|
282 |
+
for rkey, keys in unet_key_map.items():
|
283 |
+
key_map[rkey].update(keys)
|
284 |
+
for rkey, keys in dit_key_map.items():
|
285 |
+
key_map[rkey].update(keys)
|
286 |
+
for rkey, keys in flux_key_map.items():
|
287 |
+
key_map[rkey].update(keys)
|
288 |
+
return {k: v for k, v in key_map.items() if v}
|
289 |
+
|
290 |
+
@staticmethod
|
291 |
+
def _simplify_keys(keys: tp.Iterable[str], *, key_map: dict[str, set[str]]) -> list[str]:
|
292 |
+
"""Simplify the keys based on the key map.
|
293 |
+
|
294 |
+
Args:
|
295 |
+
keys (`Iterable[str]`):
|
296 |
+
The keys to simplify.
|
297 |
+
key_map (`dict[str, set[str]]`):
|
298 |
+
The key map.
|
299 |
+
|
300 |
+
Returns:
|
301 |
+
`list[str]`:
|
302 |
+
The simplified keys.
|
303 |
+
"""
|
304 |
+
# we first sort key_map by length of values in descending order
|
305 |
+
key_map = dict(sorted(key_map.items(), key=lambda item: len(item[1]), reverse=True))
|
306 |
+
ukeys, skeys = set(keys), set()
|
307 |
+
for k, v in key_map.items():
|
308 |
+
if k in ukeys:
|
309 |
+
skeys.add(k)
|
310 |
+
ukeys.discard(k)
|
311 |
+
ukeys.difference_update(v)
|
312 |
+
continue
|
313 |
+
if ukeys.issuperset(v):
|
314 |
+
skeys.add(k)
|
315 |
+
ukeys.difference_update(v)
|
316 |
+
assert not ukeys, f"Unrecognized keys: {ukeys}"
|
317 |
+
return sorted(skeys)
|
318 |
+
|
319 |
+
|
320 |
+
@dataclass(kw_only=True)
|
321 |
+
class DiffusionAttentionStruct(AttentionStruct):
|
322 |
+
module: Attention = field(repr=False, kw_only=False)
|
323 |
+
"""the module of AttentionBlock"""
|
324 |
+
parent: tp.Optional["DiffusionTransformerBlockStruct"] = field(repr=False)
|
325 |
+
|
326 |
+
def filter_kwargs(self, kwargs: dict) -> dict:
|
327 |
+
"""Filter layer kwargs to attn kwargs."""
|
328 |
+
if isinstance(self.parent.module, BasicTransformerBlock):
|
329 |
+
if kwargs.get("cross_attention_kwargs", None) is None:
|
330 |
+
attn_kwargs = {}
|
331 |
+
else:
|
332 |
+
attn_kwargs = dict(kwargs["cross_attention_kwargs"].items())
|
333 |
+
attn_kwargs.pop("gligen", None)
|
334 |
+
if self.idx == 0:
|
335 |
+
attn_kwargs["attention_mask"] = kwargs.get("attention_mask", None)
|
336 |
+
else:
|
337 |
+
attn_kwargs["attention_mask"] = kwargs.get("encoder_attention_mask", None)
|
338 |
+
else:
|
339 |
+
attn_kwargs = {}
|
340 |
+
return attn_kwargs
|
341 |
+
|
342 |
+
@staticmethod
|
343 |
+
def _default_construct(
|
344 |
+
module: Attention,
|
345 |
+
/,
|
346 |
+
parent: tp.Optional["DiffusionTransformerBlockStruct"] = None,
|
347 |
+
fname: str = "",
|
348 |
+
rname: str = "",
|
349 |
+
rkey: str = "",
|
350 |
+
idx: int = 0,
|
351 |
+
**kwargs,
|
352 |
+
) -> "DiffusionAttentionStruct":
|
353 |
+
if isinstance(module, FluxAttention):
|
354 |
+
# FluxAttention has different attribute names than standard attention
|
355 |
+
with_rope = True
|
356 |
+
num_query_heads = module.heads # FluxAttention uses 'heads', not 'num_heads'
|
357 |
+
num_key_value_heads = module.heads # FLUX typically uses same for q/k/v
|
358 |
+
|
359 |
+
# FluxAttention doesn't have 'to_out', but may have other output projections
|
360 |
+
# Check what output projection attributes actually exist
|
361 |
+
o_proj = None
|
362 |
+
o_proj_rname = ""
|
363 |
+
|
364 |
+
# Try to find the correct output projection
|
365 |
+
if hasattr(module, 'to_out') and module.to_out is not None:
|
366 |
+
o_proj = module.to_out[0] if isinstance(module.to_out, (list, tuple)) else module.to_out
|
367 |
+
o_proj_rname = "to_out.0" if isinstance(module.to_out, (list, tuple)) else "to_out"
|
368 |
+
elif hasattr(module, 'to_add_out'):
|
369 |
+
o_proj = module.to_add_out
|
370 |
+
o_proj_rname = "to_add_out"
|
371 |
+
|
372 |
+
q_proj, k_proj, v_proj = module.to_q, module.to_k, module.to_v
|
373 |
+
q_proj_rname, k_proj_rname, v_proj_rname = "to_q", "to_k", "to_v"
|
374 |
+
q, k, v = module.to_q, module.to_k, module.to_v
|
375 |
+
q_rname, k_rname, v_rname = "to_q", "to_k", "to_v"
|
376 |
+
|
377 |
+
# Handle the add_* projections that FluxAttention has
|
378 |
+
add_q_proj = getattr(module, "add_q_proj", None)
|
379 |
+
add_k_proj = getattr(module, "add_k_proj", None)
|
380 |
+
add_v_proj = getattr(module, "add_v_proj", None)
|
381 |
+
add_o_proj = getattr(module, "to_add_out", None)
|
382 |
+
add_q_proj_rname = "add_q_proj" if add_q_proj else ""
|
383 |
+
add_k_proj_rname = "add_k_proj" if add_k_proj else ""
|
384 |
+
add_v_proj_rname = "add_v_proj" if add_v_proj else ""
|
385 |
+
add_o_proj_rname = "to_add_out" if add_o_proj else ""
|
386 |
+
|
387 |
+
kwargs = (
|
388 |
+
"encoder_hidden_states",
|
389 |
+
"attention_mask",
|
390 |
+
"image_rotary_emb",
|
391 |
+
)
|
392 |
+
cross_attention = add_k_proj is not None
|
393 |
+
elif module.is_cross_attention:
|
394 |
+
q_proj, k_proj, v_proj = module.to_q, None, None
|
395 |
+
add_q_proj, add_k_proj, add_v_proj, add_o_proj = None, module.to_k, module.to_v, None
|
396 |
+
q_proj_rname, k_proj_rname, v_proj_rname = "to_q", "", ""
|
397 |
+
add_q_proj_rname, add_k_proj_rname, add_v_proj_rname, add_o_proj_rname = "", "to_k", "to_v", ""
|
398 |
+
else:
|
399 |
+
q_proj, k_proj, v_proj = module.to_q, module.to_k, module.to_v
|
400 |
+
add_q_proj = getattr(module, "add_q_proj", None)
|
401 |
+
add_k_proj = getattr(module, "add_k_proj", None)
|
402 |
+
add_v_proj = getattr(module, "add_v_proj", None)
|
403 |
+
add_o_proj = getattr(module, "to_add_out", None)
|
404 |
+
q_proj_rname, k_proj_rname, v_proj_rname = "to_q", "to_k", "to_v"
|
405 |
+
add_q_proj_rname, add_k_proj_rname, add_v_proj_rname = "add_q_proj", "add_k_proj", "add_v_proj"
|
406 |
+
add_o_proj_rname = "to_add_out"
|
407 |
+
if getattr(module, "to_out", None) is not None:
|
408 |
+
o_proj = module.to_out[0]
|
409 |
+
o_proj_rname = "to_out.0"
|
410 |
+
assert isinstance(o_proj, nn.Linear)
|
411 |
+
elif parent is not None:
|
412 |
+
assert isinstance(parent.module, FluxSingleTransformerBlock)
|
413 |
+
assert isinstance(parent.module.proj_out, ConcatLinear)
|
414 |
+
assert len(parent.module.proj_out.linears) == 2
|
415 |
+
o_proj = parent.module.proj_out.linears[0]
|
416 |
+
o_proj_rname = ".proj_out.linears.0"
|
417 |
+
else:
|
418 |
+
raise RuntimeError("Cannot find the output projection.")
|
419 |
+
if isinstance(module.processor, DiffusionAttentionProcessor):
|
420 |
+
with_rope = module.processor.rope is not None
|
421 |
+
elif module.processor.__class__.__name__.startswith("Flux"):
|
422 |
+
with_rope = True
|
423 |
+
else:
|
424 |
+
with_rope = False # TODO: fix for other processors
|
425 |
+
config = AttentionConfigStruct(
|
426 |
+
hidden_size=q_proj.weight.shape[1],
|
427 |
+
add_hidden_size=add_k_proj.weight.shape[1] if add_k_proj is not None else 0,
|
428 |
+
inner_size=q_proj.weight.shape[0],
|
429 |
+
num_query_heads=module.heads,
|
430 |
+
num_key_value_heads=module.to_k.weight.shape[0] // (module.to_q.weight.shape[0] // module.heads),
|
431 |
+
with_qk_norm=module.norm_q is not None,
|
432 |
+
with_rope=with_rope,
|
433 |
+
linear_attn=isinstance(module.processor, SanaLinearAttnProcessor2_0),
|
434 |
+
)
|
435 |
+
return DiffusionAttentionStruct(
|
436 |
+
module=module,
|
437 |
+
parent=parent,
|
438 |
+
fname=fname,
|
439 |
+
idx=idx,
|
440 |
+
rname=rname,
|
441 |
+
rkey=rkey,
|
442 |
+
config=config,
|
443 |
+
q_proj=q_proj,
|
444 |
+
k_proj=k_proj,
|
445 |
+
v_proj=v_proj,
|
446 |
+
o_proj=o_proj,
|
447 |
+
add_q_proj=add_q_proj,
|
448 |
+
add_k_proj=add_k_proj,
|
449 |
+
add_v_proj=add_v_proj,
|
450 |
+
add_o_proj=add_o_proj,
|
451 |
+
q=None, # TODO: add q, k, v
|
452 |
+
k=None,
|
453 |
+
v=None,
|
454 |
+
q_proj_rname=q_proj_rname,
|
455 |
+
k_proj_rname=k_proj_rname,
|
456 |
+
v_proj_rname=v_proj_rname,
|
457 |
+
o_proj_rname=o_proj_rname,
|
458 |
+
add_q_proj_rname=add_q_proj_rname,
|
459 |
+
add_k_proj_rname=add_k_proj_rname,
|
460 |
+
add_v_proj_rname=add_v_proj_rname,
|
461 |
+
add_o_proj_rname=add_o_proj_rname,
|
462 |
+
q_rname="",
|
463 |
+
k_rname="",
|
464 |
+
v_rname="",
|
465 |
+
)
|
466 |
+
|
467 |
+
|
468 |
+
@dataclass(kw_only=True)
|
469 |
+
class DiffusionFeedForwardStruct(FeedForwardStruct):
|
470 |
+
module: FeedForward = field(repr=False, kw_only=False)
|
471 |
+
"""the module of FeedForward"""
|
472 |
+
parent: tp.Optional["DiffusionTransformerBlockStruct"] = field(repr=False)
|
473 |
+
# region modules
|
474 |
+
moe_gate: None = field(init=False, repr=False, default=None)
|
475 |
+
experts: list[nn.Module] = field(init=False, repr=False)
|
476 |
+
# endregion
|
477 |
+
# region names
|
478 |
+
moe_gate_rname: str = field(init=False, repr=False, default="")
|
479 |
+
experts_rname: str = field(init=False, repr=False, default="")
|
480 |
+
# endregion
|
481 |
+
|
482 |
+
# region aliases
|
483 |
+
|
484 |
+
@property
|
485 |
+
def up_proj(self) -> nn.Linear:
|
486 |
+
return self.up_projs[0]
|
487 |
+
|
488 |
+
@property
|
489 |
+
def down_proj(self) -> nn.Linear:
|
490 |
+
return self.down_projs[0]
|
491 |
+
|
492 |
+
@property
|
493 |
+
def up_proj_rname(self) -> str:
|
494 |
+
return self.up_proj_rnames[0]
|
495 |
+
|
496 |
+
@property
|
497 |
+
def down_proj_rname(self) -> str:
|
498 |
+
return self.down_proj_rnames[0]
|
499 |
+
|
500 |
+
@property
|
501 |
+
def up_proj_name(self) -> str:
|
502 |
+
return self.up_proj_names[0]
|
503 |
+
|
504 |
+
@property
|
505 |
+
def down_proj_name(self) -> str:
|
506 |
+
return self.down_proj_names[0]
|
507 |
+
|
508 |
+
# endregion
|
509 |
+
|
510 |
+
def __post_init__(self) -> None:
|
511 |
+
assert len(self.up_projs) == len(self.down_projs) == 1
|
512 |
+
assert len(self.up_proj_rnames) == len(self.down_proj_rnames) == 1
|
513 |
+
self.experts = [self.module]
|
514 |
+
super().__post_init__()
|
515 |
+
|
516 |
+
@staticmethod
|
517 |
+
def _default_construct(
|
518 |
+
module: FeedForward | FluxSingleTransformerBlock | GLUMBConv,
|
519 |
+
/,
|
520 |
+
parent: tp.Optional["DiffusionTransformerBlockStruct"] = None,
|
521 |
+
fname: str = "",
|
522 |
+
rname: str = "",
|
523 |
+
rkey: str = "",
|
524 |
+
idx: int = 0,
|
525 |
+
**kwargs,
|
526 |
+
) -> "DiffusionFeedForwardStruct":
|
527 |
+
if isinstance(module, FeedForward):
|
528 |
+
layer_1, layer_2 = module.net[0], module.net[2]
|
529 |
+
assert isinstance(layer_1, (GEGLU, GELU, ApproximateGELU, SwiGLU))
|
530 |
+
up_proj, up_proj_rname = layer_1.proj, "net.0.proj"
|
531 |
+
assert isinstance(up_proj, nn.Linear)
|
532 |
+
down_proj, down_proj_rname = layer_2, "net.2"
|
533 |
+
if isinstance(layer_1, GEGLU):
|
534 |
+
act_type = "gelu_glu"
|
535 |
+
elif isinstance(layer_1, SwiGLU):
|
536 |
+
act_type = "swish_glu"
|
537 |
+
else:
|
538 |
+
assert layer_1.__class__.__name__.lower().endswith("gelu")
|
539 |
+
act_type = "gelu"
|
540 |
+
if isinstance(layer_2, ShiftedLinear):
|
541 |
+
down_proj, down_proj_rname = layer_2.linear, "net.2.linear"
|
542 |
+
act_type = "gelu_shifted"
|
543 |
+
assert isinstance(down_proj, nn.Linear)
|
544 |
+
ffn = module
|
545 |
+
elif isinstance(module, FluxSingleTransformerBlock):
|
546 |
+
up_proj, up_proj_rname = module.proj_mlp, "proj_mlp"
|
547 |
+
act_type = "gelu"
|
548 |
+
assert isinstance(module.proj_out, ConcatLinear)
|
549 |
+
assert len(module.proj_out.linears) == 2
|
550 |
+
layer_2 = module.proj_out.linears[1]
|
551 |
+
if isinstance(layer_2, ShiftedLinear):
|
552 |
+
down_proj, down_proj_rname = layer_2.linear, "proj_out.linears.1.linear"
|
553 |
+
act_type = "gelu_shifted"
|
554 |
+
else:
|
555 |
+
down_proj, down_proj_rname = layer_2, "proj_out.linears.1"
|
556 |
+
ffn = nn.Sequential(up_proj, module.act_mlp, layer_2)
|
557 |
+
assert not rname, f"Unsupported rname: {rname}"
|
558 |
+
elif isinstance(module, GLUMBConv):
|
559 |
+
ffn = module
|
560 |
+
up_proj, up_proj_rname = module.conv_inverted, "conv_inverted"
|
561 |
+
down_proj, down_proj_rname = module.conv_point, "conv_point"
|
562 |
+
act_type = "silu_conv_silu_glu"
|
563 |
+
else:
|
564 |
+
raise NotImplementedError(f"Unsupported module type: {type(module)}")
|
565 |
+
config = FeedForwardConfigStruct(
|
566 |
+
hidden_size=up_proj.weight.shape[1],
|
567 |
+
intermediate_size=down_proj.weight.shape[1],
|
568 |
+
intermediate_act_type=act_type,
|
569 |
+
num_experts=1,
|
570 |
+
)
|
571 |
+
return DiffusionFeedForwardStruct(
|
572 |
+
module=ffn, # this may be a virtual module
|
573 |
+
parent=parent,
|
574 |
+
fname=fname,
|
575 |
+
idx=idx,
|
576 |
+
rname=rname,
|
577 |
+
rkey=rkey,
|
578 |
+
config=config,
|
579 |
+
up_projs=[up_proj],
|
580 |
+
down_projs=[down_proj],
|
581 |
+
up_proj_rnames=[up_proj_rname],
|
582 |
+
down_proj_rnames=[down_proj_rname],
|
583 |
+
)
|
584 |
+
|
585 |
+
|
586 |
+
@dataclass(kw_only=True)
|
587 |
+
class DiffusionTransformerBlockStruct(TransformerBlockStruct, DiffusionBlockStruct):
|
588 |
+
# region relative keys
|
589 |
+
norm_rkey: tp.ClassVar[str] = "transformer_norm"
|
590 |
+
add_norm_rkey: tp.ClassVar[str] = "transformer_add_norm"
|
591 |
+
attn_struct_cls: tp.ClassVar[type[DiffusionAttentionStruct]] = DiffusionAttentionStruct
|
592 |
+
ffn_struct_cls: tp.ClassVar[type[DiffusionFeedForwardStruct]] = DiffusionFeedForwardStruct
|
593 |
+
# endregion
|
594 |
+
|
595 |
+
parent: tp.Optional["DiffusionTransformerStruct"] = field(repr=False)
|
596 |
+
# region child modules
|
597 |
+
post_attn_norms: list[nn.LayerNorm] = field(init=False, repr=False, default_factory=list)
|
598 |
+
post_attn_add_norms: list[nn.LayerNorm] = field(init=False, repr=False, default_factory=list)
|
599 |
+
post_ffn_norm: None = field(init=False, repr=False, default=None)
|
600 |
+
post_add_ffn_norm: None = field(init=False, repr=False, default=None)
|
601 |
+
# endregion
|
602 |
+
# region relative names
|
603 |
+
post_attn_norm_rnames: list[str] = field(init=False, repr=False, default_factory=list)
|
604 |
+
post_attn_add_norm_rnames: list[str] = field(init=False, repr=False, default_factory=list)
|
605 |
+
post_ffn_norm_rname: str = field(init=False, repr=False, default="")
|
606 |
+
post_add_ffn_norm_rname: str = field(init=False, repr=False, default="")
|
607 |
+
# endregion
|
608 |
+
# region attributes
|
609 |
+
norm_type: str
|
610 |
+
add_norm_type: str
|
611 |
+
# endregion
|
612 |
+
# region absolute keys
|
613 |
+
norm_key: str = field(init=False, repr=False)
|
614 |
+
add_norm_key: str = field(init=False, repr=False)
|
615 |
+
# endregion
|
616 |
+
# region child structs
|
617 |
+
pre_attn_norm_structs: list[DiffusionModuleStruct | None] = field(init=False, repr=False)
|
618 |
+
pre_attn_add_norm_structs: list[DiffusionModuleStruct | None] = field(init=False, repr=False)
|
619 |
+
pre_ffn_norm_struct: DiffusionModuleStruct = field(init=False, repr=False, default=None)
|
620 |
+
pre_add_ffn_norm_struct: DiffusionModuleStruct | None = field(init=False, repr=False, default=None)
|
621 |
+
attn_structs: list[DiffusionAttentionStruct] = field(init=False, repr=False)
|
622 |
+
ffn_struct: DiffusionFeedForwardStruct | None = field(init=False, repr=False)
|
623 |
+
add_ffn_struct: DiffusionFeedForwardStruct | None = field(init=False, repr=False)
|
624 |
+
# endregion
|
625 |
+
|
626 |
+
def __post_init__(self) -> None:
|
627 |
+
super().__post_init__()
|
628 |
+
self.norm_key = join_name(self.key, self.norm_rkey, sep="_")
|
629 |
+
self.add_norm_key = join_name(self.key, self.add_norm_rkey, sep="_")
|
630 |
+
self.attn_norm_structs = [
|
631 |
+
DiffusionModuleStruct(norm, parent=self, fname="pre_attn_norm", rname=rname, rkey=self.norm_rkey, idx=idx)
|
632 |
+
for idx, (norm, rname) in enumerate(zip(self.pre_attn_norms, self.pre_attn_norm_rnames, strict=True))
|
633 |
+
]
|
634 |
+
self.add_attn_norm_structs = [
|
635 |
+
DiffusionModuleStruct(
|
636 |
+
norm, parent=self, fname="pre_attn_add_norm", rname=rname, rkey=self.add_norm_rkey, idx=idx
|
637 |
+
)
|
638 |
+
for idx, (norm, rname) in enumerate(
|
639 |
+
zip(self.pre_attn_add_norms, self.pre_attn_add_norm_rnames, strict=True)
|
640 |
+
)
|
641 |
+
]
|
642 |
+
if self.pre_ffn_norm is not None:
|
643 |
+
self.pre_ffn_norm_struct = DiffusionModuleStruct(
|
644 |
+
self.pre_ffn_norm, parent=self, fname="pre_ffn_norm", rname=self.pre_ffn_norm_rname, rkey=self.norm_rkey
|
645 |
+
)
|
646 |
+
if self.pre_add_ffn_norm is not None:
|
647 |
+
self.pre_add_ffn_norm_struct = DiffusionModuleStruct(
|
648 |
+
self.pre_add_ffn_norm,
|
649 |
+
parent=self,
|
650 |
+
fname="pre_add_ffn_norm",
|
651 |
+
rname=self.pre_add_ffn_norm_rname,
|
652 |
+
rkey=self.add_norm_rkey,
|
653 |
+
)
|
654 |
+
|
655 |
+
def named_key_modules(self) -> tp.Generator[tp.Tuple[str, str, nn.Module, BaseModuleStruct, str], None, None]:
|
656 |
+
for attn_norm in self.attn_norm_structs:
|
657 |
+
if attn_norm.module is not None:
|
658 |
+
yield from attn_norm.named_key_modules()
|
659 |
+
for add_attn_norm in self.add_attn_norm_structs:
|
660 |
+
if add_attn_norm.module is not None:
|
661 |
+
yield from add_attn_norm.named_key_modules()
|
662 |
+
for attn_struct in self.attn_structs:
|
663 |
+
yield from attn_struct.named_key_modules()
|
664 |
+
if self.pre_ffn_norm_struct is not None:
|
665 |
+
if self.pre_attn_norms and self.pre_attn_norms[0] is not self.pre_ffn_norm:
|
666 |
+
yield from self.pre_ffn_norm_struct.named_key_modules()
|
667 |
+
if self.ffn_struct is not None:
|
668 |
+
yield from self.ffn_struct.named_key_modules()
|
669 |
+
if self.pre_add_ffn_norm_struct is not None:
|
670 |
+
if self.pre_attn_add_norms and self.pre_attn_add_norms[0] is not self.pre_add_ffn_norm:
|
671 |
+
yield from self.pre_add_ffn_norm_struct.named_key_modules()
|
672 |
+
if self.add_ffn_struct is not None:
|
673 |
+
yield from self.add_ffn_struct.named_key_modules()
|
674 |
+
|
675 |
+
@staticmethod
|
676 |
+
def _default_construct(
|
677 |
+
module: DIT_BLOCK_CLS,
|
678 |
+
/,
|
679 |
+
parent: tp.Optional["DiffusionTransformerStruct"] = None,
|
680 |
+
fname: str = "",
|
681 |
+
rname: str = "",
|
682 |
+
rkey: str = "",
|
683 |
+
idx: int = 0,
|
684 |
+
**kwargs,
|
685 |
+
) -> "DiffusionTransformerBlockStruct":
|
686 |
+
if isinstance(module, (BasicTransformerBlock, SanaTransformerBlock)):
|
687 |
+
parallel = False
|
688 |
+
if isinstance(module, SanaTransformerBlock):
|
689 |
+
norm_type = add_norm_type = "ada_norm_single"
|
690 |
+
else:
|
691 |
+
norm_type = add_norm_type = module.norm_type
|
692 |
+
pre_attn_norms, pre_attn_norm_rnames = [], []
|
693 |
+
attns, attn_rnames = [], []
|
694 |
+
pre_attn_add_norms, pre_attn_add_norm_rnames = [], []
|
695 |
+
assert module.norm1 is not None
|
696 |
+
assert module.attn1 is not None
|
697 |
+
pre_attn_norms.append(module.norm1)
|
698 |
+
pre_attn_norm_rnames.append("norm1")
|
699 |
+
attns.append(module.attn1)
|
700 |
+
attn_rnames.append("attn1")
|
701 |
+
pre_attn_add_norms.append(module.attn1.norm_cross)
|
702 |
+
pre_attn_add_norm_rnames.append("attn1.norm_cross")
|
703 |
+
if module.attn2 is not None:
|
704 |
+
if norm_type == "ada_norm_single":
|
705 |
+
pre_attn_norms.append(None)
|
706 |
+
pre_attn_norm_rnames.append("")
|
707 |
+
else:
|
708 |
+
assert module.norm2 is not None
|
709 |
+
pre_attn_norms.append(module.norm2)
|
710 |
+
pre_attn_norm_rnames.append("norm2")
|
711 |
+
attns.append(module.attn2)
|
712 |
+
attn_rnames.append("attn2")
|
713 |
+
pre_attn_add_norms.append(module.attn2.norm_cross)
|
714 |
+
pre_attn_add_norm_rnames.append("attn2.norm_cross")
|
715 |
+
if norm_type == "ada_norm_single":
|
716 |
+
assert module.norm2 is not None
|
717 |
+
pre_ffn_norm, pre_ffn_norm_rname = module.norm2, "norm2"
|
718 |
+
else:
|
719 |
+
pre_ffn_norm, pre_ffn_norm_rname = module.norm3, "" if module.norm3 is None else "norm3"
|
720 |
+
ffn, ffn_rname = module.ff, "" if module.ff is None else "ff"
|
721 |
+
pre_add_ffn_norm, pre_add_ffn_norm_rname, add_ffn, add_ffn_rname = None, "", None, ""
|
722 |
+
elif isinstance(module, JointTransformerBlock):
|
723 |
+
parallel = False
|
724 |
+
norm_type = "ada_norm_zero"
|
725 |
+
pre_attn_norms, pre_attn_norm_rnames = [module.norm1], ["norm1"]
|
726 |
+
if isinstance(module.norm1_context, AdaLayerNormZero):
|
727 |
+
add_norm_type = "ada_norm_zero"
|
728 |
+
else:
|
729 |
+
add_norm_type = "ada_norm_continous"
|
730 |
+
pre_attn_add_norms, pre_attn_add_norm_rnames = [module.norm1_context], ["norm1_context"]
|
731 |
+
attns, attn_rnames = [module.attn], ["attn"]
|
732 |
+
pre_ffn_norm, pre_ffn_norm_rname = module.norm2, "norm2"
|
733 |
+
ffn, ffn_rname = module.ff, "ff"
|
734 |
+
pre_add_ffn_norm, pre_add_ffn_norm_rname = module.norm2_context, "norm2_context"
|
735 |
+
add_ffn, add_ffn_rname = module.ff_context, "ff_context"
|
736 |
+
elif isinstance(module, FluxSingleTransformerBlock):
|
737 |
+
parallel = True
|
738 |
+
norm_type = add_norm_type = "ada_norm_zero_single"
|
739 |
+
pre_attn_norms, pre_attn_norm_rnames = [module.norm], ["norm"]
|
740 |
+
attns, attn_rnames = [module.attn], ["attn"]
|
741 |
+
pre_attn_add_norms, pre_attn_add_norm_rnames = [], []
|
742 |
+
pre_ffn_norm, pre_ffn_norm_rname = module.norm, "norm"
|
743 |
+
ffn, ffn_rname = module, ""
|
744 |
+
pre_add_ffn_norm, pre_add_ffn_norm_rname, add_ffn, add_ffn_rname = None, "", None, ""
|
745 |
+
elif isinstance(module, FluxTransformerBlock):
|
746 |
+
parallel = False
|
747 |
+
norm_type = add_norm_type = "ada_norm_zero"
|
748 |
+
pre_attn_norms, pre_attn_norm_rnames = [module.norm1], ["norm1"]
|
749 |
+
attns, attn_rnames = [module.attn], ["attn"]
|
750 |
+
pre_attn_add_norms, pre_attn_add_norm_rnames = [module.norm1_context], ["norm1_context"]
|
751 |
+
pre_ffn_norm, pre_ffn_norm_rname = module.norm2, "norm2"
|
752 |
+
ffn, ffn_rname = module.ff, "ff"
|
753 |
+
pre_add_ffn_norm, pre_add_ffn_norm_rname = module.norm2_context, "norm2_context"
|
754 |
+
add_ffn, add_ffn_rname = module.ff_context, "ff_context"
|
755 |
+
else:
|
756 |
+
raise NotImplementedError(f"Unsupported module type: {type(module)}")
|
757 |
+
return DiffusionTransformerBlockStruct(
|
758 |
+
module=module,
|
759 |
+
parent=parent,
|
760 |
+
fname=fname,
|
761 |
+
idx=idx,
|
762 |
+
rname=rname,
|
763 |
+
rkey=rkey,
|
764 |
+
parallel=parallel,
|
765 |
+
pre_attn_norms=pre_attn_norms,
|
766 |
+
pre_attn_add_norms=pre_attn_add_norms,
|
767 |
+
attns=attns,
|
768 |
+
pre_ffn_norm=pre_ffn_norm,
|
769 |
+
ffn=ffn,
|
770 |
+
pre_add_ffn_norm=pre_add_ffn_norm,
|
771 |
+
add_ffn=add_ffn,
|
772 |
+
pre_attn_norm_rnames=pre_attn_norm_rnames,
|
773 |
+
pre_attn_add_norm_rnames=pre_attn_add_norm_rnames,
|
774 |
+
attn_rnames=attn_rnames,
|
775 |
+
pre_ffn_norm_rname=pre_ffn_norm_rname,
|
776 |
+
ffn_rname=ffn_rname,
|
777 |
+
pre_add_ffn_norm_rname=pre_add_ffn_norm_rname,
|
778 |
+
add_ffn_rname=add_ffn_rname,
|
779 |
+
norm_type=norm_type,
|
780 |
+
add_norm_type=add_norm_type,
|
781 |
+
)
|
782 |
+
|
783 |
+
@classmethod
|
784 |
+
def _get_default_key_map(cls) -> dict[str, set[str]]:
|
785 |
+
"""Get the default allowed keys."""
|
786 |
+
key_map: dict[str, set[str]] = defaultdict(set)
|
787 |
+
norm_rkey = norm_key = cls.norm_rkey
|
788 |
+
add_norm_rkey = add_norm_key = cls.add_norm_rkey
|
789 |
+
key_map[norm_rkey].add(norm_key)
|
790 |
+
key_map[add_norm_rkey].add(add_norm_key)
|
791 |
+
attn_cls = cls.attn_struct_cls
|
792 |
+
attn_key = attn_rkey = cls.attn_rkey
|
793 |
+
qkv_proj_key = qkv_proj_rkey = join_name(attn_key, attn_cls.qkv_proj_rkey, sep="_")
|
794 |
+
out_proj_key = out_proj_rkey = join_name(attn_key, attn_cls.out_proj_rkey, sep="_")
|
795 |
+
add_qkv_proj_key = add_qkv_proj_rkey = join_name(attn_key, attn_cls.add_qkv_proj_rkey, sep="_")
|
796 |
+
add_out_proj_key = add_out_proj_rkey = join_name(attn_key, attn_cls.add_out_proj_rkey, sep="_")
|
797 |
+
key_map[attn_rkey].add(qkv_proj_key)
|
798 |
+
key_map[attn_rkey].add(out_proj_key)
|
799 |
+
if attn_cls.add_qkv_proj_rkey.startswith("add_") and attn_cls.add_out_proj_rkey.startswith("add_"):
|
800 |
+
add_attn_rkey = join_name(attn_rkey, "add", sep="_")
|
801 |
+
key_map[add_attn_rkey].add(add_qkv_proj_key)
|
802 |
+
key_map[add_attn_rkey].add(add_out_proj_key)
|
803 |
+
key_map[qkv_proj_rkey].add(qkv_proj_key)
|
804 |
+
key_map[out_proj_rkey].add(out_proj_key)
|
805 |
+
key_map[add_qkv_proj_rkey].add(add_qkv_proj_key)
|
806 |
+
key_map[add_out_proj_rkey].add(add_out_proj_key)
|
807 |
+
ffn_cls = cls.ffn_struct_cls
|
808 |
+
ffn_key = ffn_rkey = cls.ffn_rkey
|
809 |
+
add_ffn_key = add_ffn_rkey = cls.add_ffn_rkey
|
810 |
+
up_proj_key = up_proj_rkey = join_name(ffn_key, ffn_cls.up_proj_rkey, sep="_")
|
811 |
+
down_proj_key = down_proj_rkey = join_name(ffn_key, ffn_cls.down_proj_rkey, sep="_")
|
812 |
+
add_up_proj_key = add_up_proj_rkey = join_name(add_ffn_key, ffn_cls.up_proj_rkey, sep="_")
|
813 |
+
add_down_proj_key = add_down_proj_rkey = join_name(add_ffn_key, ffn_cls.down_proj_rkey, sep="_")
|
814 |
+
key_map[ffn_rkey].add(up_proj_key)
|
815 |
+
key_map[ffn_rkey].add(down_proj_key)
|
816 |
+
key_map[add_ffn_rkey].add(add_up_proj_key)
|
817 |
+
key_map[add_ffn_rkey].add(add_down_proj_key)
|
818 |
+
key_map[up_proj_rkey].add(up_proj_key)
|
819 |
+
key_map[down_proj_rkey].add(down_proj_key)
|
820 |
+
key_map[add_up_proj_rkey].add(add_up_proj_key)
|
821 |
+
key_map[add_down_proj_rkey].add(add_down_proj_key)
|
822 |
+
return {k: v for k, v in key_map.items() if v}
|
823 |
+
|
824 |
+
|
825 |
+
@dataclass(kw_only=True)
|
826 |
+
class DiffusionTransformerStruct(BaseTransformerStruct, DiffusionBlockStruct):
|
827 |
+
# region relative keys
|
828 |
+
proj_in_rkey: tp.ClassVar[str] = "transformer_proj_in"
|
829 |
+
proj_out_rkey: tp.ClassVar[str] = "transformer_proj_out"
|
830 |
+
transformer_block_rkey: tp.ClassVar[str] = ""
|
831 |
+
transformer_block_struct_cls: tp.ClassVar[type[DiffusionTransformerBlockStruct]] = DiffusionTransformerBlockStruct
|
832 |
+
# endregion
|
833 |
+
|
834 |
+
module: Transformer2DModel = field(repr=False, kw_only=False)
|
835 |
+
# region modules
|
836 |
+
norm_in: nn.GroupNorm | None
|
837 |
+
"""Input normalization"""
|
838 |
+
proj_in: nn.Linear | nn.Conv2d
|
839 |
+
"""Input projection"""
|
840 |
+
norm_out: nn.GroupNorm | None
|
841 |
+
"""Output normalization"""
|
842 |
+
proj_out: nn.Linear | nn.Conv2d
|
843 |
+
"""Output projection"""
|
844 |
+
transformer_blocks: nn.ModuleList = field(repr=False)
|
845 |
+
"""Transformer blocks"""
|
846 |
+
# endregion
|
847 |
+
# region relative names
|
848 |
+
transformer_blocks_rname: str
|
849 |
+
# endregion
|
850 |
+
# region absolute names
|
851 |
+
transformer_blocks_name: str = field(init=False, repr=False)
|
852 |
+
transformer_block_names: list[str] = field(init=False, repr=False)
|
853 |
+
# endregion
|
854 |
+
# region child structs
|
855 |
+
transformer_block_structs: list[DiffusionTransformerBlockStruct] = field(init=False, repr=False)
|
856 |
+
# endregion
|
857 |
+
|
858 |
+
# region aliases
|
859 |
+
|
860 |
+
@property
|
861 |
+
def num_blocks(self) -> int:
|
862 |
+
return len(self.transformer_blocks)
|
863 |
+
|
864 |
+
@property
|
865 |
+
def block_structs(self) -> list[DiffusionBlockStruct]:
|
866 |
+
return self.transformer_block_structs
|
867 |
+
|
868 |
+
@property
|
869 |
+
def block_names(self) -> list[str]:
|
870 |
+
return self.transformer_block_names
|
871 |
+
|
872 |
+
# endregion
|
873 |
+
|
874 |
+
def __post_init__(self):
|
875 |
+
super().__post_init__()
|
876 |
+
transformer_block_rnames = [
|
877 |
+
f"{self.transformer_blocks_rname}.{idx}" for idx in range(len(self.transformer_blocks))
|
878 |
+
]
|
879 |
+
self.transformer_blocks_name = join_name(self.name, self.transformer_blocks_rname)
|
880 |
+
self.transformer_block_names = [join_name(self.name, rname) for rname in transformer_block_rnames]
|
881 |
+
self.transformer_block_structs = [
|
882 |
+
self.transformer_block_struct_cls.construct(
|
883 |
+
layer,
|
884 |
+
parent=self,
|
885 |
+
fname="transformer_block",
|
886 |
+
rname=rname,
|
887 |
+
rkey=self.transformer_block_rkey,
|
888 |
+
idx=idx,
|
889 |
+
)
|
890 |
+
for idx, (layer, rname) in enumerate(zip(self.transformer_blocks, transformer_block_rnames, strict=True))
|
891 |
+
]
|
892 |
+
|
893 |
+
@staticmethod
|
894 |
+
def _default_construct(
|
895 |
+
module: Transformer2DModel,
|
896 |
+
/,
|
897 |
+
parent: BaseModuleStruct = None,
|
898 |
+
fname: str = "",
|
899 |
+
rname: str = "",
|
900 |
+
rkey: str = "",
|
901 |
+
idx: int = 0,
|
902 |
+
**kwargs,
|
903 |
+
) -> "DiffusionTransformerStruct":
|
904 |
+
if isinstance(module, Transformer2DModel):
|
905 |
+
assert module.is_input_continuous, "input must be continuous"
|
906 |
+
transformer_blocks, transformer_blocks_rname = module.transformer_blocks, "transformer_blocks"
|
907 |
+
norm_in, norm_in_rname = module.norm, "norm"
|
908 |
+
proj_in, proj_in_rname = module.proj_in, "proj_in"
|
909 |
+
proj_out, proj_out_rname = module.proj_out, "proj_out"
|
910 |
+
norm_out, norm_out_rname = None, ""
|
911 |
+
else:
|
912 |
+
raise NotImplementedError(f"Unsupported module type: {type(module)}")
|
913 |
+
return DiffusionTransformerStruct(
|
914 |
+
module=module,
|
915 |
+
parent=parent,
|
916 |
+
fname=fname,
|
917 |
+
idx=idx,
|
918 |
+
rname=rname,
|
919 |
+
rkey=rkey,
|
920 |
+
norm_in=norm_in,
|
921 |
+
proj_in=proj_in,
|
922 |
+
transformer_blocks=transformer_blocks,
|
923 |
+
proj_out=proj_out,
|
924 |
+
norm_out=norm_out,
|
925 |
+
norm_in_rname=norm_in_rname,
|
926 |
+
proj_in_rname=proj_in_rname,
|
927 |
+
transformer_blocks_rname=transformer_blocks_rname,
|
928 |
+
norm_out_rname=norm_out_rname,
|
929 |
+
proj_out_rname=proj_out_rname,
|
930 |
+
)
|
931 |
+
|
932 |
+
@classmethod
|
933 |
+
def _get_default_key_map(cls) -> dict[str, set[str]]:
|
934 |
+
"""Get the default allowed keys."""
|
935 |
+
key_map: dict[str, set[str]] = defaultdict(set)
|
936 |
+
proj_in_rkey = proj_in_key = cls.proj_in_rkey
|
937 |
+
proj_out_rkey = proj_out_key = cls.proj_out_rkey
|
938 |
+
key_map[proj_in_rkey].add(proj_in_key)
|
939 |
+
key_map[proj_out_rkey].add(proj_out_key)
|
940 |
+
block_cls = cls.transformer_block_struct_cls
|
941 |
+
block_key = block_rkey = cls.transformer_block_rkey
|
942 |
+
block_key_map = block_cls._get_default_key_map()
|
943 |
+
for rkey, keys in block_key_map.items():
|
944 |
+
rkey = join_name(block_rkey, rkey, sep="_")
|
945 |
+
for key in keys:
|
946 |
+
key = join_name(block_key, key, sep="_")
|
947 |
+
key_map[rkey].add(key)
|
948 |
+
return {k: v for k, v in key_map.items() if v}
|
949 |
+
|
950 |
+
|
951 |
+
@dataclass(kw_only=True)
|
952 |
+
class DiffusionResnetStruct(BaseModuleStruct):
|
953 |
+
# region relative keys
|
954 |
+
conv_rkey: tp.ClassVar[str] = "conv"
|
955 |
+
shortcut_rkey: tp.ClassVar[str] = "shortcut"
|
956 |
+
time_proj_rkey: tp.ClassVar[str] = "time_proj"
|
957 |
+
# endregion
|
958 |
+
|
959 |
+
module: ResnetBlock2D = field(repr=False, kw_only=False)
|
960 |
+
"""the module of Resnet"""
|
961 |
+
config: FeedForwardConfigStruct
|
962 |
+
# region child modules
|
963 |
+
norms: list[nn.GroupNorm]
|
964 |
+
convs: list[list[nn.Conv2d]]
|
965 |
+
shortcut: nn.Conv2d | None
|
966 |
+
time_proj: nn.Linear | None
|
967 |
+
# endregion
|
968 |
+
# region relative names
|
969 |
+
norm_rnames: list[str]
|
970 |
+
conv_rnames: list[list[str]]
|
971 |
+
shortcut_rname: str
|
972 |
+
time_proj_rname: str
|
973 |
+
# endregion
|
974 |
+
# region absolute names
|
975 |
+
norm_names: list[str] = field(init=False, repr=False)
|
976 |
+
conv_names: list[list[str]] = field(init=False, repr=False)
|
977 |
+
shortcut_name: str = field(init=False, repr=False)
|
978 |
+
time_proj_name: str = field(init=False, repr=False)
|
979 |
+
# endregion
|
980 |
+
# region absolute keys
|
981 |
+
conv_key: str = field(init=False, repr=False)
|
982 |
+
shortcut_key: str = field(init=False, repr=False)
|
983 |
+
time_proj_key: str = field(init=False, repr=False)
|
984 |
+
# endregion
|
985 |
+
|
986 |
+
def __post_init__(self):
|
987 |
+
super().__post_init__()
|
988 |
+
self.norm_names = [join_name(self.name, rname) for rname in self.norm_rnames]
|
989 |
+
self.conv_names = [[join_name(self.name, rname) for rname in rnames] for rnames in self.conv_rnames]
|
990 |
+
self.shortcut_name = join_name(self.name, self.shortcut_rname)
|
991 |
+
self.time_proj_name = join_name(self.name, self.time_proj_rname)
|
992 |
+
self.conv_key = join_name(self.key, self.conv_rkey, sep="_")
|
993 |
+
self.shortcut_key = join_name(self.key, self.shortcut_rkey, sep="_")
|
994 |
+
self.time_proj_key = join_name(self.key, self.time_proj_rkey, sep="_")
|
995 |
+
|
996 |
+
def named_key_modules(self) -> tp.Generator[tp.Tuple[str, str, nn.Module, BaseModuleStruct, str], None, None]:
|
997 |
+
for convs, names in zip(self.convs, self.conv_names, strict=True):
|
998 |
+
for conv, name in zip(convs, names, strict=True):
|
999 |
+
yield self.conv_key, name, conv, self, "conv"
|
1000 |
+
if self.shortcut is not None:
|
1001 |
+
yield self.shortcut_key, self.shortcut_name, self.shortcut, self, "shortcut"
|
1002 |
+
if self.time_proj is not None:
|
1003 |
+
yield self.time_proj_key, self.time_proj_name, self.time_proj, self, "time_proj"
|
1004 |
+
|
1005 |
+
@staticmethod
|
1006 |
+
def construct(
|
1007 |
+
module: ResnetBlock2D,
|
1008 |
+
/,
|
1009 |
+
parent: BaseModuleStruct = None,
|
1010 |
+
fname: str = "",
|
1011 |
+
rname: str = "",
|
1012 |
+
rkey: str = "",
|
1013 |
+
idx: int = 0,
|
1014 |
+
**kwargs,
|
1015 |
+
) -> "DiffusionResnetStruct":
|
1016 |
+
if isinstance(module, ResnetBlock2D):
|
1017 |
+
assert module.upsample is None, "upsample must be None"
|
1018 |
+
assert module.downsample is None, "downsample must be None"
|
1019 |
+
act_type = module.nonlinearity.__class__.__name__.lower()
|
1020 |
+
shifted = False
|
1021 |
+
if isinstance(module.conv1, ConcatConv2d):
|
1022 |
+
conv1_convs, conv1_names = [], []
|
1023 |
+
for conv_idx, conv in enumerate(module.conv1.convs):
|
1024 |
+
if isinstance(conv, ShiftedConv2d):
|
1025 |
+
shifted = True
|
1026 |
+
conv1_convs.append(conv.conv)
|
1027 |
+
conv1_names.append(f"conv1.convs.{conv_idx}.conv")
|
1028 |
+
else:
|
1029 |
+
assert isinstance(conv, nn.Conv2d)
|
1030 |
+
conv1_convs.append(conv)
|
1031 |
+
conv1_names.append(f"conv1.convs.{conv_idx}")
|
1032 |
+
elif isinstance(module.conv1, ShiftedConv2d):
|
1033 |
+
shifted = True
|
1034 |
+
conv1_convs = [module.conv1.conv]
|
1035 |
+
conv1_names = ["conv1.conv"]
|
1036 |
+
else:
|
1037 |
+
assert isinstance(module.conv1, nn.Conv2d)
|
1038 |
+
conv1_convs, conv1_names = [module.conv1], ["conv1"]
|
1039 |
+
if isinstance(module.conv2, ConcatConv2d):
|
1040 |
+
conv2_convs, conv2_names = [], []
|
1041 |
+
for conv_idx, conv in enumerate(module.conv2.convs):
|
1042 |
+
if isinstance(conv, ShiftedConv2d):
|
1043 |
+
shifted = True
|
1044 |
+
conv2_convs.append(conv.conv)
|
1045 |
+
conv2_names.append(f"conv2.convs.{conv_idx}.conv")
|
1046 |
+
else:
|
1047 |
+
assert isinstance(conv, nn.Conv2d)
|
1048 |
+
conv2_convs.append(conv)
|
1049 |
+
conv2_names.append(f"conv2.convs.{conv_idx}")
|
1050 |
+
elif isinstance(module.conv2, ShiftedConv2d):
|
1051 |
+
shifted = True
|
1052 |
+
conv2_convs = [module.conv2.conv]
|
1053 |
+
conv2_names = ["conv2.conv"]
|
1054 |
+
else:
|
1055 |
+
assert isinstance(module.conv2, nn.Conv2d)
|
1056 |
+
conv2_convs, conv2_names = [module.conv2], ["conv2"]
|
1057 |
+
convs, conv_rnames = [conv1_convs, conv2_convs], [conv1_names, conv2_names]
|
1058 |
+
norms, norm_rnames = [module.norm1, module.norm2], ["norm1", "norm2"]
|
1059 |
+
shortcut, shortcut_rname = module.conv_shortcut, "" if module.conv_shortcut is None else "conv_shortcut"
|
1060 |
+
time_proj, time_proj_rname = module.time_emb_proj, "" if module.time_emb_proj is None else "time_emb_proj"
|
1061 |
+
if shifted:
|
1062 |
+
assert all(hasattr(conv, "shifted") and conv.shifted for level_convs in convs for conv in level_convs)
|
1063 |
+
act_type += "_shifted"
|
1064 |
+
else:
|
1065 |
+
raise NotImplementedError(f"Unsupported module type: {type(module)}")
|
1066 |
+
config = FeedForwardConfigStruct(
|
1067 |
+
hidden_size=convs[0][0].weight.shape[1],
|
1068 |
+
intermediate_size=convs[0][0].weight.shape[0],
|
1069 |
+
intermediate_act_type=act_type,
|
1070 |
+
num_experts=1,
|
1071 |
+
)
|
1072 |
+
return DiffusionResnetStruct(
|
1073 |
+
module=module,
|
1074 |
+
parent=parent,
|
1075 |
+
fname=fname,
|
1076 |
+
idx=idx,
|
1077 |
+
rname=rname,
|
1078 |
+
rkey=rkey,
|
1079 |
+
config=config,
|
1080 |
+
norms=norms,
|
1081 |
+
convs=convs,
|
1082 |
+
shortcut=shortcut,
|
1083 |
+
time_proj=time_proj,
|
1084 |
+
norm_rnames=norm_rnames,
|
1085 |
+
conv_rnames=conv_rnames,
|
1086 |
+
shortcut_rname=shortcut_rname,
|
1087 |
+
time_proj_rname=time_proj_rname,
|
1088 |
+
)
|
1089 |
+
|
1090 |
+
@classmethod
|
1091 |
+
def _get_default_key_map(cls) -> dict[str, set[str]]:
|
1092 |
+
"""Get the default allowed keys."""
|
1093 |
+
key_map: dict[str, set[str]] = defaultdict(set)
|
1094 |
+
conv_key = conv_rkey = cls.conv_rkey
|
1095 |
+
shortcut_key = shortcut_rkey = cls.shortcut_rkey
|
1096 |
+
time_proj_key = time_proj_rkey = cls.time_proj_rkey
|
1097 |
+
key_map[conv_rkey].add(conv_key)
|
1098 |
+
key_map[shortcut_rkey].add(shortcut_key)
|
1099 |
+
key_map[time_proj_rkey].add(time_proj_key)
|
1100 |
+
return {k: v for k, v in key_map.items() if v}
|
1101 |
+
|
1102 |
+
|
1103 |
+
@dataclass(kw_only=True)
|
1104 |
+
class UNetBlockStruct(DiffusionBlockStruct):
|
1105 |
+
class BlockType(enum.StrEnum):
|
1106 |
+
DOWN = "down"
|
1107 |
+
MID = "mid"
|
1108 |
+
UP = "up"
|
1109 |
+
|
1110 |
+
# region relative keys
|
1111 |
+
resnet_rkey: tp.ClassVar[str] = "resblock"
|
1112 |
+
sampler_rkey: tp.ClassVar[str] = "sample"
|
1113 |
+
transformer_rkey: tp.ClassVar[str] = ""
|
1114 |
+
resnet_struct_cls: tp.ClassVar[type[DiffusionResnetStruct]] = DiffusionResnetStruct
|
1115 |
+
transformer_struct_cls: tp.ClassVar[type[DiffusionTransformerStruct]] = DiffusionTransformerStruct
|
1116 |
+
# endregion
|
1117 |
+
|
1118 |
+
parent: tp.Optional["UNetStruct"] = field(repr=False)
|
1119 |
+
# region attributes
|
1120 |
+
block_type: BlockType
|
1121 |
+
# endregion
|
1122 |
+
# region modules
|
1123 |
+
resnets: nn.ModuleList = field(repr=False)
|
1124 |
+
transformers: nn.ModuleList = field(repr=False)
|
1125 |
+
sampler: nn.Conv2d | None
|
1126 |
+
# endregion
|
1127 |
+
# region relative names
|
1128 |
+
resnets_rname: str
|
1129 |
+
transformers_rname: str
|
1130 |
+
sampler_rname: str
|
1131 |
+
# endregion
|
1132 |
+
# region absolute names
|
1133 |
+
resnets_name: str = field(init=False, repr=False)
|
1134 |
+
transformers_name: str = field(init=False, repr=False)
|
1135 |
+
sampler_name: str = field(init=False, repr=False)
|
1136 |
+
resnet_names: list[str] = field(init=False, repr=False)
|
1137 |
+
transformer_names: list[str] = field(init=False, repr=False)
|
1138 |
+
# endregion
|
1139 |
+
# region absolute keys
|
1140 |
+
sampler_key: str = field(init=False, repr=False)
|
1141 |
+
# endregion
|
1142 |
+
# region child structs
|
1143 |
+
resnet_structs: list[DiffusionResnetStruct] = field(init=False, repr=False)
|
1144 |
+
transformer_structs: list[DiffusionTransformerStruct] = field(init=False, repr=False)
|
1145 |
+
# endregion
|
1146 |
+
|
1147 |
+
@property
|
1148 |
+
def downsample(self) -> nn.Conv2d | None:
|
1149 |
+
return self.sampler if self.is_downsample_block() else None
|
1150 |
+
|
1151 |
+
@property
|
1152 |
+
def upsample(self) -> nn.Conv2d | None:
|
1153 |
+
return self.sampler if self.is_upsample_block() else None
|
1154 |
+
|
1155 |
+
def __post_init__(self) -> None:
|
1156 |
+
super().__post_init__()
|
1157 |
+
if self.is_downsample_block():
|
1158 |
+
assert len(self.resnets) == len(self.transformers) or len(self.transformers) == 0
|
1159 |
+
if self.parent is not None and isinstance(self.parent, UNetStruct):
|
1160 |
+
assert self.rname == f"{self.parent.down_blocks_rname}.{self.idx}"
|
1161 |
+
elif self.is_mid_block():
|
1162 |
+
assert len(self.resnets) == len(self.transformers) + 1 or len(self.transformers) == 0
|
1163 |
+
if self.parent is not None and isinstance(self.parent, UNetStruct):
|
1164 |
+
assert self.rname == self.parent.mid_block_name
|
1165 |
+
assert self.idx == 0
|
1166 |
+
else:
|
1167 |
+
assert self.is_upsample_block(), f"Unsupported block type: {self.block_type}"
|
1168 |
+
assert len(self.resnets) == len(self.transformers) or len(self.transformers) == 0
|
1169 |
+
if self.parent is not None and isinstance(self.parent, UNetStruct):
|
1170 |
+
assert self.rname == f"{self.parent.up_blocks_rname}.{self.idx}"
|
1171 |
+
resnet_rnames = [f"{self.resnets_rname}.{idx}" for idx in range(len(self.resnets))]
|
1172 |
+
transformer_rnames = [f"{self.transformers_rname}.{idx}" for idx in range(len(self.transformers))]
|
1173 |
+
self.resnets_name = join_name(self.name, self.resnets_rname)
|
1174 |
+
self.transformers_name = join_name(self.name, self.transformers_rname)
|
1175 |
+
self.resnet_names = [join_name(self.name, rname) for rname in resnet_rnames]
|
1176 |
+
self.transformer_names = [join_name(self.name, rname) for rname in transformer_rnames]
|
1177 |
+
self.sampler_name = join_name(self.name, self.sampler_rname)
|
1178 |
+
self.sampler_key = join_name(self.key, self.sampler_rkey, sep="_")
|
1179 |
+
self.resnet_structs = [
|
1180 |
+
self.resnet_struct_cls.construct(
|
1181 |
+
resnet, parent=self, fname="resnet", rname=rname, rkey=self.resnet_rkey, idx=idx
|
1182 |
+
)
|
1183 |
+
for idx, (resnet, rname) in enumerate(zip(self.resnets, resnet_rnames, strict=True))
|
1184 |
+
]
|
1185 |
+
self.transformer_structs = [
|
1186 |
+
self.transformer_struct_cls.construct(
|
1187 |
+
transformer, parent=self, fname="transformer", rname=rname, rkey=self.transformer_rkey, idx=idx
|
1188 |
+
)
|
1189 |
+
for idx, (transformer, rname) in enumerate(zip(self.transformers, transformer_rnames, strict=True))
|
1190 |
+
]
|
1191 |
+
|
1192 |
+
def is_downsample_block(self) -> bool:
|
1193 |
+
return self.block_type == self.BlockType.DOWN
|
1194 |
+
|
1195 |
+
def is_mid_block(self) -> bool:
|
1196 |
+
return self.block_type == self.BlockType.MID
|
1197 |
+
|
1198 |
+
def is_upsample_block(self) -> bool:
|
1199 |
+
return self.block_type == self.BlockType.UP
|
1200 |
+
|
1201 |
+
def has_downsample(self) -> bool:
|
1202 |
+
return self.is_downsample_block() and self.sampler is not None
|
1203 |
+
|
1204 |
+
def has_upsample(self) -> bool:
|
1205 |
+
return self.is_upsample_block() and self.sampler is not None
|
1206 |
+
|
1207 |
+
def named_key_modules(self) -> tp.Generator[tp.Tuple[str, str, nn.Module, BaseModuleStruct, str], None, None]:
|
1208 |
+
for resnet in self.resnet_structs:
|
1209 |
+
yield from resnet.named_key_modules()
|
1210 |
+
for transformer in self.transformer_structs:
|
1211 |
+
yield from transformer.named_key_modules()
|
1212 |
+
if self.sampler is not None:
|
1213 |
+
yield self.sampler_key, self.sampler_name, self.sampler, self, "sampler"
|
1214 |
+
|
1215 |
+
def iter_attention_structs(self) -> tp.Generator[DiffusionAttentionStruct, None, None]:
|
1216 |
+
for transformer in self.transformer_structs:
|
1217 |
+
yield from transformer.iter_attention_structs()
|
1218 |
+
|
1219 |
+
def iter_transformer_block_structs(self) -> tp.Generator[DiffusionTransformerBlockStruct, None, None]:
|
1220 |
+
for transformer in self.transformer_structs:
|
1221 |
+
yield from transformer.iter_transformer_block_structs()
|
1222 |
+
|
1223 |
+
@staticmethod
|
1224 |
+
def _default_construct(
|
1225 |
+
module: UNET_BLOCK_CLS,
|
1226 |
+
/,
|
1227 |
+
parent: tp.Optional["UNetStruct"] = None,
|
1228 |
+
fname: str = "",
|
1229 |
+
rname: str = "",
|
1230 |
+
rkey: str = "",
|
1231 |
+
idx: int = 0,
|
1232 |
+
**kwargs,
|
1233 |
+
) -> "UNetBlockStruct":
|
1234 |
+
resnets, resnets_rname = module.resnets, "resnets"
|
1235 |
+
if isinstance(module, (DownBlock2D, CrossAttnDownBlock2D)):
|
1236 |
+
block_type = UNetBlockStruct.BlockType.DOWN
|
1237 |
+
if isinstance(module, CrossAttnDownBlock2D) and module.attentions is not None:
|
1238 |
+
transformers, transformers_rname = module.attentions, "attentions"
|
1239 |
+
else:
|
1240 |
+
transformers, transformers_rname = [], ""
|
1241 |
+
if module.downsamplers is None:
|
1242 |
+
sampler, sampler_rname = None, ""
|
1243 |
+
else:
|
1244 |
+
assert len(module.downsamplers) == 1
|
1245 |
+
downsampler = module.downsamplers[0]
|
1246 |
+
assert isinstance(downsampler, Downsample2D)
|
1247 |
+
sampler, sampler_rname = downsampler.conv, "downsamplers.0.conv"
|
1248 |
+
assert isinstance(sampler, nn.Conv2d)
|
1249 |
+
elif isinstance(module, (UNetMidBlock2D, UNetMidBlock2DCrossAttn)):
|
1250 |
+
block_type = UNetBlockStruct.BlockType.MID
|
1251 |
+
if (isinstance(module, UNetMidBlock2DCrossAttn) or module.add_attention) and module.attentions is not None:
|
1252 |
+
transformers, transformers_rname = module.attentions, "attentions"
|
1253 |
+
else:
|
1254 |
+
transformers, transformers_rname = [], ""
|
1255 |
+
sampler, sampler_rname = None, ""
|
1256 |
+
elif isinstance(module, (UpBlock2D, CrossAttnUpBlock2D)):
|
1257 |
+
block_type = UNetBlockStruct.BlockType.UP
|
1258 |
+
if isinstance(module, CrossAttnUpBlock2D) and module.attentions is not None:
|
1259 |
+
transformers, transformers_rname = module.attentions, "attentions"
|
1260 |
+
else:
|
1261 |
+
transformers, transformers_rname = [], ""
|
1262 |
+
if module.upsamplers is None:
|
1263 |
+
sampler, sampler_rname = None, ""
|
1264 |
+
else:
|
1265 |
+
assert len(module.upsamplers) == 1
|
1266 |
+
upsampler = module.upsamplers[0]
|
1267 |
+
assert isinstance(upsampler, Upsample2D)
|
1268 |
+
sampler, sampler_rname = upsampler.conv, "upsamplers.0.conv"
|
1269 |
+
assert isinstance(sampler, nn.Conv2d)
|
1270 |
+
else:
|
1271 |
+
raise NotImplementedError(f"Unsupported module type: {type(module)}")
|
1272 |
+
return UNetBlockStruct(
|
1273 |
+
module=module,
|
1274 |
+
parent=parent,
|
1275 |
+
fname=fname,
|
1276 |
+
idx=idx,
|
1277 |
+
rname=rname,
|
1278 |
+
rkey=rkey,
|
1279 |
+
block_type=block_type,
|
1280 |
+
resnets=resnets,
|
1281 |
+
transformers=transformers,
|
1282 |
+
sampler=sampler,
|
1283 |
+
resnets_rname=resnets_rname,
|
1284 |
+
transformers_rname=transformers_rname,
|
1285 |
+
sampler_rname=sampler_rname,
|
1286 |
+
)
|
1287 |
+
|
1288 |
+
@classmethod
|
1289 |
+
def _get_default_key_map(cls) -> dict[str, set[str]]:
|
1290 |
+
"""Get the default allowed keys."""
|
1291 |
+
key_map: dict[str, set[str]] = defaultdict(set)
|
1292 |
+
resnet_cls = cls.resnet_struct_cls
|
1293 |
+
resnet_key = resnet_rkey = cls.resnet_rkey
|
1294 |
+
resnet_key_map = resnet_cls._get_default_key_map()
|
1295 |
+
for rkey, keys in resnet_key_map.items():
|
1296 |
+
rkey = join_name(resnet_rkey, rkey, sep="_")
|
1297 |
+
for key in keys:
|
1298 |
+
key = join_name(resnet_key, key, sep="_")
|
1299 |
+
key_map[rkey].add(key)
|
1300 |
+
key_map[resnet_rkey].add(key)
|
1301 |
+
transformer_cls = cls.transformer_struct_cls
|
1302 |
+
transformer_key = transformer_rkey = cls.transformer_rkey
|
1303 |
+
transformer_key_map = transformer_cls._get_default_key_map()
|
1304 |
+
for rkey, keys in transformer_key_map.items():
|
1305 |
+
trkey = join_name(transformer_rkey, rkey, sep="_")
|
1306 |
+
for key in keys:
|
1307 |
+
key = join_name(transformer_key, key, sep="_")
|
1308 |
+
key_map[rkey].add(key)
|
1309 |
+
key_map[trkey].add(key)
|
1310 |
+
return {k: v for k, v in key_map.items() if v}
|
1311 |
+
|
1312 |
+
|
1313 |
+
@dataclass(kw_only=True)
|
1314 |
+
class UNetStruct(DiffusionModelStruct):
|
1315 |
+
# region relative keys
|
1316 |
+
input_embed_rkey: tp.ClassVar[str] = "input_embed"
|
1317 |
+
"""hidden_states = input_embed(hidden_states), e.g., conv_in"""
|
1318 |
+
time_embed_rkey: tp.ClassVar[str] = "time_embed"
|
1319 |
+
"""temb = time_embed(timesteps, hidden_states)"""
|
1320 |
+
add_time_embed_rkey: tp.ClassVar[str] = "time_embed"
|
1321 |
+
"""add_temb = add_time_embed(timesteps, encoder_hidden_states)"""
|
1322 |
+
text_embed_rkey: tp.ClassVar[str] = "text_embed"
|
1323 |
+
"""encoder_hidden_states = text_embed(encoder_hidden_states)"""
|
1324 |
+
norm_out_rkey: tp.ClassVar[str] = "output_embed"
|
1325 |
+
"""hidden_states = norm_out(hidden_states), e.g., conv_norm_out"""
|
1326 |
+
proj_out_rkey: tp.ClassVar[str] = "output_embed"
|
1327 |
+
"""hidden_states = output_embed(hidden_states), e.g., conv_out"""
|
1328 |
+
down_block_rkey: tp.ClassVar[str] = "down"
|
1329 |
+
mid_block_rkey: tp.ClassVar[str] = "mid"
|
1330 |
+
up_block_rkey: tp.ClassVar[str] = "up"
|
1331 |
+
down_block_struct_cls: tp.ClassVar[type[UNetBlockStruct]] = UNetBlockStruct
|
1332 |
+
mid_block_struct_cls: tp.ClassVar[type[UNetBlockStruct]] = UNetBlockStruct
|
1333 |
+
up_block_struct_cls: tp.ClassVar[type[UNetBlockStruct]] = UNetBlockStruct
|
1334 |
+
# endregion
|
1335 |
+
|
1336 |
+
# region child modules
|
1337 |
+
# region pre-block modules
|
1338 |
+
input_embed: nn.Conv2d
|
1339 |
+
time_embed: TimestepEmbedding
|
1340 |
+
"""Time embedding"""
|
1341 |
+
add_time_embed: (
|
1342 |
+
TextTimeEmbedding
|
1343 |
+
| TextImageTimeEmbedding
|
1344 |
+
| TimestepEmbedding
|
1345 |
+
| ImageTimeEmbedding
|
1346 |
+
| ImageHintTimeEmbedding
|
1347 |
+
| None
|
1348 |
+
)
|
1349 |
+
"""Additional time embedding"""
|
1350 |
+
text_embed: nn.Linear | ImageProjection | TextImageProjection | None
|
1351 |
+
"""Text embedding"""
|
1352 |
+
# region post-block modules
|
1353 |
+
norm_out: nn.GroupNorm | None
|
1354 |
+
proj_out: nn.Conv2d
|
1355 |
+
# endregion
|
1356 |
+
# endregion
|
1357 |
+
down_blocks: nn.ModuleList = field(repr=False)
|
1358 |
+
mid_block: nn.Module = field(repr=False)
|
1359 |
+
up_blocks: nn.ModuleList = field(repr=False)
|
1360 |
+
# endregion
|
1361 |
+
# region relative names
|
1362 |
+
input_embed_rname: str
|
1363 |
+
time_embed_rname: str
|
1364 |
+
add_time_embed_rname: str
|
1365 |
+
text_embed_rname: str
|
1366 |
+
norm_out_rname: str
|
1367 |
+
proj_out_rname: str
|
1368 |
+
down_blocks_rname: str
|
1369 |
+
mid_block_rname: str
|
1370 |
+
up_blocks_rname: str
|
1371 |
+
# endregion
|
1372 |
+
# region absolute names
|
1373 |
+
input_embed_name: str = field(init=False, repr=False)
|
1374 |
+
time_embed_name: str = field(init=False, repr=False)
|
1375 |
+
add_time_embed_name: str = field(init=False, repr=False)
|
1376 |
+
text_embed_name: str = field(init=False, repr=False)
|
1377 |
+
norm_out_name: str = field(init=False, repr=False)
|
1378 |
+
proj_out_name: str = field(init=False, repr=False)
|
1379 |
+
down_blocks_name: str = field(init=False, repr=False)
|
1380 |
+
mid_block_name: str = field(init=False, repr=False)
|
1381 |
+
up_blocks_name: str = field(init=False, repr=False)
|
1382 |
+
down_block_names: list[str] = field(init=False, repr=False)
|
1383 |
+
up_block_names: list[str] = field(init=False, repr=False)
|
1384 |
+
# endregion
|
1385 |
+
# region absolute keys
|
1386 |
+
input_embed_key: str = field(init=False, repr=False)
|
1387 |
+
time_embed_key: str = field(init=False, repr=False)
|
1388 |
+
add_time_embed_key: str = field(init=False, repr=False)
|
1389 |
+
text_embed_key: str = field(init=False, repr=False)
|
1390 |
+
norm_out_key: str = field(init=False, repr=False)
|
1391 |
+
proj_out_key: str = field(init=False, repr=False)
|
1392 |
+
# endregion
|
1393 |
+
# region child structs
|
1394 |
+
down_block_structs: list[UNetBlockStruct] = field(init=False, repr=False)
|
1395 |
+
mid_block_struct: UNetBlockStruct = field(init=False, repr=False)
|
1396 |
+
up_block_structs: list[UNetBlockStruct] = field(init=False, repr=False)
|
1397 |
+
# endregion
|
1398 |
+
|
1399 |
+
@property
|
1400 |
+
def num_down_blocks(self) -> int:
|
1401 |
+
return len(self.down_blocks)
|
1402 |
+
|
1403 |
+
@property
|
1404 |
+
def num_up_blocks(self) -> int:
|
1405 |
+
return len(self.up_blocks)
|
1406 |
+
|
1407 |
+
@property
|
1408 |
+
def num_blocks(self) -> int:
|
1409 |
+
return self.num_down_blocks + 1 + self.num_up_blocks
|
1410 |
+
|
1411 |
+
@property
|
1412 |
+
def block_structs(self) -> list[UNetBlockStruct]:
|
1413 |
+
return [*self.down_block_structs, self.mid_block_struct, *self.up_block_structs]
|
1414 |
+
|
1415 |
+
def __post_init__(self) -> None:
|
1416 |
+
super().__post_init__()
|
1417 |
+
down_block_rnames = [f"{self.down_blocks_rname}.{idx}" for idx in range(len(self.down_blocks))]
|
1418 |
+
up_block_rnames = [f"{self.up_blocks_rname}.{idx}" for idx in range(len(self.up_blocks))]
|
1419 |
+
self.down_blocks_name = join_name(self.name, self.down_blocks_rname)
|
1420 |
+
self.mid_block_name = join_name(self.name, self.mid_block_rname)
|
1421 |
+
self.up_blocks_name = join_name(self.name, self.up_blocks_rname)
|
1422 |
+
self.down_block_names = [join_name(self.name, rname) for rname in down_block_rnames]
|
1423 |
+
self.up_block_names = [join_name(self.name, rname) for rname in up_block_rnames]
|
1424 |
+
self.pre_module_structs = {}
|
1425 |
+
for fname in ("time_embed", "add_time_embed", "text_embed", "input_embed"):
|
1426 |
+
module, rname, rkey = getattr(self, fname), getattr(self, f"{fname}_rname"), getattr(self, f"{fname}_rkey")
|
1427 |
+
setattr(self, f"{fname}_key", join_name(self.key, rkey, sep="_"))
|
1428 |
+
if module is not None or rname:
|
1429 |
+
setattr(self, f"{fname}_name", join_name(self.name, rname))
|
1430 |
+
else:
|
1431 |
+
setattr(self, f"{fname}_name", "")
|
1432 |
+
if module is not None:
|
1433 |
+
assert rname, f"rname of {fname} must not be empty"
|
1434 |
+
self.pre_module_structs[getattr(self, f"{fname}_name")] = DiffusionModuleStruct(
|
1435 |
+
module=module, parent=self, fname=fname, rname=rname, rkey=rkey
|
1436 |
+
)
|
1437 |
+
self.post_module_structs = {}
|
1438 |
+
for fname in ("norm_out", "proj_out"):
|
1439 |
+
module, rname, rkey = getattr(self, fname), getattr(self, f"{fname}_rname"), getattr(self, f"{fname}_rkey")
|
1440 |
+
setattr(self, f"{fname}_key", join_name(self.key, rkey, sep="_"))
|
1441 |
+
if module is not None or rname:
|
1442 |
+
setattr(self, f"{fname}_name", join_name(self.name, rname))
|
1443 |
+
else:
|
1444 |
+
setattr(self, f"{fname}_name", "")
|
1445 |
+
if module is not None:
|
1446 |
+
self.post_module_structs[getattr(self, f"{fname}_name")] = DiffusionModuleStruct(
|
1447 |
+
module=module, parent=self, fname=fname, rname=rname, rkey=rkey
|
1448 |
+
)
|
1449 |
+
self.down_block_structs = [
|
1450 |
+
self.down_block_struct_cls.construct(
|
1451 |
+
block, parent=self, fname="down_block", rname=rname, rkey=self.down_block_rkey, idx=idx
|
1452 |
+
)
|
1453 |
+
for idx, (block, rname) in enumerate(zip(self.down_blocks, down_block_rnames, strict=True))
|
1454 |
+
]
|
1455 |
+
self.mid_block_struct = self.mid_block_struct_cls.construct(
|
1456 |
+
self.mid_block, parent=self, fname="mid_block", rname=self.mid_block_name, rkey=self.mid_block_rkey
|
1457 |
+
)
|
1458 |
+
self.up_block_structs = [
|
1459 |
+
self.up_block_struct_cls.construct(
|
1460 |
+
block, parent=self, fname="up_block", rname=rname, rkey=self.up_block_rkey, idx=idx
|
1461 |
+
)
|
1462 |
+
for idx, (block, rname) in enumerate(zip(self.up_blocks, up_block_rnames, strict=True))
|
1463 |
+
]
|
1464 |
+
|
1465 |
+
def get_prev_module_keys(self) -> tuple[str, ...]:
|
1466 |
+
return tuple({self.input_embed_key, self.time_embed_key, self.add_time_embed_key, self.text_embed_key})
|
1467 |
+
|
1468 |
+
def get_post_module_keys(self) -> tuple[str, ...]:
|
1469 |
+
return tuple({self.norm_out_key, self.proj_out_key})
|
1470 |
+
|
1471 |
+
def _get_iter_block_activations_args(
|
1472 |
+
self, **input_kwargs
|
1473 |
+
) -> tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]:
|
1474 |
+
layers, layer_structs, recomputes, use_prev_layer_outputs = [], [], [], []
|
1475 |
+
num_down_blocks = len(self.down_blocks)
|
1476 |
+
num_up_blocks = len(self.up_blocks)
|
1477 |
+
layers.extend(self.down_blocks)
|
1478 |
+
layer_structs.extend(self.down_block_structs)
|
1479 |
+
use_prev_layer_outputs.append(False)
|
1480 |
+
use_prev_layer_outputs.extend([True] * (num_down_blocks - 1))
|
1481 |
+
recomputes.append(False)
|
1482 |
+
# region check whether down block's outputs are changed
|
1483 |
+
_mid_block_additional_residual = input_kwargs.get("mid_block_additional_residual", None)
|
1484 |
+
_down_block_additional_residuals = input_kwargs.get("down_block_additional_residuals", None)
|
1485 |
+
_is_adapter = input_kwargs.get("down_intrablock_additional_residuals", None) is not None
|
1486 |
+
if not _is_adapter and _mid_block_additional_residual is None and _down_block_additional_residuals is not None:
|
1487 |
+
_is_adapter = True
|
1488 |
+
for down_block in self.down_blocks:
|
1489 |
+
if hasattr(down_block, "has_cross_attention") and down_block.has_cross_attention:
|
1490 |
+
# outputs unchanged
|
1491 |
+
recomputes.append(False)
|
1492 |
+
elif _is_adapter:
|
1493 |
+
# outputs changed
|
1494 |
+
recomputes.append(True)
|
1495 |
+
else:
|
1496 |
+
# outputs unchanged
|
1497 |
+
recomputes.append(False)
|
1498 |
+
# endregion
|
1499 |
+
layers.append(self.mid_block)
|
1500 |
+
layer_structs.append(self.mid_block_struct)
|
1501 |
+
use_prev_layer_outputs.append(False)
|
1502 |
+
# recomputes is already appened in the previous down blocks
|
1503 |
+
layers.extend(self.up_blocks)
|
1504 |
+
layer_structs.extend(self.up_block_structs)
|
1505 |
+
use_prev_layer_outputs.append(False)
|
1506 |
+
use_prev_layer_outputs.extend([True] * (num_up_blocks - 1))
|
1507 |
+
recomputes += [True] * num_up_blocks
|
1508 |
+
return layers, layer_structs, recomputes, use_prev_layer_outputs
|
1509 |
+
|
1510 |
+
@staticmethod
|
1511 |
+
def _default_construct(
|
1512 |
+
module: tp.Union[UNET_PIPELINE_CLS, UNET_CLS],
|
1513 |
+
/,
|
1514 |
+
parent: tp.Optional[BaseModuleStruct] = None,
|
1515 |
+
fname: str = "",
|
1516 |
+
rname: str = "",
|
1517 |
+
rkey: str = "",
|
1518 |
+
idx: int = 0,
|
1519 |
+
**kwargs,
|
1520 |
+
) -> "UNetStruct":
|
1521 |
+
if isinstance(module, UNET_PIPELINE_CLS):
|
1522 |
+
module = module.unet
|
1523 |
+
if isinstance(module, (UNet2DConditionModel, UNet2DModel)):
|
1524 |
+
input_embed, time_embed = module.conv_in, module.time_embedding
|
1525 |
+
input_embed_rname, time_embed_rname = "conv_in", "time_embedding"
|
1526 |
+
text_embed, text_embed_rname = None, ""
|
1527 |
+
add_time_embed, add_time_embed_rname = None, ""
|
1528 |
+
if hasattr(module, "encoder_hid_proj"):
|
1529 |
+
text_embed, text_embed_rname = module.encoder_hid_proj, "encoder_hid_proj"
|
1530 |
+
if hasattr(module, "add_embedding"):
|
1531 |
+
add_time_embed, add_time_embed_rname = module.add_embedding, "add_embedding"
|
1532 |
+
norm_out, norm_out_rname = module.conv_norm_out, "conv_norm_out"
|
1533 |
+
proj_out, proj_out_rname = module.conv_out, "conv_out"
|
1534 |
+
down_blocks, down_blocks_rname = module.down_blocks, "down_blocks"
|
1535 |
+
mid_block, mid_block_rname = module.mid_block, "mid_block"
|
1536 |
+
up_blocks, up_blocks_rname = module.up_blocks, "up_blocks"
|
1537 |
+
return UNetStruct(
|
1538 |
+
module=module,
|
1539 |
+
parent=parent,
|
1540 |
+
fname=fname,
|
1541 |
+
idx=idx,
|
1542 |
+
rname=rname,
|
1543 |
+
rkey=rkey,
|
1544 |
+
input_embed=input_embed,
|
1545 |
+
time_embed=time_embed,
|
1546 |
+
add_time_embed=add_time_embed,
|
1547 |
+
text_embed=text_embed,
|
1548 |
+
norm_out=norm_out,
|
1549 |
+
proj_out=proj_out,
|
1550 |
+
down_blocks=down_blocks,
|
1551 |
+
mid_block=mid_block,
|
1552 |
+
up_blocks=up_blocks,
|
1553 |
+
input_embed_rname=input_embed_rname,
|
1554 |
+
time_embed_rname=time_embed_rname,
|
1555 |
+
add_time_embed_rname=add_time_embed_rname,
|
1556 |
+
text_embed_rname=text_embed_rname,
|
1557 |
+
norm_out_rname=norm_out_rname,
|
1558 |
+
proj_out_rname=proj_out_rname,
|
1559 |
+
down_blocks_rname=down_blocks_rname,
|
1560 |
+
mid_block_rname=mid_block_rname,
|
1561 |
+
up_blocks_rname=up_blocks_rname,
|
1562 |
+
)
|
1563 |
+
raise NotImplementedError(f"Unsupported module type: {type(module)}")
|
1564 |
+
|
1565 |
+
@classmethod
|
1566 |
+
def _get_default_key_map(cls) -> dict[str, set[str]]:
|
1567 |
+
"""Get the default allowed keys."""
|
1568 |
+
key_map: dict[str, set[str]] = defaultdict(set)
|
1569 |
+
for idx, (block_key, block_cls) in enumerate(
|
1570 |
+
(
|
1571 |
+
(cls.down_block_rkey, cls.down_block_struct_cls),
|
1572 |
+
(cls.mid_block_rkey, cls.mid_block_struct_cls),
|
1573 |
+
(cls.up_block_rkey, cls.up_block_struct_cls),
|
1574 |
+
)
|
1575 |
+
):
|
1576 |
+
block_key_map: dict[str, set[str]] = defaultdict(set)
|
1577 |
+
if idx != 1:
|
1578 |
+
sampler_key = join_name(block_key, block_cls.sampler_rkey, sep="_")
|
1579 |
+
sampler_rkey = block_cls.sampler_rkey
|
1580 |
+
block_key_map[sampler_rkey].add(sampler_key)
|
1581 |
+
_block_key_map = block_cls._get_default_key_map()
|
1582 |
+
for rkey, keys in _block_key_map.items():
|
1583 |
+
for key in keys:
|
1584 |
+
key = join_name(block_key, key, sep="_")
|
1585 |
+
block_key_map[rkey].add(key)
|
1586 |
+
for rkey, keys in block_key_map.items():
|
1587 |
+
key_map[rkey].update(keys)
|
1588 |
+
if block_key:
|
1589 |
+
key_map[block_key].update(keys)
|
1590 |
+
keys: set[str] = set()
|
1591 |
+
keys.add(cls.input_embed_rkey)
|
1592 |
+
keys.add(cls.time_embed_rkey)
|
1593 |
+
keys.add(cls.add_time_embed_rkey)
|
1594 |
+
keys.add(cls.text_embed_rkey)
|
1595 |
+
keys.add(cls.norm_out_rkey)
|
1596 |
+
keys.add(cls.proj_out_rkey)
|
1597 |
+
for mapped_keys in key_map.values():
|
1598 |
+
for key in mapped_keys:
|
1599 |
+
keys.add(key)
|
1600 |
+
if "embed" not in keys and "embed" not in key_map:
|
1601 |
+
key_map["embed"].add(cls.input_embed_rkey)
|
1602 |
+
key_map["embed"].add(cls.time_embed_rkey)
|
1603 |
+
key_map["embed"].add(cls.add_time_embed_rkey)
|
1604 |
+
key_map["embed"].add(cls.text_embed_rkey)
|
1605 |
+
key_map["embed"].add(cls.norm_out_rkey)
|
1606 |
+
key_map["embed"].add(cls.proj_out_rkey)
|
1607 |
+
for key in keys:
|
1608 |
+
if key in key_map:
|
1609 |
+
key_map[key].clear()
|
1610 |
+
key_map[key].add(key)
|
1611 |
+
return {k: v for k, v in key_map.items() if v}
|
1612 |
+
|
1613 |
+
|
1614 |
+
@dataclass(kw_only=True)
|
1615 |
+
class DiTStruct(DiffusionModelStruct, DiffusionTransformerStruct):
|
1616 |
+
# region relative keys
|
1617 |
+
input_embed_rkey: tp.ClassVar[str] = "input_embed"
|
1618 |
+
"""hidden_states = input_embed(hidden_states), e.g., conv_in"""
|
1619 |
+
time_embed_rkey: tp.ClassVar[str] = "time_embed"
|
1620 |
+
"""temb = time_embed(timesteps)"""
|
1621 |
+
text_embed_rkey: tp.ClassVar[str] = "text_embed"
|
1622 |
+
"""encoder_hidden_states = text_embed(encoder_hidden_states)"""
|
1623 |
+
norm_in_rkey: tp.ClassVar[str] = "input_embed"
|
1624 |
+
"""hidden_states = norm_in(hidden_states)"""
|
1625 |
+
proj_in_rkey: tp.ClassVar[str] = "input_embed"
|
1626 |
+
"""hidden_states = proj_in(hidden_states)"""
|
1627 |
+
norm_out_rkey: tp.ClassVar[str] = "output_embed"
|
1628 |
+
"""hidden_states = norm_out(hidden_states)"""
|
1629 |
+
proj_out_rkey: tp.ClassVar[str] = "output_embed"
|
1630 |
+
"""hidden_states = proj_out(hidden_states)"""
|
1631 |
+
transformer_block_rkey: tp.ClassVar[str] = ""
|
1632 |
+
# endregion
|
1633 |
+
|
1634 |
+
# region child modules
|
1635 |
+
input_embed: PatchEmbed
|
1636 |
+
time_embed: AdaLayerNormSingle | CombinedTimestepTextProjEmbeddings | TimestepEmbedding
|
1637 |
+
text_embed: PixArtAlphaTextProjection | nn.Linear
|
1638 |
+
norm_in: None = field(init=False, repr=False, default=None)
|
1639 |
+
proj_in: None = field(init=False, repr=False, default=None)
|
1640 |
+
norm_out: nn.LayerNorm | AdaLayerNormContinuous | None
|
1641 |
+
proj_out: nn.Linear
|
1642 |
+
# endregion
|
1643 |
+
# region relative names
|
1644 |
+
input_embed_rname: str
|
1645 |
+
time_embed_rname: str
|
1646 |
+
text_embed_rname: str
|
1647 |
+
norm_in_rname: str = field(init=False, repr=False, default="")
|
1648 |
+
proj_in_rname: str = field(init=False, repr=False, default="")
|
1649 |
+
norm_out_rname: str
|
1650 |
+
proj_out_rname: str
|
1651 |
+
# endregion
|
1652 |
+
# region absolute names
|
1653 |
+
input_embed_name: str = field(init=False, repr=False)
|
1654 |
+
time_embed_name: str = field(init=False, repr=False)
|
1655 |
+
text_embed_name: str = field(init=False, repr=False)
|
1656 |
+
# endregion
|
1657 |
+
# region absolute keys
|
1658 |
+
input_embed_key: str = field(init=False, repr=False)
|
1659 |
+
time_embed_key: str = field(init=False, repr=False)
|
1660 |
+
text_embed_key: str = field(init=False, repr=False)
|
1661 |
+
norm_out_key: str = field(init=False, repr=False)
|
1662 |
+
# endregion
|
1663 |
+
|
1664 |
+
@property
|
1665 |
+
def num_blocks(self) -> int:
|
1666 |
+
return len(self.transformer_blocks)
|
1667 |
+
|
1668 |
+
@property
|
1669 |
+
def block_structs(self) -> list[DiffusionTransformerBlockStruct]:
|
1670 |
+
return self.transformer_block_structs
|
1671 |
+
|
1672 |
+
@property
|
1673 |
+
def block_names(self) -> list[str]:
|
1674 |
+
return self.transformer_block_names
|
1675 |
+
|
1676 |
+
def __post_init__(self) -> None:
|
1677 |
+
super().__post_init__()
|
1678 |
+
self.pre_module_structs = {}
|
1679 |
+
for fname in ("input_embed", "time_embed", "text_embed"):
|
1680 |
+
module, rname, rkey = getattr(self, fname), getattr(self, f"{fname}_rname"), getattr(self, f"{fname}_rkey")
|
1681 |
+
setattr(self, f"{fname}_key", join_name(self.key, rkey, sep="_"))
|
1682 |
+
if module is not None or rname:
|
1683 |
+
setattr(self, f"{fname}_name", join_name(self.name, rname))
|
1684 |
+
else:
|
1685 |
+
setattr(self, f"{fname}_name", "")
|
1686 |
+
if module is not None:
|
1687 |
+
self.pre_module_structs.setdefault(
|
1688 |
+
getattr(self, f"{fname}_name"),
|
1689 |
+
DiffusionModuleStruct(module=module, parent=self, fname=fname, rname=rname, rkey=rkey),
|
1690 |
+
)
|
1691 |
+
self.post_module_structs = {}
|
1692 |
+
self.norm_out_key = join_name(self.key, self.norm_out_rkey, sep="_")
|
1693 |
+
for fname in ("norm_out", "proj_out"):
|
1694 |
+
module, rname, rkey = getattr(self, fname), getattr(self, f"{fname}_rname"), getattr(self, f"{fname}_rkey")
|
1695 |
+
if module is not None:
|
1696 |
+
self.post_module_structs.setdefault(
|
1697 |
+
getattr(self, f"{fname}_name"),
|
1698 |
+
DiffusionModuleStruct(module=module, parent=self, fname=fname, rname=rname, rkey=rkey),
|
1699 |
+
)
|
1700 |
+
|
1701 |
+
def get_prev_module_keys(self) -> tuple[str, ...]:
|
1702 |
+
return tuple({self.input_embed_key, self.time_embed_key, self.text_embed_key})
|
1703 |
+
|
1704 |
+
def get_post_module_keys(self) -> tuple[str, ...]:
|
1705 |
+
return tuple({self.norm_out_key, self.proj_out_key})
|
1706 |
+
|
1707 |
+
def _get_iter_block_activations_args(
|
1708 |
+
self, **input_kwargs
|
1709 |
+
) -> tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]:
|
1710 |
+
"""
|
1711 |
+
Get the arguments for iterating over the layers and their activations.
|
1712 |
+
|
1713 |
+
Args:
|
1714 |
+
skip_pre_modules (`bool`):
|
1715 |
+
Whether to skip the pre-modules
|
1716 |
+
skip_post_modules (`bool`):
|
1717 |
+
Whether to skip the post-modules
|
1718 |
+
|
1719 |
+
Returns:
|
1720 |
+
`tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]`:
|
1721 |
+
the layers, the layer structs, the recomputes, and the use_prev_layer_outputs
|
1722 |
+
"""
|
1723 |
+
layers, layer_structs, recomputes, use_prev_layer_outputs = [], [], [], []
|
1724 |
+
layers.extend(self.transformer_blocks)
|
1725 |
+
layer_structs.extend(self.transformer_block_structs)
|
1726 |
+
use_prev_layer_outputs.append(False)
|
1727 |
+
use_prev_layer_outputs.extend([True] * (len(self.transformer_blocks) - 1))
|
1728 |
+
recomputes.extend([False] * len(self.transformer_blocks))
|
1729 |
+
return layers, layer_structs, recomputes, use_prev_layer_outputs
|
1730 |
+
|
1731 |
+
@staticmethod
|
1732 |
+
def _default_construct(
|
1733 |
+
module: tp.Union[DIT_PIPELINE_CLS, DIT_CLS],
|
1734 |
+
/,
|
1735 |
+
parent: tp.Optional[BaseModuleStruct] = None,
|
1736 |
+
fname: str = "",
|
1737 |
+
rname: str = "",
|
1738 |
+
rkey: str = "",
|
1739 |
+
idx: int = 0,
|
1740 |
+
**kwargs,
|
1741 |
+
) -> "DiTStruct":
|
1742 |
+
if isinstance(module, DIT_PIPELINE_CLS):
|
1743 |
+
module = module.transformer
|
1744 |
+
if isinstance(module, FluxTransformer2DModel):
|
1745 |
+
return FluxStruct.construct(module, parent=parent, fname=fname, rname=rname, rkey=rkey, idx=idx, **kwargs)
|
1746 |
+
else:
|
1747 |
+
if isinstance(module, PixArtTransformer2DModel):
|
1748 |
+
input_embed, input_embed_rname = module.pos_embed, "pos_embed"
|
1749 |
+
time_embed, time_embed_rname = module.adaln_single, "adaln_single"
|
1750 |
+
text_embed, text_embed_rname = module.caption_projection, "caption_projection"
|
1751 |
+
norm_out, norm_out_rname = module.norm_out, "norm_out"
|
1752 |
+
proj_out, proj_out_rname = module.proj_out, "proj_out"
|
1753 |
+
transformer_blocks, transformer_blocks_rname = module.transformer_blocks, "transformer_blocks"
|
1754 |
+
# ! in fact, `module.adaln_single.emb` is `time_embed`,
|
1755 |
+
# ! `module.adaln_single.linear` is `transformer_norm`
|
1756 |
+
# ! but since PixArt shares the `transformer_norm`, we categorize it as `time_embed`
|
1757 |
+
elif isinstance(module, SanaTransformer2DModel):
|
1758 |
+
input_embed, input_embed_rname = module.patch_embed, "patch_embed"
|
1759 |
+
time_embed, time_embed_rname = module.time_embed, "time_embed"
|
1760 |
+
text_embed, text_embed_rname = module.caption_projection, "caption_projection"
|
1761 |
+
norm_out, norm_out_rname = module.norm_out, "norm_out"
|
1762 |
+
proj_out, proj_out_rname = module.proj_out, "proj_out"
|
1763 |
+
transformer_blocks, transformer_blocks_rname = module.transformer_blocks, "transformer_blocks"
|
1764 |
+
elif isinstance(module, SD3Transformer2DModel):
|
1765 |
+
input_embed, input_embed_rname = module.pos_embed, "pos_embed"
|
1766 |
+
time_embed, time_embed_rname = module.time_text_embed, "time_text_embed"
|
1767 |
+
text_embed, text_embed_rname = module.context_embedder, "context_embedder"
|
1768 |
+
norm_out, norm_out_rname = module.norm_out, "norm_out"
|
1769 |
+
proj_out, proj_out_rname = module.proj_out, "proj_out"
|
1770 |
+
transformer_blocks, transformer_blocks_rname = module.transformer_blocks, "transformer_blocks"
|
1771 |
+
else:
|
1772 |
+
raise NotImplementedError(f"Unsupported module type: {type(module)}")
|
1773 |
+
return DiTStruct(
|
1774 |
+
module=module,
|
1775 |
+
parent=parent,
|
1776 |
+
fname=fname,
|
1777 |
+
idx=idx,
|
1778 |
+
rname=rname,
|
1779 |
+
rkey=rkey,
|
1780 |
+
input_embed=input_embed,
|
1781 |
+
time_embed=time_embed,
|
1782 |
+
text_embed=text_embed,
|
1783 |
+
transformer_blocks=transformer_blocks,
|
1784 |
+
norm_out=norm_out,
|
1785 |
+
proj_out=proj_out,
|
1786 |
+
input_embed_rname=input_embed_rname,
|
1787 |
+
time_embed_rname=time_embed_rname,
|
1788 |
+
text_embed_rname=text_embed_rname,
|
1789 |
+
norm_out_rname=norm_out_rname,
|
1790 |
+
proj_out_rname=proj_out_rname,
|
1791 |
+
transformer_blocks_rname=transformer_blocks_rname,
|
1792 |
+
)
|
1793 |
+
|
1794 |
+
@classmethod
|
1795 |
+
def _get_default_key_map(cls) -> dict[str, set[str]]:
|
1796 |
+
"""Get the default allowed keys."""
|
1797 |
+
key_map: dict[str, set[str]] = defaultdict(set)
|
1798 |
+
block_cls = cls.transformer_block_struct_cls
|
1799 |
+
block_key = block_rkey = cls.transformer_block_rkey
|
1800 |
+
block_key_map = block_cls._get_default_key_map()
|
1801 |
+
for rkey, keys in block_key_map.items():
|
1802 |
+
brkey = join_name(block_rkey, rkey, sep="_")
|
1803 |
+
for key in keys:
|
1804 |
+
key = join_name(block_key, key, sep="_")
|
1805 |
+
key_map[rkey].add(key)
|
1806 |
+
key_map[brkey].add(key)
|
1807 |
+
if block_rkey:
|
1808 |
+
key_map[block_rkey].add(key)
|
1809 |
+
keys: set[str] = set()
|
1810 |
+
keys.add(cls.input_embed_rkey)
|
1811 |
+
keys.add(cls.time_embed_rkey)
|
1812 |
+
keys.add(cls.text_embed_rkey)
|
1813 |
+
keys.add(cls.norm_in_rkey)
|
1814 |
+
keys.add(cls.proj_in_rkey)
|
1815 |
+
keys.add(cls.norm_out_rkey)
|
1816 |
+
keys.add(cls.proj_out_rkey)
|
1817 |
+
for mapped_keys in key_map.values():
|
1818 |
+
for key in mapped_keys:
|
1819 |
+
keys.add(key)
|
1820 |
+
if "embed" not in keys and "embed" not in key_map:
|
1821 |
+
key_map["embed"].add(cls.input_embed_rkey)
|
1822 |
+
key_map["embed"].add(cls.time_embed_rkey)
|
1823 |
+
key_map["embed"].add(cls.text_embed_rkey)
|
1824 |
+
key_map["embed"].add(cls.norm_in_rkey)
|
1825 |
+
key_map["embed"].add(cls.proj_in_rkey)
|
1826 |
+
key_map["embed"].add(cls.norm_out_rkey)
|
1827 |
+
key_map["embed"].add(cls.proj_out_rkey)
|
1828 |
+
for key in keys:
|
1829 |
+
if key in key_map:
|
1830 |
+
key_map[key].clear()
|
1831 |
+
key_map[key].add(key)
|
1832 |
+
return {k: v for k, v in key_map.items() if v}
|
1833 |
+
|
1834 |
+
|
1835 |
+
@dataclass(kw_only=True)
|
1836 |
+
class FluxStruct(DiTStruct):
|
1837 |
+
# region relative keys
|
1838 |
+
single_transformer_block_rkey: tp.ClassVar[str] = ""
|
1839 |
+
single_transformer_block_struct_cls: tp.ClassVar[type[DiffusionTransformerBlockStruct]] = (
|
1840 |
+
DiffusionTransformerBlockStruct
|
1841 |
+
)
|
1842 |
+
# endregion
|
1843 |
+
|
1844 |
+
module: FluxTransformer2DModel = field(repr=False, kw_only=False)
|
1845 |
+
"""the module of FluxTransformer2DModel"""
|
1846 |
+
# region child modules
|
1847 |
+
input_embed: nn.Linear
|
1848 |
+
time_embed: CombinedTimestepGuidanceTextProjEmbeddings | CombinedTimestepTextProjEmbeddings
|
1849 |
+
text_embed: nn.Linear
|
1850 |
+
single_transformer_blocks: nn.ModuleList = field(repr=False)
|
1851 |
+
# endregion
|
1852 |
+
# region relative names
|
1853 |
+
single_transformer_blocks_rname: str
|
1854 |
+
# endregion
|
1855 |
+
# region absolute names
|
1856 |
+
single_transformer_blocks_name: str = field(init=False, repr=False)
|
1857 |
+
single_transformer_block_names: list[str] = field(init=False, repr=False)
|
1858 |
+
# endregion
|
1859 |
+
# region child structs
|
1860 |
+
single_transformer_block_structs: list[DiffusionTransformerBlockStruct] = field(init=False)
|
1861 |
+
# endregion
|
1862 |
+
|
1863 |
+
@property
|
1864 |
+
def num_blocks(self) -> int:
|
1865 |
+
return len(self.transformer_block_structs) + len(self.single_transformer_block_structs)
|
1866 |
+
|
1867 |
+
@property
|
1868 |
+
def block_structs(self) -> list[DiffusionTransformerBlockStruct]:
|
1869 |
+
return [*self.transformer_block_structs, *self.single_transformer_block_structs]
|
1870 |
+
|
1871 |
+
@property
|
1872 |
+
def block_names(self) -> list[str]:
|
1873 |
+
return [*self.transformer_block_names, *self.single_transformer_block_names]
|
1874 |
+
|
1875 |
+
def __post_init__(self) -> None:
|
1876 |
+
super().__post_init__()
|
1877 |
+
single_transformer_block_rnames = [
|
1878 |
+
f"{self.single_transformer_blocks_rname}.{idx}" for idx in range(len(self.single_transformer_blocks))
|
1879 |
+
]
|
1880 |
+
self.single_transformer_blocks_name = join_name(self.name, self.single_transformer_blocks_rname)
|
1881 |
+
self.single_transformer_block_names = [join_name(self.name, rname) for rname in single_transformer_block_rnames]
|
1882 |
+
self.single_transformer_block_structs = [
|
1883 |
+
self.single_transformer_block_struct_cls.construct(
|
1884 |
+
block,
|
1885 |
+
parent=self,
|
1886 |
+
fname="single_transformer_block",
|
1887 |
+
rname=rname,
|
1888 |
+
rkey=self.single_transformer_block_rkey,
|
1889 |
+
idx=idx,
|
1890 |
+
)
|
1891 |
+
for idx, (block, rname) in enumerate(
|
1892 |
+
zip(self.single_transformer_blocks, single_transformer_block_rnames, strict=True)
|
1893 |
+
)
|
1894 |
+
]
|
1895 |
+
|
1896 |
+
def _get_iter_block_activations_args(
|
1897 |
+
self, **input_kwargs
|
1898 |
+
) -> tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]:
|
1899 |
+
layers, layer_structs, recomputes, use_prev_layer_outputs = super()._get_iter_block_activations_args()
|
1900 |
+
layers.extend(self.single_transformer_blocks)
|
1901 |
+
layer_structs.extend(self.single_transformer_block_structs)
|
1902 |
+
use_prev_layer_outputs.append(False)
|
1903 |
+
use_prev_layer_outputs.extend([True] * (len(self.single_transformer_blocks) - 1))
|
1904 |
+
recomputes.extend([False] * len(self.single_transformer_blocks))
|
1905 |
+
return layers, layer_structs, recomputes, use_prev_layer_outputs
|
1906 |
+
|
1907 |
+
@staticmethod
|
1908 |
+
def _default_construct(
|
1909 |
+
module: tp.Union[FluxPipeline, FluxKontextPipeline, FluxControlPipeline, FluxTransformer2DModel],
|
1910 |
+
/,
|
1911 |
+
parent: tp.Optional[BaseModuleStruct] = None,
|
1912 |
+
fname: str = "",
|
1913 |
+
rname: str = "",
|
1914 |
+
rkey: str = "",
|
1915 |
+
idx: int = 0,
|
1916 |
+
**kwargs,
|
1917 |
+
) -> "FluxStruct":
|
1918 |
+
if isinstance(module, (FluxPipeline, FluxKontextPipeline, FluxControlPipeline)):
|
1919 |
+
module = module.transformer
|
1920 |
+
if isinstance(module, FluxTransformer2DModel):
|
1921 |
+
input_embed, time_embed, text_embed = module.x_embedder, module.time_text_embed, module.context_embedder
|
1922 |
+
input_embed_rname, time_embed_rname, text_embed_rname = "x_embedder", "time_text_embed", "context_embedder"
|
1923 |
+
norm_out, norm_out_rname = module.norm_out, "norm_out"
|
1924 |
+
proj_out, proj_out_rname = module.proj_out, "proj_out"
|
1925 |
+
transformer_blocks, transformer_blocks_rname = module.transformer_blocks, "transformer_blocks"
|
1926 |
+
single_transformer_blocks = module.single_transformer_blocks
|
1927 |
+
single_transformer_blocks_rname = "single_transformer_blocks"
|
1928 |
+
return FluxStruct(
|
1929 |
+
module=module,
|
1930 |
+
parent=parent,
|
1931 |
+
fname=fname,
|
1932 |
+
idx=idx,
|
1933 |
+
rname=rname,
|
1934 |
+
rkey=rkey,
|
1935 |
+
input_embed=input_embed,
|
1936 |
+
time_embed=time_embed,
|
1937 |
+
text_embed=text_embed,
|
1938 |
+
transformer_blocks=transformer_blocks,
|
1939 |
+
single_transformer_blocks=single_transformer_blocks,
|
1940 |
+
norm_out=norm_out,
|
1941 |
+
proj_out=proj_out,
|
1942 |
+
input_embed_rname=input_embed_rname,
|
1943 |
+
time_embed_rname=time_embed_rname,
|
1944 |
+
text_embed_rname=text_embed_rname,
|
1945 |
+
norm_out_rname=norm_out_rname,
|
1946 |
+
proj_out_rname=proj_out_rname,
|
1947 |
+
transformer_blocks_rname=transformer_blocks_rname,
|
1948 |
+
single_transformer_blocks_rname=single_transformer_blocks_rname,
|
1949 |
+
)
|
1950 |
+
raise NotImplementedError(f"Unsupported module type: {type(module)}")
|
1951 |
+
|
1952 |
+
@classmethod
|
1953 |
+
def _get_default_key_map(cls) -> dict[str, set[str]]:
|
1954 |
+
"""Get the default allowed keys."""
|
1955 |
+
key_map: dict[str, set[str]] = defaultdict(set)
|
1956 |
+
for block_rkey, block_cls in (
|
1957 |
+
(cls.transformer_block_rkey, cls.transformer_block_struct_cls),
|
1958 |
+
(cls.single_transformer_block_rkey, cls.single_transformer_block_struct_cls),
|
1959 |
+
):
|
1960 |
+
block_key = block_rkey
|
1961 |
+
block_key_map = block_cls._get_default_key_map()
|
1962 |
+
for rkey, keys in block_key_map.items():
|
1963 |
+
brkey = join_name(block_rkey, rkey, sep="_")
|
1964 |
+
for key in keys:
|
1965 |
+
key = join_name(block_key, key, sep="_")
|
1966 |
+
key_map[rkey].add(key)
|
1967 |
+
key_map[brkey].add(key)
|
1968 |
+
if block_rkey:
|
1969 |
+
key_map[block_rkey].add(key)
|
1970 |
+
keys: set[str] = set()
|
1971 |
+
keys.add(cls.input_embed_rkey)
|
1972 |
+
keys.add(cls.time_embed_rkey)
|
1973 |
+
keys.add(cls.text_embed_rkey)
|
1974 |
+
keys.add(cls.norm_in_rkey)
|
1975 |
+
keys.add(cls.proj_in_rkey)
|
1976 |
+
keys.add(cls.norm_out_rkey)
|
1977 |
+
keys.add(cls.proj_out_rkey)
|
1978 |
+
for mapped_keys in key_map.values():
|
1979 |
+
for key in mapped_keys:
|
1980 |
+
keys.add(key)
|
1981 |
+
if "embed" not in keys and "embed" not in key_map:
|
1982 |
+
key_map["embed"].add(cls.input_embed_rkey)
|
1983 |
+
key_map["embed"].add(cls.time_embed_rkey)
|
1984 |
+
key_map["embed"].add(cls.text_embed_rkey)
|
1985 |
+
key_map["embed"].add(cls.norm_in_rkey)
|
1986 |
+
key_map["embed"].add(cls.proj_in_rkey)
|
1987 |
+
key_map["embed"].add(cls.norm_out_rkey)
|
1988 |
+
key_map["embed"].add(cls.proj_out_rkey)
|
1989 |
+
for key in keys:
|
1990 |
+
if key in key_map:
|
1991 |
+
key_map[key].clear()
|
1992 |
+
key_map[key].add(key)
|
1993 |
+
return {k: v for k, v in key_map.items() if v}
|
1994 |
+
|
1995 |
+
|
1996 |
+
DiffusionAttentionStruct.register_factory(Attention, DiffusionAttentionStruct._default_construct)
|
1997 |
+
|
1998 |
+
DiffusionFeedForwardStruct.register_factory(
|
1999 |
+
(FeedForward, FluxSingleTransformerBlock, GLUMBConv), DiffusionFeedForwardStruct._default_construct
|
2000 |
+
)
|
2001 |
+
|
2002 |
+
DiffusionTransformerBlockStruct.register_factory(DIT_BLOCK_CLS, DiffusionTransformerBlockStruct._default_construct)
|
2003 |
+
|
2004 |
+
UNetBlockStruct.register_factory(UNET_BLOCK_CLS, UNetBlockStruct._default_construct)
|
2005 |
+
|
2006 |
+
UNetStruct.register_factory(tp.Union[UNET_PIPELINE_CLS, UNET_CLS], UNetStruct._default_construct)
|
2007 |
+
|
2008 |
+
FluxStruct.register_factory(
|
2009 |
+
tp.Union[FluxPipeline, FluxKontextPipeline, FluxControlPipeline, FluxTransformer2DModel], FluxStruct._default_construct
|
2010 |
+
)
|
2011 |
+
|
2012 |
+
DiTStruct.register_factory(tp.Union[DIT_PIPELINE_CLS, DIT_CLS], DiTStruct._default_construct)
|
2013 |
+
|
2014 |
+
DiffusionTransformerStruct.register_factory(Transformer2DModel, DiffusionTransformerStruct._default_construct)
|
2015 |
+
|
2016 |
+
DiffusionModelStruct.register_factory(tp.Union[PIPELINE_CLS, MODEL_CLS], DiffusionModelStruct._default_construct)
|
2017 |
+
|
2018 |
+
# Register the factory (usually at the bottom of the file)
|
2019 |
+
DiffusionAttentionStruct.register_factory(ATTENTION_CLS, DiffusionAttentionStruct._default_construct)
|