lym00's picture
Upload struct.py
5f212ea verified
# -*- coding: utf-8 -*-
"""Utility functions for Diffusion Models."""
import enum
import typing as tp
from abc import abstractmethod
from collections import OrderedDict, defaultdict
from dataclasses import dataclass, field
# region imports
import torch.nn as nn
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU, SwiGLU
from diffusers.models.attention import BasicTransformerBlock, FeedForward, JointTransformerBlock
from diffusers.models.attention_processor import Attention, SanaLinearAttnProcessor2_0
from diffusers.models.embeddings import (
CombinedTimestepGuidanceTextProjEmbeddings,
CombinedTimestepTextProjEmbeddings,
ImageHintTimeEmbedding,
ImageProjection,
ImageTimeEmbedding,
PatchEmbed,
PixArtAlphaTextProjection,
TextImageProjection,
TextImageTimeEmbedding,
TextTimeEmbedding,
TimestepEmbedding,
)
from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormSingle, AdaLayerNormZero
from diffusers.models.resnet import Downsample2D, ResnetBlock2D, Upsample2D
from diffusers.models.transformers.pixart_transformer_2d import PixArtTransformer2DModel
from diffusers.models.transformers.sana_transformer import GLUMBConv, SanaTransformer2DModel, SanaTransformerBlock
from diffusers.models.transformers.transformer_2d import Transformer2DModel
from diffusers.models.transformers.transformer_flux import (
FluxSingleTransformerBlock,
FluxTransformer2DModel,
FluxTransformerBlock,
FluxAttention
)
from diffusers.models.transformers.transformer_sd3 import SD3Transformer2DModel
from diffusers.models.unets.unet_2d import UNet2DModel
from diffusers.models.unets.unet_2d_blocks import (
CrossAttnDownBlock2D,
CrossAttnUpBlock2D,
DownBlock2D,
UNetMidBlock2D,
UNetMidBlock2DCrossAttn,
UpBlock2D,
)
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.pipelines import (
FluxControlPipeline,
FluxFillPipeline,
FluxPipeline,
FluxKontextPipeline,
PixArtAlphaPipeline,
PixArtSigmaPipeline,
SanaPipeline,
StableDiffusion3Pipeline,
StableDiffusionPipeline,
StableDiffusionXLPipeline,
)
from deepcompressor.nn.patch.conv import ConcatConv2d, ShiftedConv2d
from deepcompressor.nn.patch.linear import ConcatLinear, ShiftedLinear
from deepcompressor.nn.struct.attn import (
AttentionConfigStruct,
AttentionStruct,
BaseTransformerStruct,
FeedForwardConfigStruct,
FeedForwardStruct,
TransformerBlockStruct,
)
from deepcompressor.nn.struct.base import BaseModuleStruct
from deepcompressor.utils.common import join_name
from .attention import DiffusionAttentionProcessor
# endregion
__all__ = ["DiffusionModelStruct", "DiffusionBlockStruct", "DiffusionModelStruct"]
DIT_BLOCK_CLS = tp.Union[
BasicTransformerBlock,
JointTransformerBlock,
FluxSingleTransformerBlock,
FluxTransformerBlock,
SanaTransformerBlock,
]
UNET_BLOCK_CLS = tp.Union[
DownBlock2D,
CrossAttnDownBlock2D,
UNetMidBlock2D,
UNetMidBlock2DCrossAttn,
UpBlock2D,
CrossAttnUpBlock2D,
]
DIT_CLS = tp.Union[
Transformer2DModel,
PixArtTransformer2DModel,
SD3Transformer2DModel,
FluxTransformer2DModel,
SanaTransformer2DModel,
]
UNET_CLS = tp.Union[UNet2DModel, UNet2DConditionModel]
MODEL_CLS = tp.Union[DIT_CLS, UNET_CLS]
UNET_PIPELINE_CLS = tp.Union[StableDiffusionPipeline, StableDiffusionXLPipeline]
DIT_PIPELINE_CLS = tp.Union[
StableDiffusion3Pipeline,
PixArtAlphaPipeline,
PixArtSigmaPipeline,
FluxPipeline,
FluxKontextPipeline,
FluxControlPipeline,
FluxFillPipeline,
SanaPipeline,
]
PIPELINE_CLS = tp.Union[UNET_PIPELINE_CLS, DIT_PIPELINE_CLS]
ATTENTION_CLS = tp.Union[
# existing types...
FluxAttention,
]
@dataclass(kw_only=True)
class DiffusionModuleStruct(BaseModuleStruct):
def named_key_modules(self) -> tp.Generator[tuple[str, str, nn.Module, BaseModuleStruct, str], None, None]:
if isinstance(self.module, (nn.Linear, nn.Conv2d)):
yield self.key, self.name, self.module, self.parent, self.fname
else:
for name, module in self.module.named_modules():
if name and isinstance(module, (nn.Linear, nn.Conv2d)):
module_name = join_name(self.name, name)
field_name = join_name(self.fname, name)
yield self.key, module_name, module, self.parent, field_name
@dataclass(kw_only=True)
class DiffusionBlockStruct(BaseModuleStruct):
@abstractmethod
def iter_attention_structs(self) -> tp.Generator["DiffusionAttentionStruct", None, None]: ...
@abstractmethod
def iter_transformer_block_structs(self) -> tp.Generator["DiffusionTransformerBlockStruct", None, None]: ...
@dataclass(kw_only=True)
class DiffusionModelStruct(DiffusionBlockStruct):
pre_module_structs: OrderedDict[str, DiffusionModuleStruct] = field(init=False, repr=False)
post_module_structs: OrderedDict[str, DiffusionModuleStruct] = field(init=False, repr=False)
@property
@abstractmethod
def num_blocks(self) -> int: ...
@property
@abstractmethod
def block_structs(self) -> list[DiffusionBlockStruct]: ...
@abstractmethod
def get_prev_module_keys(self) -> tuple[str, ...]: ...
@abstractmethod
def get_post_module_keys(self) -> tuple[str, ...]: ...
@abstractmethod
def _get_iter_block_activations_args(
self, **input_kwargs
) -> tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]: ...
def _get_iter_pre_module_activations_args(
self,
) -> tuple[list[nn.Module], list[DiffusionModuleStruct], list[bool], list[bool]]:
layers, layer_structs, recomputes, use_prev_layer_outputs = [], [], [], []
for layer_struct in self.pre_module_structs.values():
layers.append(layer_struct.module)
layer_structs.append(layer_struct)
recomputes.append(False)
use_prev_layer_outputs.append(False)
return layers, layer_structs, recomputes, use_prev_layer_outputs
def _get_iter_post_module_activations_args(
self,
) -> tuple[list[nn.Module], list[DiffusionModuleStruct], list[bool], list[bool]]:
layers, layer_structs, recomputes, use_prev_layer_outputs = [], [], [], []
for layer_struct in self.post_module_structs.values():
layers.append(layer_struct.module)
layer_structs.append(layer_struct)
recomputes.append(False)
use_prev_layer_outputs.append(False)
return layers, layer_structs, recomputes, use_prev_layer_outputs
def get_iter_layer_activations_args(
self, skip_pre_modules: bool, skip_post_modules: bool, **input_kwargs
) -> tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]:
"""
Get the arguments for iterating over the layers and their activations.
Args:
skip_pre_modules (`bool`):
Whether to skip the pre-modules
skip_post_modules (`bool`):
Whether to skip the post-modules
Returns:
`tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]`:
the layers, the layer structs, the recomputes, and the use_prev_layer_outputs
"""
layers, structs, recomputes, uses = [], [], [], []
if not skip_pre_modules:
layers, structs, recomputes, uses = self._get_iter_pre_module_activations_args()
_layers, _structs, _recomputes, _uses = self._get_iter_block_activations_args(**input_kwargs)
layers.extend(_layers)
structs.extend(_structs)
recomputes.extend(_recomputes)
uses.extend(_uses)
if not skip_post_modules:
_layers, _structs, _recomputes, _uses = self._get_iter_post_module_activations_args()
layers.extend(_layers)
structs.extend(_structs)
recomputes.extend(_recomputes)
uses.extend(_uses)
return layers, structs, recomputes, uses
def named_key_modules(self) -> tp.Generator[tp.Tuple[str, str, nn.Module, BaseModuleStruct, str], None, None]:
for module in self.pre_module_structs.values():
yield from module.named_key_modules()
for block in self.block_structs:
yield from block.named_key_modules()
for module in self.post_module_structs.values():
yield from module.named_key_modules()
def iter_attention_structs(self) -> tp.Generator["AttentionStruct", None, None]:
for block in self.block_structs:
yield from block.iter_attention_structs()
def iter_transformer_block_structs(self) -> tp.Generator["DiffusionTransformerBlockStruct", None, None]:
for block in self.block_structs:
yield from block.iter_transformer_block_structs()
def get_named_layers(
self, skip_pre_modules: bool, skip_post_modules: bool, skip_blocks: bool = False
) -> OrderedDict[str, DiffusionBlockStruct | DiffusionModuleStruct]:
named_layers = OrderedDict()
if not skip_pre_modules:
named_layers.update(self.pre_module_structs)
if not skip_blocks:
for block in self.block_structs:
named_layers[block.name] = block
if not skip_post_modules:
named_layers.update(self.post_module_structs)
return named_layers
@staticmethod
def _default_construct(
module: tp.Union[PIPELINE_CLS, MODEL_CLS],
/,
parent: tp.Optional[BaseModuleStruct] = None,
fname: str = "",
rname: str = "",
rkey: str = "",
idx: int = 0,
**kwargs,
) -> "DiffusionModelStruct":
if isinstance(module, UNET_PIPELINE_CLS):
module = module.unet
elif isinstance(module, DIT_PIPELINE_CLS):
module = module.transformer
if isinstance(module, UNET_CLS):
return UNetStruct.construct(module, parent=parent, fname=fname, rname=rname, rkey=rkey, idx=idx, **kwargs)
elif isinstance(module, DIT_CLS):
return DiTStruct.construct(module, parent=parent, fname=fname, rname=rname, rkey=rkey, idx=idx, **kwargs)
raise NotImplementedError(f"Unsupported module type: {type(module)}")
@classmethod
def _get_default_key_map(cls) -> dict[str, set[str]]:
unet_key_map = UNetStruct._get_default_key_map()
dit_key_map = DiTStruct._get_default_key_map()
flux_key_map = FluxStruct._get_default_key_map()
key_map: dict[str, set[str]] = defaultdict(set)
for rkey, keys in unet_key_map.items():
key_map[rkey].update(keys)
for rkey, keys in dit_key_map.items():
key_map[rkey].update(keys)
for rkey, keys in flux_key_map.items():
key_map[rkey].update(keys)
return {k: v for k, v in key_map.items() if v}
@staticmethod
def _simplify_keys(keys: tp.Iterable[str], *, key_map: dict[str, set[str]]) -> list[str]:
"""Simplify the keys based on the key map.
Args:
keys (`Iterable[str]`):
The keys to simplify.
key_map (`dict[str, set[str]]`):
The key map.
Returns:
`list[str]`:
The simplified keys.
"""
# we first sort key_map by length of values in descending order
key_map = dict(sorted(key_map.items(), key=lambda item: len(item[1]), reverse=True))
ukeys, skeys = set(keys), set()
for k, v in key_map.items():
if k in ukeys:
skeys.add(k)
ukeys.discard(k)
ukeys.difference_update(v)
continue
if ukeys.issuperset(v):
skeys.add(k)
ukeys.difference_update(v)
assert not ukeys, f"Unrecognized keys: {ukeys}"
return sorted(skeys)
@dataclass(kw_only=True)
class DiffusionAttentionStruct(AttentionStruct):
module: Attention = field(repr=False, kw_only=False)
"""the module of AttentionBlock"""
parent: tp.Optional["DiffusionTransformerBlockStruct"] = field(repr=False)
def filter_kwargs(self, kwargs: dict) -> dict:
"""Filter layer kwargs to attn kwargs."""
if isinstance(self.parent.module, BasicTransformerBlock):
if kwargs.get("cross_attention_kwargs", None) is None:
attn_kwargs = {}
else:
attn_kwargs = dict(kwargs["cross_attention_kwargs"].items())
attn_kwargs.pop("gligen", None)
if self.idx == 0:
attn_kwargs["attention_mask"] = kwargs.get("attention_mask", None)
else:
attn_kwargs["attention_mask"] = kwargs.get("encoder_attention_mask", None)
else:
attn_kwargs = {}
return attn_kwargs
@staticmethod
def _default_construct(
module: Attention,
/,
parent: tp.Optional["DiffusionTransformerBlockStruct"] = None,
fname: str = "",
rname: str = "",
rkey: str = "",
idx: int = 0,
**kwargs,
) -> "DiffusionAttentionStruct":
if isinstance(module, FluxAttention):
# FluxAttention has different attribute names than standard attention
with_rope = True
num_query_heads = module.heads # FluxAttention uses 'heads', not 'num_heads'
num_key_value_heads = module.heads # FLUX typically uses same for q/k/v
# FluxAttention doesn't have 'to_out', but may have other output projections
# Check what output projection attributes actually exist
o_proj = None
o_proj_rname = ""
# Try to find the correct output projection
if hasattr(module, 'to_out') and module.to_out is not None:
o_proj = module.to_out[0] if isinstance(module.to_out, (list, tuple)) else module.to_out
o_proj_rname = "to_out.0" if isinstance(module.to_out, (list, tuple)) else "to_out"
elif hasattr(module, 'to_add_out'):
o_proj = module.to_add_out
o_proj_rname = "to_add_out"
q_proj, k_proj, v_proj = module.to_q, module.to_k, module.to_v
q_proj_rname, k_proj_rname, v_proj_rname = "to_q", "to_k", "to_v"
q, k, v = module.to_q, module.to_k, module.to_v
q_rname, k_rname, v_rname = "to_q", "to_k", "to_v"
# Handle the add_* projections that FluxAttention has
add_q_proj = getattr(module, "add_q_proj", None)
add_k_proj = getattr(module, "add_k_proj", None)
add_v_proj = getattr(module, "add_v_proj", None)
add_o_proj = getattr(module, "to_add_out", None)
add_q_proj_rname = "add_q_proj" if add_q_proj else ""
add_k_proj_rname = "add_k_proj" if add_k_proj else ""
add_v_proj_rname = "add_v_proj" if add_v_proj else ""
add_o_proj_rname = "to_add_out" if add_o_proj else ""
kwargs = (
"encoder_hidden_states",
"attention_mask",
"image_rotary_emb",
)
cross_attention = add_k_proj is not None
elif module.is_cross_attention:
q_proj, k_proj, v_proj = module.to_q, None, None
add_q_proj, add_k_proj, add_v_proj, add_o_proj = None, module.to_k, module.to_v, None
q_proj_rname, k_proj_rname, v_proj_rname = "to_q", "", ""
add_q_proj_rname, add_k_proj_rname, add_v_proj_rname, add_o_proj_rname = "", "to_k", "to_v", ""
else:
q_proj, k_proj, v_proj = module.to_q, module.to_k, module.to_v
add_q_proj = getattr(module, "add_q_proj", None)
add_k_proj = getattr(module, "add_k_proj", None)
add_v_proj = getattr(module, "add_v_proj", None)
add_o_proj = getattr(module, "to_add_out", None)
q_proj_rname, k_proj_rname, v_proj_rname = "to_q", "to_k", "to_v"
add_q_proj_rname, add_k_proj_rname, add_v_proj_rname = "add_q_proj", "add_k_proj", "add_v_proj"
add_o_proj_rname = "to_add_out"
if getattr(module, "to_out", None) is not None:
o_proj = module.to_out[0]
o_proj_rname = "to_out.0"
assert isinstance(o_proj, nn.Linear)
elif parent is not None:
assert isinstance(parent.module, FluxSingleTransformerBlock)
assert isinstance(parent.module.proj_out, ConcatLinear)
assert len(parent.module.proj_out.linears) == 2
o_proj = parent.module.proj_out.linears[0]
o_proj_rname = ".proj_out.linears.0"
else:
raise RuntimeError("Cannot find the output projection.")
if isinstance(module.processor, DiffusionAttentionProcessor):
with_rope = module.processor.rope is not None
elif module.processor.__class__.__name__.startswith("Flux"):
with_rope = True
else:
with_rope = False # TODO: fix for other processors
config = AttentionConfigStruct(
hidden_size=q_proj.weight.shape[1],
add_hidden_size=add_k_proj.weight.shape[1] if add_k_proj is not None else 0,
inner_size=q_proj.weight.shape[0],
num_query_heads=module.heads,
num_key_value_heads=module.to_k.weight.shape[0] // (module.to_q.weight.shape[0] // module.heads),
with_qk_norm=module.norm_q is not None,
with_rope=with_rope,
linear_attn=isinstance(module.processor, SanaLinearAttnProcessor2_0),
)
return DiffusionAttentionStruct(
module=module,
parent=parent,
fname=fname,
idx=idx,
rname=rname,
rkey=rkey,
config=config,
q_proj=q_proj,
k_proj=k_proj,
v_proj=v_proj,
o_proj=o_proj,
add_q_proj=add_q_proj,
add_k_proj=add_k_proj,
add_v_proj=add_v_proj,
add_o_proj=add_o_proj,
q=None, # TODO: add q, k, v
k=None,
v=None,
q_proj_rname=q_proj_rname,
k_proj_rname=k_proj_rname,
v_proj_rname=v_proj_rname,
o_proj_rname=o_proj_rname,
add_q_proj_rname=add_q_proj_rname,
add_k_proj_rname=add_k_proj_rname,
add_v_proj_rname=add_v_proj_rname,
add_o_proj_rname=add_o_proj_rname,
q_rname="",
k_rname="",
v_rname="",
)
@dataclass(kw_only=True)
class DiffusionFeedForwardStruct(FeedForwardStruct):
module: FeedForward = field(repr=False, kw_only=False)
"""the module of FeedForward"""
parent: tp.Optional["DiffusionTransformerBlockStruct"] = field(repr=False)
# region modules
moe_gate: None = field(init=False, repr=False, default=None)
experts: list[nn.Module] = field(init=False, repr=False)
# endregion
# region names
moe_gate_rname: str = field(init=False, repr=False, default="")
experts_rname: str = field(init=False, repr=False, default="")
# endregion
# region aliases
@property
def up_proj(self) -> nn.Linear:
return self.up_projs[0]
@property
def down_proj(self) -> nn.Linear:
return self.down_projs[0]
@property
def up_proj_rname(self) -> str:
return self.up_proj_rnames[0]
@property
def down_proj_rname(self) -> str:
return self.down_proj_rnames[0]
@property
def up_proj_name(self) -> str:
return self.up_proj_names[0]
@property
def down_proj_name(self) -> str:
return self.down_proj_names[0]
# endregion
def __post_init__(self) -> None:
assert len(self.up_projs) == len(self.down_projs) == 1
assert len(self.up_proj_rnames) == len(self.down_proj_rnames) == 1
self.experts = [self.module]
super().__post_init__()
@staticmethod
def _default_construct(
module: FeedForward | FluxSingleTransformerBlock | GLUMBConv,
/,
parent: tp.Optional["DiffusionTransformerBlockStruct"] = None,
fname: str = "",
rname: str = "",
rkey: str = "",
idx: int = 0,
**kwargs,
) -> "DiffusionFeedForwardStruct":
if isinstance(module, FeedForward):
layer_1, layer_2 = module.net[0], module.net[2]
assert isinstance(layer_1, (GEGLU, GELU, ApproximateGELU, SwiGLU))
up_proj, up_proj_rname = layer_1.proj, "net.0.proj"
assert isinstance(up_proj, nn.Linear)
down_proj, down_proj_rname = layer_2, "net.2"
if isinstance(layer_1, GEGLU):
act_type = "gelu_glu"
elif isinstance(layer_1, SwiGLU):
act_type = "swish_glu"
else:
assert layer_1.__class__.__name__.lower().endswith("gelu")
act_type = "gelu"
if isinstance(layer_2, ShiftedLinear):
down_proj, down_proj_rname = layer_2.linear, "net.2.linear"
act_type = "gelu_shifted"
assert isinstance(down_proj, nn.Linear)
ffn = module
elif isinstance(module, FluxSingleTransformerBlock):
up_proj, up_proj_rname = module.proj_mlp, "proj_mlp"
act_type = "gelu"
assert isinstance(module.proj_out, ConcatLinear)
assert len(module.proj_out.linears) == 2
layer_2 = module.proj_out.linears[1]
if isinstance(layer_2, ShiftedLinear):
down_proj, down_proj_rname = layer_2.linear, "proj_out.linears.1.linear"
act_type = "gelu_shifted"
else:
down_proj, down_proj_rname = layer_2, "proj_out.linears.1"
ffn = nn.Sequential(up_proj, module.act_mlp, layer_2)
assert not rname, f"Unsupported rname: {rname}"
elif isinstance(module, GLUMBConv):
ffn = module
up_proj, up_proj_rname = module.conv_inverted, "conv_inverted"
down_proj, down_proj_rname = module.conv_point, "conv_point"
act_type = "silu_conv_silu_glu"
else:
raise NotImplementedError(f"Unsupported module type: {type(module)}")
config = FeedForwardConfigStruct(
hidden_size=up_proj.weight.shape[1],
intermediate_size=down_proj.weight.shape[1],
intermediate_act_type=act_type,
num_experts=1,
)
return DiffusionFeedForwardStruct(
module=ffn, # this may be a virtual module
parent=parent,
fname=fname,
idx=idx,
rname=rname,
rkey=rkey,
config=config,
up_projs=[up_proj],
down_projs=[down_proj],
up_proj_rnames=[up_proj_rname],
down_proj_rnames=[down_proj_rname],
)
@dataclass(kw_only=True)
class DiffusionTransformerBlockStruct(TransformerBlockStruct, DiffusionBlockStruct):
# region relative keys
norm_rkey: tp.ClassVar[str] = "transformer_norm"
add_norm_rkey: tp.ClassVar[str] = "transformer_add_norm"
attn_struct_cls: tp.ClassVar[type[DiffusionAttentionStruct]] = DiffusionAttentionStruct
ffn_struct_cls: tp.ClassVar[type[DiffusionFeedForwardStruct]] = DiffusionFeedForwardStruct
# endregion
parent: tp.Optional["DiffusionTransformerStruct"] = field(repr=False)
# region child modules
post_attn_norms: list[nn.LayerNorm] = field(init=False, repr=False, default_factory=list)
post_attn_add_norms: list[nn.LayerNorm] = field(init=False, repr=False, default_factory=list)
post_ffn_norm: None = field(init=False, repr=False, default=None)
post_add_ffn_norm: None = field(init=False, repr=False, default=None)
# endregion
# region relative names
post_attn_norm_rnames: list[str] = field(init=False, repr=False, default_factory=list)
post_attn_add_norm_rnames: list[str] = field(init=False, repr=False, default_factory=list)
post_ffn_norm_rname: str = field(init=False, repr=False, default="")
post_add_ffn_norm_rname: str = field(init=False, repr=False, default="")
# endregion
# region attributes
norm_type: str
add_norm_type: str
# endregion
# region absolute keys
norm_key: str = field(init=False, repr=False)
add_norm_key: str = field(init=False, repr=False)
# endregion
# region child structs
pre_attn_norm_structs: list[DiffusionModuleStruct | None] = field(init=False, repr=False)
pre_attn_add_norm_structs: list[DiffusionModuleStruct | None] = field(init=False, repr=False)
pre_ffn_norm_struct: DiffusionModuleStruct = field(init=False, repr=False, default=None)
pre_add_ffn_norm_struct: DiffusionModuleStruct | None = field(init=False, repr=False, default=None)
attn_structs: list[DiffusionAttentionStruct] = field(init=False, repr=False)
ffn_struct: DiffusionFeedForwardStruct | None = field(init=False, repr=False)
add_ffn_struct: DiffusionFeedForwardStruct | None = field(init=False, repr=False)
# endregion
def __post_init__(self) -> None:
super().__post_init__()
self.norm_key = join_name(self.key, self.norm_rkey, sep="_")
self.add_norm_key = join_name(self.key, self.add_norm_rkey, sep="_")
self.attn_norm_structs = [
DiffusionModuleStruct(norm, parent=self, fname="pre_attn_norm", rname=rname, rkey=self.norm_rkey, idx=idx)
for idx, (norm, rname) in enumerate(zip(self.pre_attn_norms, self.pre_attn_norm_rnames, strict=True))
]
self.add_attn_norm_structs = [
DiffusionModuleStruct(
norm, parent=self, fname="pre_attn_add_norm", rname=rname, rkey=self.add_norm_rkey, idx=idx
)
for idx, (norm, rname) in enumerate(
zip(self.pre_attn_add_norms, self.pre_attn_add_norm_rnames, strict=True)
)
]
if self.pre_ffn_norm is not None:
self.pre_ffn_norm_struct = DiffusionModuleStruct(
self.pre_ffn_norm, parent=self, fname="pre_ffn_norm", rname=self.pre_ffn_norm_rname, rkey=self.norm_rkey
)
if self.pre_add_ffn_norm is not None:
self.pre_add_ffn_norm_struct = DiffusionModuleStruct(
self.pre_add_ffn_norm,
parent=self,
fname="pre_add_ffn_norm",
rname=self.pre_add_ffn_norm_rname,
rkey=self.add_norm_rkey,
)
def named_key_modules(self) -> tp.Generator[tp.Tuple[str, str, nn.Module, BaseModuleStruct, str], None, None]:
for attn_norm in self.attn_norm_structs:
if attn_norm.module is not None:
yield from attn_norm.named_key_modules()
for add_attn_norm in self.add_attn_norm_structs:
if add_attn_norm.module is not None:
yield from add_attn_norm.named_key_modules()
for attn_struct in self.attn_structs:
yield from attn_struct.named_key_modules()
if self.pre_ffn_norm_struct is not None:
if self.pre_attn_norms and self.pre_attn_norms[0] is not self.pre_ffn_norm:
yield from self.pre_ffn_norm_struct.named_key_modules()
if self.ffn_struct is not None:
yield from self.ffn_struct.named_key_modules()
if self.pre_add_ffn_norm_struct is not None:
if self.pre_attn_add_norms and self.pre_attn_add_norms[0] is not self.pre_add_ffn_norm:
yield from self.pre_add_ffn_norm_struct.named_key_modules()
if self.add_ffn_struct is not None:
yield from self.add_ffn_struct.named_key_modules()
@staticmethod
def _default_construct(
module: DIT_BLOCK_CLS,
/,
parent: tp.Optional["DiffusionTransformerStruct"] = None,
fname: str = "",
rname: str = "",
rkey: str = "",
idx: int = 0,
**kwargs,
) -> "DiffusionTransformerBlockStruct":
if isinstance(module, (BasicTransformerBlock, SanaTransformerBlock)):
parallel = False
if isinstance(module, SanaTransformerBlock):
norm_type = add_norm_type = "ada_norm_single"
else:
norm_type = add_norm_type = module.norm_type
pre_attn_norms, pre_attn_norm_rnames = [], []
attns, attn_rnames = [], []
pre_attn_add_norms, pre_attn_add_norm_rnames = [], []
assert module.norm1 is not None
assert module.attn1 is not None
pre_attn_norms.append(module.norm1)
pre_attn_norm_rnames.append("norm1")
attns.append(module.attn1)
attn_rnames.append("attn1")
pre_attn_add_norms.append(module.attn1.norm_cross)
pre_attn_add_norm_rnames.append("attn1.norm_cross")
if module.attn2 is not None:
if norm_type == "ada_norm_single":
pre_attn_norms.append(None)
pre_attn_norm_rnames.append("")
else:
assert module.norm2 is not None
pre_attn_norms.append(module.norm2)
pre_attn_norm_rnames.append("norm2")
attns.append(module.attn2)
attn_rnames.append("attn2")
pre_attn_add_norms.append(module.attn2.norm_cross)
pre_attn_add_norm_rnames.append("attn2.norm_cross")
if norm_type == "ada_norm_single":
assert module.norm2 is not None
pre_ffn_norm, pre_ffn_norm_rname = module.norm2, "norm2"
else:
pre_ffn_norm, pre_ffn_norm_rname = module.norm3, "" if module.norm3 is None else "norm3"
ffn, ffn_rname = module.ff, "" if module.ff is None else "ff"
pre_add_ffn_norm, pre_add_ffn_norm_rname, add_ffn, add_ffn_rname = None, "", None, ""
elif isinstance(module, JointTransformerBlock):
parallel = False
norm_type = "ada_norm_zero"
pre_attn_norms, pre_attn_norm_rnames = [module.norm1], ["norm1"]
if isinstance(module.norm1_context, AdaLayerNormZero):
add_norm_type = "ada_norm_zero"
else:
add_norm_type = "ada_norm_continous"
pre_attn_add_norms, pre_attn_add_norm_rnames = [module.norm1_context], ["norm1_context"]
attns, attn_rnames = [module.attn], ["attn"]
pre_ffn_norm, pre_ffn_norm_rname = module.norm2, "norm2"
ffn, ffn_rname = module.ff, "ff"
pre_add_ffn_norm, pre_add_ffn_norm_rname = module.norm2_context, "norm2_context"
add_ffn, add_ffn_rname = module.ff_context, "ff_context"
elif isinstance(module, FluxSingleTransformerBlock):
parallel = True
norm_type = add_norm_type = "ada_norm_zero_single"
pre_attn_norms, pre_attn_norm_rnames = [module.norm], ["norm"]
attns, attn_rnames = [module.attn], ["attn"]
pre_attn_add_norms, pre_attn_add_norm_rnames = [], []
pre_ffn_norm, pre_ffn_norm_rname = module.norm, "norm"
ffn, ffn_rname = module, ""
pre_add_ffn_norm, pre_add_ffn_norm_rname, add_ffn, add_ffn_rname = None, "", None, ""
elif isinstance(module, FluxTransformerBlock):
parallel = False
norm_type = add_norm_type = "ada_norm_zero"
pre_attn_norms, pre_attn_norm_rnames = [module.norm1], ["norm1"]
attns, attn_rnames = [module.attn], ["attn"]
pre_attn_add_norms, pre_attn_add_norm_rnames = [module.norm1_context], ["norm1_context"]
pre_ffn_norm, pre_ffn_norm_rname = module.norm2, "norm2"
ffn, ffn_rname = module.ff, "ff"
pre_add_ffn_norm, pre_add_ffn_norm_rname = module.norm2_context, "norm2_context"
add_ffn, add_ffn_rname = module.ff_context, "ff_context"
else:
raise NotImplementedError(f"Unsupported module type: {type(module)}")
return DiffusionTransformerBlockStruct(
module=module,
parent=parent,
fname=fname,
idx=idx,
rname=rname,
rkey=rkey,
parallel=parallel,
pre_attn_norms=pre_attn_norms,
pre_attn_add_norms=pre_attn_add_norms,
attns=attns,
pre_ffn_norm=pre_ffn_norm,
ffn=ffn,
pre_add_ffn_norm=pre_add_ffn_norm,
add_ffn=add_ffn,
pre_attn_norm_rnames=pre_attn_norm_rnames,
pre_attn_add_norm_rnames=pre_attn_add_norm_rnames,
attn_rnames=attn_rnames,
pre_ffn_norm_rname=pre_ffn_norm_rname,
ffn_rname=ffn_rname,
pre_add_ffn_norm_rname=pre_add_ffn_norm_rname,
add_ffn_rname=add_ffn_rname,
norm_type=norm_type,
add_norm_type=add_norm_type,
)
@classmethod
def _get_default_key_map(cls) -> dict[str, set[str]]:
"""Get the default allowed keys."""
key_map: dict[str, set[str]] = defaultdict(set)
norm_rkey = norm_key = cls.norm_rkey
add_norm_rkey = add_norm_key = cls.add_norm_rkey
key_map[norm_rkey].add(norm_key)
key_map[add_norm_rkey].add(add_norm_key)
attn_cls = cls.attn_struct_cls
attn_key = attn_rkey = cls.attn_rkey
qkv_proj_key = qkv_proj_rkey = join_name(attn_key, attn_cls.qkv_proj_rkey, sep="_")
out_proj_key = out_proj_rkey = join_name(attn_key, attn_cls.out_proj_rkey, sep="_")
add_qkv_proj_key = add_qkv_proj_rkey = join_name(attn_key, attn_cls.add_qkv_proj_rkey, sep="_")
add_out_proj_key = add_out_proj_rkey = join_name(attn_key, attn_cls.add_out_proj_rkey, sep="_")
key_map[attn_rkey].add(qkv_proj_key)
key_map[attn_rkey].add(out_proj_key)
if attn_cls.add_qkv_proj_rkey.startswith("add_") and attn_cls.add_out_proj_rkey.startswith("add_"):
add_attn_rkey = join_name(attn_rkey, "add", sep="_")
key_map[add_attn_rkey].add(add_qkv_proj_key)
key_map[add_attn_rkey].add(add_out_proj_key)
key_map[qkv_proj_rkey].add(qkv_proj_key)
key_map[out_proj_rkey].add(out_proj_key)
key_map[add_qkv_proj_rkey].add(add_qkv_proj_key)
key_map[add_out_proj_rkey].add(add_out_proj_key)
ffn_cls = cls.ffn_struct_cls
ffn_key = ffn_rkey = cls.ffn_rkey
add_ffn_key = add_ffn_rkey = cls.add_ffn_rkey
up_proj_key = up_proj_rkey = join_name(ffn_key, ffn_cls.up_proj_rkey, sep="_")
down_proj_key = down_proj_rkey = join_name(ffn_key, ffn_cls.down_proj_rkey, sep="_")
add_up_proj_key = add_up_proj_rkey = join_name(add_ffn_key, ffn_cls.up_proj_rkey, sep="_")
add_down_proj_key = add_down_proj_rkey = join_name(add_ffn_key, ffn_cls.down_proj_rkey, sep="_")
key_map[ffn_rkey].add(up_proj_key)
key_map[ffn_rkey].add(down_proj_key)
key_map[add_ffn_rkey].add(add_up_proj_key)
key_map[add_ffn_rkey].add(add_down_proj_key)
key_map[up_proj_rkey].add(up_proj_key)
key_map[down_proj_rkey].add(down_proj_key)
key_map[add_up_proj_rkey].add(add_up_proj_key)
key_map[add_down_proj_rkey].add(add_down_proj_key)
return {k: v for k, v in key_map.items() if v}
@dataclass(kw_only=True)
class DiffusionTransformerStruct(BaseTransformerStruct, DiffusionBlockStruct):
# region relative keys
proj_in_rkey: tp.ClassVar[str] = "transformer_proj_in"
proj_out_rkey: tp.ClassVar[str] = "transformer_proj_out"
transformer_block_rkey: tp.ClassVar[str] = ""
transformer_block_struct_cls: tp.ClassVar[type[DiffusionTransformerBlockStruct]] = DiffusionTransformerBlockStruct
# endregion
module: Transformer2DModel = field(repr=False, kw_only=False)
# region modules
norm_in: nn.GroupNorm | None
"""Input normalization"""
proj_in: nn.Linear | nn.Conv2d
"""Input projection"""
norm_out: nn.GroupNorm | None
"""Output normalization"""
proj_out: nn.Linear | nn.Conv2d
"""Output projection"""
transformer_blocks: nn.ModuleList = field(repr=False)
"""Transformer blocks"""
# endregion
# region relative names
transformer_blocks_rname: str
# endregion
# region absolute names
transformer_blocks_name: str = field(init=False, repr=False)
transformer_block_names: list[str] = field(init=False, repr=False)
# endregion
# region child structs
transformer_block_structs: list[DiffusionTransformerBlockStruct] = field(init=False, repr=False)
# endregion
# region aliases
@property
def num_blocks(self) -> int:
return len(self.transformer_blocks)
@property
def block_structs(self) -> list[DiffusionBlockStruct]:
return self.transformer_block_structs
@property
def block_names(self) -> list[str]:
return self.transformer_block_names
# endregion
def __post_init__(self):
super().__post_init__()
transformer_block_rnames = [
f"{self.transformer_blocks_rname}.{idx}" for idx in range(len(self.transformer_blocks))
]
self.transformer_blocks_name = join_name(self.name, self.transformer_blocks_rname)
self.transformer_block_names = [join_name(self.name, rname) for rname in transformer_block_rnames]
self.transformer_block_structs = [
self.transformer_block_struct_cls.construct(
layer,
parent=self,
fname="transformer_block",
rname=rname,
rkey=self.transformer_block_rkey,
idx=idx,
)
for idx, (layer, rname) in enumerate(zip(self.transformer_blocks, transformer_block_rnames, strict=True))
]
@staticmethod
def _default_construct(
module: Transformer2DModel,
/,
parent: BaseModuleStruct = None,
fname: str = "",
rname: str = "",
rkey: str = "",
idx: int = 0,
**kwargs,
) -> "DiffusionTransformerStruct":
if isinstance(module, Transformer2DModel):
assert module.is_input_continuous, "input must be continuous"
transformer_blocks, transformer_blocks_rname = module.transformer_blocks, "transformer_blocks"
norm_in, norm_in_rname = module.norm, "norm"
proj_in, proj_in_rname = module.proj_in, "proj_in"
proj_out, proj_out_rname = module.proj_out, "proj_out"
norm_out, norm_out_rname = None, ""
else:
raise NotImplementedError(f"Unsupported module type: {type(module)}")
return DiffusionTransformerStruct(
module=module,
parent=parent,
fname=fname,
idx=idx,
rname=rname,
rkey=rkey,
norm_in=norm_in,
proj_in=proj_in,
transformer_blocks=transformer_blocks,
proj_out=proj_out,
norm_out=norm_out,
norm_in_rname=norm_in_rname,
proj_in_rname=proj_in_rname,
transformer_blocks_rname=transformer_blocks_rname,
norm_out_rname=norm_out_rname,
proj_out_rname=proj_out_rname,
)
@classmethod
def _get_default_key_map(cls) -> dict[str, set[str]]:
"""Get the default allowed keys."""
key_map: dict[str, set[str]] = defaultdict(set)
proj_in_rkey = proj_in_key = cls.proj_in_rkey
proj_out_rkey = proj_out_key = cls.proj_out_rkey
key_map[proj_in_rkey].add(proj_in_key)
key_map[proj_out_rkey].add(proj_out_key)
block_cls = cls.transformer_block_struct_cls
block_key = block_rkey = cls.transformer_block_rkey
block_key_map = block_cls._get_default_key_map()
for rkey, keys in block_key_map.items():
rkey = join_name(block_rkey, rkey, sep="_")
for key in keys:
key = join_name(block_key, key, sep="_")
key_map[rkey].add(key)
return {k: v for k, v in key_map.items() if v}
@dataclass(kw_only=True)
class DiffusionResnetStruct(BaseModuleStruct):
# region relative keys
conv_rkey: tp.ClassVar[str] = "conv"
shortcut_rkey: tp.ClassVar[str] = "shortcut"
time_proj_rkey: tp.ClassVar[str] = "time_proj"
# endregion
module: ResnetBlock2D = field(repr=False, kw_only=False)
"""the module of Resnet"""
config: FeedForwardConfigStruct
# region child modules
norms: list[nn.GroupNorm]
convs: list[list[nn.Conv2d]]
shortcut: nn.Conv2d | None
time_proj: nn.Linear | None
# endregion
# region relative names
norm_rnames: list[str]
conv_rnames: list[list[str]]
shortcut_rname: str
time_proj_rname: str
# endregion
# region absolute names
norm_names: list[str] = field(init=False, repr=False)
conv_names: list[list[str]] = field(init=False, repr=False)
shortcut_name: str = field(init=False, repr=False)
time_proj_name: str = field(init=False, repr=False)
# endregion
# region absolute keys
conv_key: str = field(init=False, repr=False)
shortcut_key: str = field(init=False, repr=False)
time_proj_key: str = field(init=False, repr=False)
# endregion
def __post_init__(self):
super().__post_init__()
self.norm_names = [join_name(self.name, rname) for rname in self.norm_rnames]
self.conv_names = [[join_name(self.name, rname) for rname in rnames] for rnames in self.conv_rnames]
self.shortcut_name = join_name(self.name, self.shortcut_rname)
self.time_proj_name = join_name(self.name, self.time_proj_rname)
self.conv_key = join_name(self.key, self.conv_rkey, sep="_")
self.shortcut_key = join_name(self.key, self.shortcut_rkey, sep="_")
self.time_proj_key = join_name(self.key, self.time_proj_rkey, sep="_")
def named_key_modules(self) -> tp.Generator[tp.Tuple[str, str, nn.Module, BaseModuleStruct, str], None, None]:
for convs, names in zip(self.convs, self.conv_names, strict=True):
for conv, name in zip(convs, names, strict=True):
yield self.conv_key, name, conv, self, "conv"
if self.shortcut is not None:
yield self.shortcut_key, self.shortcut_name, self.shortcut, self, "shortcut"
if self.time_proj is not None:
yield self.time_proj_key, self.time_proj_name, self.time_proj, self, "time_proj"
@staticmethod
def construct(
module: ResnetBlock2D,
/,
parent: BaseModuleStruct = None,
fname: str = "",
rname: str = "",
rkey: str = "",
idx: int = 0,
**kwargs,
) -> "DiffusionResnetStruct":
if isinstance(module, ResnetBlock2D):
assert module.upsample is None, "upsample must be None"
assert module.downsample is None, "downsample must be None"
act_type = module.nonlinearity.__class__.__name__.lower()
shifted = False
if isinstance(module.conv1, ConcatConv2d):
conv1_convs, conv1_names = [], []
for conv_idx, conv in enumerate(module.conv1.convs):
if isinstance(conv, ShiftedConv2d):
shifted = True
conv1_convs.append(conv.conv)
conv1_names.append(f"conv1.convs.{conv_idx}.conv")
else:
assert isinstance(conv, nn.Conv2d)
conv1_convs.append(conv)
conv1_names.append(f"conv1.convs.{conv_idx}")
elif isinstance(module.conv1, ShiftedConv2d):
shifted = True
conv1_convs = [module.conv1.conv]
conv1_names = ["conv1.conv"]
else:
assert isinstance(module.conv1, nn.Conv2d)
conv1_convs, conv1_names = [module.conv1], ["conv1"]
if isinstance(module.conv2, ConcatConv2d):
conv2_convs, conv2_names = [], []
for conv_idx, conv in enumerate(module.conv2.convs):
if isinstance(conv, ShiftedConv2d):
shifted = True
conv2_convs.append(conv.conv)
conv2_names.append(f"conv2.convs.{conv_idx}.conv")
else:
assert isinstance(conv, nn.Conv2d)
conv2_convs.append(conv)
conv2_names.append(f"conv2.convs.{conv_idx}")
elif isinstance(module.conv2, ShiftedConv2d):
shifted = True
conv2_convs = [module.conv2.conv]
conv2_names = ["conv2.conv"]
else:
assert isinstance(module.conv2, nn.Conv2d)
conv2_convs, conv2_names = [module.conv2], ["conv2"]
convs, conv_rnames = [conv1_convs, conv2_convs], [conv1_names, conv2_names]
norms, norm_rnames = [module.norm1, module.norm2], ["norm1", "norm2"]
shortcut, shortcut_rname = module.conv_shortcut, "" if module.conv_shortcut is None else "conv_shortcut"
time_proj, time_proj_rname = module.time_emb_proj, "" if module.time_emb_proj is None else "time_emb_proj"
if shifted:
assert all(hasattr(conv, "shifted") and conv.shifted for level_convs in convs for conv in level_convs)
act_type += "_shifted"
else:
raise NotImplementedError(f"Unsupported module type: {type(module)}")
config = FeedForwardConfigStruct(
hidden_size=convs[0][0].weight.shape[1],
intermediate_size=convs[0][0].weight.shape[0],
intermediate_act_type=act_type,
num_experts=1,
)
return DiffusionResnetStruct(
module=module,
parent=parent,
fname=fname,
idx=idx,
rname=rname,
rkey=rkey,
config=config,
norms=norms,
convs=convs,
shortcut=shortcut,
time_proj=time_proj,
norm_rnames=norm_rnames,
conv_rnames=conv_rnames,
shortcut_rname=shortcut_rname,
time_proj_rname=time_proj_rname,
)
@classmethod
def _get_default_key_map(cls) -> dict[str, set[str]]:
"""Get the default allowed keys."""
key_map: dict[str, set[str]] = defaultdict(set)
conv_key = conv_rkey = cls.conv_rkey
shortcut_key = shortcut_rkey = cls.shortcut_rkey
time_proj_key = time_proj_rkey = cls.time_proj_rkey
key_map[conv_rkey].add(conv_key)
key_map[shortcut_rkey].add(shortcut_key)
key_map[time_proj_rkey].add(time_proj_key)
return {k: v for k, v in key_map.items() if v}
@dataclass(kw_only=True)
class UNetBlockStruct(DiffusionBlockStruct):
class BlockType(enum.StrEnum):
DOWN = "down"
MID = "mid"
UP = "up"
# region relative keys
resnet_rkey: tp.ClassVar[str] = "resblock"
sampler_rkey: tp.ClassVar[str] = "sample"
transformer_rkey: tp.ClassVar[str] = ""
resnet_struct_cls: tp.ClassVar[type[DiffusionResnetStruct]] = DiffusionResnetStruct
transformer_struct_cls: tp.ClassVar[type[DiffusionTransformerStruct]] = DiffusionTransformerStruct
# endregion
parent: tp.Optional["UNetStruct"] = field(repr=False)
# region attributes
block_type: BlockType
# endregion
# region modules
resnets: nn.ModuleList = field(repr=False)
transformers: nn.ModuleList = field(repr=False)
sampler: nn.Conv2d | None
# endregion
# region relative names
resnets_rname: str
transformers_rname: str
sampler_rname: str
# endregion
# region absolute names
resnets_name: str = field(init=False, repr=False)
transformers_name: str = field(init=False, repr=False)
sampler_name: str = field(init=False, repr=False)
resnet_names: list[str] = field(init=False, repr=False)
transformer_names: list[str] = field(init=False, repr=False)
# endregion
# region absolute keys
sampler_key: str = field(init=False, repr=False)
# endregion
# region child structs
resnet_structs: list[DiffusionResnetStruct] = field(init=False, repr=False)
transformer_structs: list[DiffusionTransformerStruct] = field(init=False, repr=False)
# endregion
@property
def downsample(self) -> nn.Conv2d | None:
return self.sampler if self.is_downsample_block() else None
@property
def upsample(self) -> nn.Conv2d | None:
return self.sampler if self.is_upsample_block() else None
def __post_init__(self) -> None:
super().__post_init__()
if self.is_downsample_block():
assert len(self.resnets) == len(self.transformers) or len(self.transformers) == 0
if self.parent is not None and isinstance(self.parent, UNetStruct):
assert self.rname == f"{self.parent.down_blocks_rname}.{self.idx}"
elif self.is_mid_block():
assert len(self.resnets) == len(self.transformers) + 1 or len(self.transformers) == 0
if self.parent is not None and isinstance(self.parent, UNetStruct):
assert self.rname == self.parent.mid_block_name
assert self.idx == 0
else:
assert self.is_upsample_block(), f"Unsupported block type: {self.block_type}"
assert len(self.resnets) == len(self.transformers) or len(self.transformers) == 0
if self.parent is not None and isinstance(self.parent, UNetStruct):
assert self.rname == f"{self.parent.up_blocks_rname}.{self.idx}"
resnet_rnames = [f"{self.resnets_rname}.{idx}" for idx in range(len(self.resnets))]
transformer_rnames = [f"{self.transformers_rname}.{idx}" for idx in range(len(self.transformers))]
self.resnets_name = join_name(self.name, self.resnets_rname)
self.transformers_name = join_name(self.name, self.transformers_rname)
self.resnet_names = [join_name(self.name, rname) for rname in resnet_rnames]
self.transformer_names = [join_name(self.name, rname) for rname in transformer_rnames]
self.sampler_name = join_name(self.name, self.sampler_rname)
self.sampler_key = join_name(self.key, self.sampler_rkey, sep="_")
self.resnet_structs = [
self.resnet_struct_cls.construct(
resnet, parent=self, fname="resnet", rname=rname, rkey=self.resnet_rkey, idx=idx
)
for idx, (resnet, rname) in enumerate(zip(self.resnets, resnet_rnames, strict=True))
]
self.transformer_structs = [
self.transformer_struct_cls.construct(
transformer, parent=self, fname="transformer", rname=rname, rkey=self.transformer_rkey, idx=idx
)
for idx, (transformer, rname) in enumerate(zip(self.transformers, transformer_rnames, strict=True))
]
def is_downsample_block(self) -> bool:
return self.block_type == self.BlockType.DOWN
def is_mid_block(self) -> bool:
return self.block_type == self.BlockType.MID
def is_upsample_block(self) -> bool:
return self.block_type == self.BlockType.UP
def has_downsample(self) -> bool:
return self.is_downsample_block() and self.sampler is not None
def has_upsample(self) -> bool:
return self.is_upsample_block() and self.sampler is not None
def named_key_modules(self) -> tp.Generator[tp.Tuple[str, str, nn.Module, BaseModuleStruct, str], None, None]:
for resnet in self.resnet_structs:
yield from resnet.named_key_modules()
for transformer in self.transformer_structs:
yield from transformer.named_key_modules()
if self.sampler is not None:
yield self.sampler_key, self.sampler_name, self.sampler, self, "sampler"
def iter_attention_structs(self) -> tp.Generator[DiffusionAttentionStruct, None, None]:
for transformer in self.transformer_structs:
yield from transformer.iter_attention_structs()
def iter_transformer_block_structs(self) -> tp.Generator[DiffusionTransformerBlockStruct, None, None]:
for transformer in self.transformer_structs:
yield from transformer.iter_transformer_block_structs()
@staticmethod
def _default_construct(
module: UNET_BLOCK_CLS,
/,
parent: tp.Optional["UNetStruct"] = None,
fname: str = "",
rname: str = "",
rkey: str = "",
idx: int = 0,
**kwargs,
) -> "UNetBlockStruct":
resnets, resnets_rname = module.resnets, "resnets"
if isinstance(module, (DownBlock2D, CrossAttnDownBlock2D)):
block_type = UNetBlockStruct.BlockType.DOWN
if isinstance(module, CrossAttnDownBlock2D) and module.attentions is not None:
transformers, transformers_rname = module.attentions, "attentions"
else:
transformers, transformers_rname = [], ""
if module.downsamplers is None:
sampler, sampler_rname = None, ""
else:
assert len(module.downsamplers) == 1
downsampler = module.downsamplers[0]
assert isinstance(downsampler, Downsample2D)
sampler, sampler_rname = downsampler.conv, "downsamplers.0.conv"
assert isinstance(sampler, nn.Conv2d)
elif isinstance(module, (UNetMidBlock2D, UNetMidBlock2DCrossAttn)):
block_type = UNetBlockStruct.BlockType.MID
if (isinstance(module, UNetMidBlock2DCrossAttn) or module.add_attention) and module.attentions is not None:
transformers, transformers_rname = module.attentions, "attentions"
else:
transformers, transformers_rname = [], ""
sampler, sampler_rname = None, ""
elif isinstance(module, (UpBlock2D, CrossAttnUpBlock2D)):
block_type = UNetBlockStruct.BlockType.UP
if isinstance(module, CrossAttnUpBlock2D) and module.attentions is not None:
transformers, transformers_rname = module.attentions, "attentions"
else:
transformers, transformers_rname = [], ""
if module.upsamplers is None:
sampler, sampler_rname = None, ""
else:
assert len(module.upsamplers) == 1
upsampler = module.upsamplers[0]
assert isinstance(upsampler, Upsample2D)
sampler, sampler_rname = upsampler.conv, "upsamplers.0.conv"
assert isinstance(sampler, nn.Conv2d)
else:
raise NotImplementedError(f"Unsupported module type: {type(module)}")
return UNetBlockStruct(
module=module,
parent=parent,
fname=fname,
idx=idx,
rname=rname,
rkey=rkey,
block_type=block_type,
resnets=resnets,
transformers=transformers,
sampler=sampler,
resnets_rname=resnets_rname,
transformers_rname=transformers_rname,
sampler_rname=sampler_rname,
)
@classmethod
def _get_default_key_map(cls) -> dict[str, set[str]]:
"""Get the default allowed keys."""
key_map: dict[str, set[str]] = defaultdict(set)
resnet_cls = cls.resnet_struct_cls
resnet_key = resnet_rkey = cls.resnet_rkey
resnet_key_map = resnet_cls._get_default_key_map()
for rkey, keys in resnet_key_map.items():
rkey = join_name(resnet_rkey, rkey, sep="_")
for key in keys:
key = join_name(resnet_key, key, sep="_")
key_map[rkey].add(key)
key_map[resnet_rkey].add(key)
transformer_cls = cls.transformer_struct_cls
transformer_key = transformer_rkey = cls.transformer_rkey
transformer_key_map = transformer_cls._get_default_key_map()
for rkey, keys in transformer_key_map.items():
trkey = join_name(transformer_rkey, rkey, sep="_")
for key in keys:
key = join_name(transformer_key, key, sep="_")
key_map[rkey].add(key)
key_map[trkey].add(key)
return {k: v for k, v in key_map.items() if v}
@dataclass(kw_only=True)
class UNetStruct(DiffusionModelStruct):
# region relative keys
input_embed_rkey: tp.ClassVar[str] = "input_embed"
"""hidden_states = input_embed(hidden_states), e.g., conv_in"""
time_embed_rkey: tp.ClassVar[str] = "time_embed"
"""temb = time_embed(timesteps, hidden_states)"""
add_time_embed_rkey: tp.ClassVar[str] = "time_embed"
"""add_temb = add_time_embed(timesteps, encoder_hidden_states)"""
text_embed_rkey: tp.ClassVar[str] = "text_embed"
"""encoder_hidden_states = text_embed(encoder_hidden_states)"""
norm_out_rkey: tp.ClassVar[str] = "output_embed"
"""hidden_states = norm_out(hidden_states), e.g., conv_norm_out"""
proj_out_rkey: tp.ClassVar[str] = "output_embed"
"""hidden_states = output_embed(hidden_states), e.g., conv_out"""
down_block_rkey: tp.ClassVar[str] = "down"
mid_block_rkey: tp.ClassVar[str] = "mid"
up_block_rkey: tp.ClassVar[str] = "up"
down_block_struct_cls: tp.ClassVar[type[UNetBlockStruct]] = UNetBlockStruct
mid_block_struct_cls: tp.ClassVar[type[UNetBlockStruct]] = UNetBlockStruct
up_block_struct_cls: tp.ClassVar[type[UNetBlockStruct]] = UNetBlockStruct
# endregion
# region child modules
# region pre-block modules
input_embed: nn.Conv2d
time_embed: TimestepEmbedding
"""Time embedding"""
add_time_embed: (
TextTimeEmbedding
| TextImageTimeEmbedding
| TimestepEmbedding
| ImageTimeEmbedding
| ImageHintTimeEmbedding
| None
)
"""Additional time embedding"""
text_embed: nn.Linear | ImageProjection | TextImageProjection | None
"""Text embedding"""
# region post-block modules
norm_out: nn.GroupNorm | None
proj_out: nn.Conv2d
# endregion
# endregion
down_blocks: nn.ModuleList = field(repr=False)
mid_block: nn.Module = field(repr=False)
up_blocks: nn.ModuleList = field(repr=False)
# endregion
# region relative names
input_embed_rname: str
time_embed_rname: str
add_time_embed_rname: str
text_embed_rname: str
norm_out_rname: str
proj_out_rname: str
down_blocks_rname: str
mid_block_rname: str
up_blocks_rname: str
# endregion
# region absolute names
input_embed_name: str = field(init=False, repr=False)
time_embed_name: str = field(init=False, repr=False)
add_time_embed_name: str = field(init=False, repr=False)
text_embed_name: str = field(init=False, repr=False)
norm_out_name: str = field(init=False, repr=False)
proj_out_name: str = field(init=False, repr=False)
down_blocks_name: str = field(init=False, repr=False)
mid_block_name: str = field(init=False, repr=False)
up_blocks_name: str = field(init=False, repr=False)
down_block_names: list[str] = field(init=False, repr=False)
up_block_names: list[str] = field(init=False, repr=False)
# endregion
# region absolute keys
input_embed_key: str = field(init=False, repr=False)
time_embed_key: str = field(init=False, repr=False)
add_time_embed_key: str = field(init=False, repr=False)
text_embed_key: str = field(init=False, repr=False)
norm_out_key: str = field(init=False, repr=False)
proj_out_key: str = field(init=False, repr=False)
# endregion
# region child structs
down_block_structs: list[UNetBlockStruct] = field(init=False, repr=False)
mid_block_struct: UNetBlockStruct = field(init=False, repr=False)
up_block_structs: list[UNetBlockStruct] = field(init=False, repr=False)
# endregion
@property
def num_down_blocks(self) -> int:
return len(self.down_blocks)
@property
def num_up_blocks(self) -> int:
return len(self.up_blocks)
@property
def num_blocks(self) -> int:
return self.num_down_blocks + 1 + self.num_up_blocks
@property
def block_structs(self) -> list[UNetBlockStruct]:
return [*self.down_block_structs, self.mid_block_struct, *self.up_block_structs]
def __post_init__(self) -> None:
super().__post_init__()
down_block_rnames = [f"{self.down_blocks_rname}.{idx}" for idx in range(len(self.down_blocks))]
up_block_rnames = [f"{self.up_blocks_rname}.{idx}" for idx in range(len(self.up_blocks))]
self.down_blocks_name = join_name(self.name, self.down_blocks_rname)
self.mid_block_name = join_name(self.name, self.mid_block_rname)
self.up_blocks_name = join_name(self.name, self.up_blocks_rname)
self.down_block_names = [join_name(self.name, rname) for rname in down_block_rnames]
self.up_block_names = [join_name(self.name, rname) for rname in up_block_rnames]
self.pre_module_structs = {}
for fname in ("time_embed", "add_time_embed", "text_embed", "input_embed"):
module, rname, rkey = getattr(self, fname), getattr(self, f"{fname}_rname"), getattr(self, f"{fname}_rkey")
setattr(self, f"{fname}_key", join_name(self.key, rkey, sep="_"))
if module is not None or rname:
setattr(self, f"{fname}_name", join_name(self.name, rname))
else:
setattr(self, f"{fname}_name", "")
if module is not None:
assert rname, f"rname of {fname} must not be empty"
self.pre_module_structs[getattr(self, f"{fname}_name")] = DiffusionModuleStruct(
module=module, parent=self, fname=fname, rname=rname, rkey=rkey
)
self.post_module_structs = {}
for fname in ("norm_out", "proj_out"):
module, rname, rkey = getattr(self, fname), getattr(self, f"{fname}_rname"), getattr(self, f"{fname}_rkey")
setattr(self, f"{fname}_key", join_name(self.key, rkey, sep="_"))
if module is not None or rname:
setattr(self, f"{fname}_name", join_name(self.name, rname))
else:
setattr(self, f"{fname}_name", "")
if module is not None:
self.post_module_structs[getattr(self, f"{fname}_name")] = DiffusionModuleStruct(
module=module, parent=self, fname=fname, rname=rname, rkey=rkey
)
self.down_block_structs = [
self.down_block_struct_cls.construct(
block, parent=self, fname="down_block", rname=rname, rkey=self.down_block_rkey, idx=idx
)
for idx, (block, rname) in enumerate(zip(self.down_blocks, down_block_rnames, strict=True))
]
self.mid_block_struct = self.mid_block_struct_cls.construct(
self.mid_block, parent=self, fname="mid_block", rname=self.mid_block_name, rkey=self.mid_block_rkey
)
self.up_block_structs = [
self.up_block_struct_cls.construct(
block, parent=self, fname="up_block", rname=rname, rkey=self.up_block_rkey, idx=idx
)
for idx, (block, rname) in enumerate(zip(self.up_blocks, up_block_rnames, strict=True))
]
def get_prev_module_keys(self) -> tuple[str, ...]:
return tuple({self.input_embed_key, self.time_embed_key, self.add_time_embed_key, self.text_embed_key})
def get_post_module_keys(self) -> tuple[str, ...]:
return tuple({self.norm_out_key, self.proj_out_key})
def _get_iter_block_activations_args(
self, **input_kwargs
) -> tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]:
layers, layer_structs, recomputes, use_prev_layer_outputs = [], [], [], []
num_down_blocks = len(self.down_blocks)
num_up_blocks = len(self.up_blocks)
layers.extend(self.down_blocks)
layer_structs.extend(self.down_block_structs)
use_prev_layer_outputs.append(False)
use_prev_layer_outputs.extend([True] * (num_down_blocks - 1))
recomputes.append(False)
# region check whether down block's outputs are changed
_mid_block_additional_residual = input_kwargs.get("mid_block_additional_residual", None)
_down_block_additional_residuals = input_kwargs.get("down_block_additional_residuals", None)
_is_adapter = input_kwargs.get("down_intrablock_additional_residuals", None) is not None
if not _is_adapter and _mid_block_additional_residual is None and _down_block_additional_residuals is not None:
_is_adapter = True
for down_block in self.down_blocks:
if hasattr(down_block, "has_cross_attention") and down_block.has_cross_attention:
# outputs unchanged
recomputes.append(False)
elif _is_adapter:
# outputs changed
recomputes.append(True)
else:
# outputs unchanged
recomputes.append(False)
# endregion
layers.append(self.mid_block)
layer_structs.append(self.mid_block_struct)
use_prev_layer_outputs.append(False)
# recomputes is already appened in the previous down blocks
layers.extend(self.up_blocks)
layer_structs.extend(self.up_block_structs)
use_prev_layer_outputs.append(False)
use_prev_layer_outputs.extend([True] * (num_up_blocks - 1))
recomputes += [True] * num_up_blocks
return layers, layer_structs, recomputes, use_prev_layer_outputs
@staticmethod
def _default_construct(
module: tp.Union[UNET_PIPELINE_CLS, UNET_CLS],
/,
parent: tp.Optional[BaseModuleStruct] = None,
fname: str = "",
rname: str = "",
rkey: str = "",
idx: int = 0,
**kwargs,
) -> "UNetStruct":
if isinstance(module, UNET_PIPELINE_CLS):
module = module.unet
if isinstance(module, (UNet2DConditionModel, UNet2DModel)):
input_embed, time_embed = module.conv_in, module.time_embedding
input_embed_rname, time_embed_rname = "conv_in", "time_embedding"
text_embed, text_embed_rname = None, ""
add_time_embed, add_time_embed_rname = None, ""
if hasattr(module, "encoder_hid_proj"):
text_embed, text_embed_rname = module.encoder_hid_proj, "encoder_hid_proj"
if hasattr(module, "add_embedding"):
add_time_embed, add_time_embed_rname = module.add_embedding, "add_embedding"
norm_out, norm_out_rname = module.conv_norm_out, "conv_norm_out"
proj_out, proj_out_rname = module.conv_out, "conv_out"
down_blocks, down_blocks_rname = module.down_blocks, "down_blocks"
mid_block, mid_block_rname = module.mid_block, "mid_block"
up_blocks, up_blocks_rname = module.up_blocks, "up_blocks"
return UNetStruct(
module=module,
parent=parent,
fname=fname,
idx=idx,
rname=rname,
rkey=rkey,
input_embed=input_embed,
time_embed=time_embed,
add_time_embed=add_time_embed,
text_embed=text_embed,
norm_out=norm_out,
proj_out=proj_out,
down_blocks=down_blocks,
mid_block=mid_block,
up_blocks=up_blocks,
input_embed_rname=input_embed_rname,
time_embed_rname=time_embed_rname,
add_time_embed_rname=add_time_embed_rname,
text_embed_rname=text_embed_rname,
norm_out_rname=norm_out_rname,
proj_out_rname=proj_out_rname,
down_blocks_rname=down_blocks_rname,
mid_block_rname=mid_block_rname,
up_blocks_rname=up_blocks_rname,
)
raise NotImplementedError(f"Unsupported module type: {type(module)}")
@classmethod
def _get_default_key_map(cls) -> dict[str, set[str]]:
"""Get the default allowed keys."""
key_map: dict[str, set[str]] = defaultdict(set)
for idx, (block_key, block_cls) in enumerate(
(
(cls.down_block_rkey, cls.down_block_struct_cls),
(cls.mid_block_rkey, cls.mid_block_struct_cls),
(cls.up_block_rkey, cls.up_block_struct_cls),
)
):
block_key_map: dict[str, set[str]] = defaultdict(set)
if idx != 1:
sampler_key = join_name(block_key, block_cls.sampler_rkey, sep="_")
sampler_rkey = block_cls.sampler_rkey
block_key_map[sampler_rkey].add(sampler_key)
_block_key_map = block_cls._get_default_key_map()
for rkey, keys in _block_key_map.items():
for key in keys:
key = join_name(block_key, key, sep="_")
block_key_map[rkey].add(key)
for rkey, keys in block_key_map.items():
key_map[rkey].update(keys)
if block_key:
key_map[block_key].update(keys)
keys: set[str] = set()
keys.add(cls.input_embed_rkey)
keys.add(cls.time_embed_rkey)
keys.add(cls.add_time_embed_rkey)
keys.add(cls.text_embed_rkey)
keys.add(cls.norm_out_rkey)
keys.add(cls.proj_out_rkey)
for mapped_keys in key_map.values():
for key in mapped_keys:
keys.add(key)
if "embed" not in keys and "embed" not in key_map:
key_map["embed"].add(cls.input_embed_rkey)
key_map["embed"].add(cls.time_embed_rkey)
key_map["embed"].add(cls.add_time_embed_rkey)
key_map["embed"].add(cls.text_embed_rkey)
key_map["embed"].add(cls.norm_out_rkey)
key_map["embed"].add(cls.proj_out_rkey)
for key in keys:
if key in key_map:
key_map[key].clear()
key_map[key].add(key)
return {k: v for k, v in key_map.items() if v}
@dataclass(kw_only=True)
class DiTStruct(DiffusionModelStruct, DiffusionTransformerStruct):
# region relative keys
input_embed_rkey: tp.ClassVar[str] = "input_embed"
"""hidden_states = input_embed(hidden_states), e.g., conv_in"""
time_embed_rkey: tp.ClassVar[str] = "time_embed"
"""temb = time_embed(timesteps)"""
text_embed_rkey: tp.ClassVar[str] = "text_embed"
"""encoder_hidden_states = text_embed(encoder_hidden_states)"""
norm_in_rkey: tp.ClassVar[str] = "input_embed"
"""hidden_states = norm_in(hidden_states)"""
proj_in_rkey: tp.ClassVar[str] = "input_embed"
"""hidden_states = proj_in(hidden_states)"""
norm_out_rkey: tp.ClassVar[str] = "output_embed"
"""hidden_states = norm_out(hidden_states)"""
proj_out_rkey: tp.ClassVar[str] = "output_embed"
"""hidden_states = proj_out(hidden_states)"""
transformer_block_rkey: tp.ClassVar[str] = ""
# endregion
# region child modules
input_embed: PatchEmbed
time_embed: AdaLayerNormSingle | CombinedTimestepTextProjEmbeddings | TimestepEmbedding
text_embed: PixArtAlphaTextProjection | nn.Linear
norm_in: None = field(init=False, repr=False, default=None)
proj_in: None = field(init=False, repr=False, default=None)
norm_out: nn.LayerNorm | AdaLayerNormContinuous | None
proj_out: nn.Linear
# endregion
# region relative names
input_embed_rname: str
time_embed_rname: str
text_embed_rname: str
norm_in_rname: str = field(init=False, repr=False, default="")
proj_in_rname: str = field(init=False, repr=False, default="")
norm_out_rname: str
proj_out_rname: str
# endregion
# region absolute names
input_embed_name: str = field(init=False, repr=False)
time_embed_name: str = field(init=False, repr=False)
text_embed_name: str = field(init=False, repr=False)
# endregion
# region absolute keys
input_embed_key: str = field(init=False, repr=False)
time_embed_key: str = field(init=False, repr=False)
text_embed_key: str = field(init=False, repr=False)
norm_out_key: str = field(init=False, repr=False)
# endregion
@property
def num_blocks(self) -> int:
return len(self.transformer_blocks)
@property
def block_structs(self) -> list[DiffusionTransformerBlockStruct]:
return self.transformer_block_structs
@property
def block_names(self) -> list[str]:
return self.transformer_block_names
def __post_init__(self) -> None:
super().__post_init__()
self.pre_module_structs = {}
for fname in ("input_embed", "time_embed", "text_embed"):
module, rname, rkey = getattr(self, fname), getattr(self, f"{fname}_rname"), getattr(self, f"{fname}_rkey")
setattr(self, f"{fname}_key", join_name(self.key, rkey, sep="_"))
if module is not None or rname:
setattr(self, f"{fname}_name", join_name(self.name, rname))
else:
setattr(self, f"{fname}_name", "")
if module is not None:
self.pre_module_structs.setdefault(
getattr(self, f"{fname}_name"),
DiffusionModuleStruct(module=module, parent=self, fname=fname, rname=rname, rkey=rkey),
)
self.post_module_structs = {}
self.norm_out_key = join_name(self.key, self.norm_out_rkey, sep="_")
for fname in ("norm_out", "proj_out"):
module, rname, rkey = getattr(self, fname), getattr(self, f"{fname}_rname"), getattr(self, f"{fname}_rkey")
if module is not None:
self.post_module_structs.setdefault(
getattr(self, f"{fname}_name"),
DiffusionModuleStruct(module=module, parent=self, fname=fname, rname=rname, rkey=rkey),
)
def get_prev_module_keys(self) -> tuple[str, ...]:
return tuple({self.input_embed_key, self.time_embed_key, self.text_embed_key})
def get_post_module_keys(self) -> tuple[str, ...]:
return tuple({self.norm_out_key, self.proj_out_key})
def _get_iter_block_activations_args(
self, **input_kwargs
) -> tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]:
"""
Get the arguments for iterating over the layers and their activations.
Args:
skip_pre_modules (`bool`):
Whether to skip the pre-modules
skip_post_modules (`bool`):
Whether to skip the post-modules
Returns:
`tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]`:
the layers, the layer structs, the recomputes, and the use_prev_layer_outputs
"""
layers, layer_structs, recomputes, use_prev_layer_outputs = [], [], [], []
layers.extend(self.transformer_blocks)
layer_structs.extend(self.transformer_block_structs)
use_prev_layer_outputs.append(False)
use_prev_layer_outputs.extend([True] * (len(self.transformer_blocks) - 1))
recomputes.extend([False] * len(self.transformer_blocks))
return layers, layer_structs, recomputes, use_prev_layer_outputs
@staticmethod
def _default_construct(
module: tp.Union[DIT_PIPELINE_CLS, DIT_CLS],
/,
parent: tp.Optional[BaseModuleStruct] = None,
fname: str = "",
rname: str = "",
rkey: str = "",
idx: int = 0,
**kwargs,
) -> "DiTStruct":
if isinstance(module, DIT_PIPELINE_CLS):
module = module.transformer
if isinstance(module, FluxTransformer2DModel):
return FluxStruct.construct(module, parent=parent, fname=fname, rname=rname, rkey=rkey, idx=idx, **kwargs)
else:
if isinstance(module, PixArtTransformer2DModel):
input_embed, input_embed_rname = module.pos_embed, "pos_embed"
time_embed, time_embed_rname = module.adaln_single, "adaln_single"
text_embed, text_embed_rname = module.caption_projection, "caption_projection"
norm_out, norm_out_rname = module.norm_out, "norm_out"
proj_out, proj_out_rname = module.proj_out, "proj_out"
transformer_blocks, transformer_blocks_rname = module.transformer_blocks, "transformer_blocks"
# ! in fact, `module.adaln_single.emb` is `time_embed`,
# ! `module.adaln_single.linear` is `transformer_norm`
# ! but since PixArt shares the `transformer_norm`, we categorize it as `time_embed`
elif isinstance(module, SanaTransformer2DModel):
input_embed, input_embed_rname = module.patch_embed, "patch_embed"
time_embed, time_embed_rname = module.time_embed, "time_embed"
text_embed, text_embed_rname = module.caption_projection, "caption_projection"
norm_out, norm_out_rname = module.norm_out, "norm_out"
proj_out, proj_out_rname = module.proj_out, "proj_out"
transformer_blocks, transformer_blocks_rname = module.transformer_blocks, "transformer_blocks"
elif isinstance(module, SD3Transformer2DModel):
input_embed, input_embed_rname = module.pos_embed, "pos_embed"
time_embed, time_embed_rname = module.time_text_embed, "time_text_embed"
text_embed, text_embed_rname = module.context_embedder, "context_embedder"
norm_out, norm_out_rname = module.norm_out, "norm_out"
proj_out, proj_out_rname = module.proj_out, "proj_out"
transformer_blocks, transformer_blocks_rname = module.transformer_blocks, "transformer_blocks"
else:
raise NotImplementedError(f"Unsupported module type: {type(module)}")
return DiTStruct(
module=module,
parent=parent,
fname=fname,
idx=idx,
rname=rname,
rkey=rkey,
input_embed=input_embed,
time_embed=time_embed,
text_embed=text_embed,
transformer_blocks=transformer_blocks,
norm_out=norm_out,
proj_out=proj_out,
input_embed_rname=input_embed_rname,
time_embed_rname=time_embed_rname,
text_embed_rname=text_embed_rname,
norm_out_rname=norm_out_rname,
proj_out_rname=proj_out_rname,
transformer_blocks_rname=transformer_blocks_rname,
)
@classmethod
def _get_default_key_map(cls) -> dict[str, set[str]]:
"""Get the default allowed keys."""
key_map: dict[str, set[str]] = defaultdict(set)
block_cls = cls.transformer_block_struct_cls
block_key = block_rkey = cls.transformer_block_rkey
block_key_map = block_cls._get_default_key_map()
for rkey, keys in block_key_map.items():
brkey = join_name(block_rkey, rkey, sep="_")
for key in keys:
key = join_name(block_key, key, sep="_")
key_map[rkey].add(key)
key_map[brkey].add(key)
if block_rkey:
key_map[block_rkey].add(key)
keys: set[str] = set()
keys.add(cls.input_embed_rkey)
keys.add(cls.time_embed_rkey)
keys.add(cls.text_embed_rkey)
keys.add(cls.norm_in_rkey)
keys.add(cls.proj_in_rkey)
keys.add(cls.norm_out_rkey)
keys.add(cls.proj_out_rkey)
for mapped_keys in key_map.values():
for key in mapped_keys:
keys.add(key)
if "embed" not in keys and "embed" not in key_map:
key_map["embed"].add(cls.input_embed_rkey)
key_map["embed"].add(cls.time_embed_rkey)
key_map["embed"].add(cls.text_embed_rkey)
key_map["embed"].add(cls.norm_in_rkey)
key_map["embed"].add(cls.proj_in_rkey)
key_map["embed"].add(cls.norm_out_rkey)
key_map["embed"].add(cls.proj_out_rkey)
for key in keys:
if key in key_map:
key_map[key].clear()
key_map[key].add(key)
return {k: v for k, v in key_map.items() if v}
@dataclass(kw_only=True)
class FluxStruct(DiTStruct):
# region relative keys
single_transformer_block_rkey: tp.ClassVar[str] = ""
single_transformer_block_struct_cls: tp.ClassVar[type[DiffusionTransformerBlockStruct]] = (
DiffusionTransformerBlockStruct
)
# endregion
module: FluxTransformer2DModel = field(repr=False, kw_only=False)
"""the module of FluxTransformer2DModel"""
# region child modules
input_embed: nn.Linear
time_embed: CombinedTimestepGuidanceTextProjEmbeddings | CombinedTimestepTextProjEmbeddings
text_embed: nn.Linear
single_transformer_blocks: nn.ModuleList = field(repr=False)
# endregion
# region relative names
single_transformer_blocks_rname: str
# endregion
# region absolute names
single_transformer_blocks_name: str = field(init=False, repr=False)
single_transformer_block_names: list[str] = field(init=False, repr=False)
# endregion
# region child structs
single_transformer_block_structs: list[DiffusionTransformerBlockStruct] = field(init=False)
# endregion
@property
def num_blocks(self) -> int:
return len(self.transformer_block_structs) + len(self.single_transformer_block_structs)
@property
def block_structs(self) -> list[DiffusionTransformerBlockStruct]:
return [*self.transformer_block_structs, *self.single_transformer_block_structs]
@property
def block_names(self) -> list[str]:
return [*self.transformer_block_names, *self.single_transformer_block_names]
def __post_init__(self) -> None:
super().__post_init__()
single_transformer_block_rnames = [
f"{self.single_transformer_blocks_rname}.{idx}" for idx in range(len(self.single_transformer_blocks))
]
self.single_transformer_blocks_name = join_name(self.name, self.single_transformer_blocks_rname)
self.single_transformer_block_names = [join_name(self.name, rname) for rname in single_transformer_block_rnames]
self.single_transformer_block_structs = [
self.single_transformer_block_struct_cls.construct(
block,
parent=self,
fname="single_transformer_block",
rname=rname,
rkey=self.single_transformer_block_rkey,
idx=idx,
)
for idx, (block, rname) in enumerate(
zip(self.single_transformer_blocks, single_transformer_block_rnames, strict=True)
)
]
def _get_iter_block_activations_args(
self, **input_kwargs
) -> tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]:
layers, layer_structs, recomputes, use_prev_layer_outputs = super()._get_iter_block_activations_args()
layers.extend(self.single_transformer_blocks)
layer_structs.extend(self.single_transformer_block_structs)
use_prev_layer_outputs.append(False)
use_prev_layer_outputs.extend([True] * (len(self.single_transformer_blocks) - 1))
recomputes.extend([False] * len(self.single_transformer_blocks))
return layers, layer_structs, recomputes, use_prev_layer_outputs
@staticmethod
def _default_construct(
module: tp.Union[FluxPipeline, FluxKontextPipeline, FluxControlPipeline, FluxTransformer2DModel],
/,
parent: tp.Optional[BaseModuleStruct] = None,
fname: str = "",
rname: str = "",
rkey: str = "",
idx: int = 0,
**kwargs,
) -> "FluxStruct":
if isinstance(module, (FluxPipeline, FluxKontextPipeline, FluxControlPipeline)):
module = module.transformer
if isinstance(module, FluxTransformer2DModel):
input_embed, time_embed, text_embed = module.x_embedder, module.time_text_embed, module.context_embedder
input_embed_rname, time_embed_rname, text_embed_rname = "x_embedder", "time_text_embed", "context_embedder"
norm_out, norm_out_rname = module.norm_out, "norm_out"
proj_out, proj_out_rname = module.proj_out, "proj_out"
transformer_blocks, transformer_blocks_rname = module.transformer_blocks, "transformer_blocks"
single_transformer_blocks = module.single_transformer_blocks
single_transformer_blocks_rname = "single_transformer_blocks"
return FluxStruct(
module=module,
parent=parent,
fname=fname,
idx=idx,
rname=rname,
rkey=rkey,
input_embed=input_embed,
time_embed=time_embed,
text_embed=text_embed,
transformer_blocks=transformer_blocks,
single_transformer_blocks=single_transformer_blocks,
norm_out=norm_out,
proj_out=proj_out,
input_embed_rname=input_embed_rname,
time_embed_rname=time_embed_rname,
text_embed_rname=text_embed_rname,
norm_out_rname=norm_out_rname,
proj_out_rname=proj_out_rname,
transformer_blocks_rname=transformer_blocks_rname,
single_transformer_blocks_rname=single_transformer_blocks_rname,
)
raise NotImplementedError(f"Unsupported module type: {type(module)}")
@classmethod
def _get_default_key_map(cls) -> dict[str, set[str]]:
"""Get the default allowed keys."""
key_map: dict[str, set[str]] = defaultdict(set)
for block_rkey, block_cls in (
(cls.transformer_block_rkey, cls.transformer_block_struct_cls),
(cls.single_transformer_block_rkey, cls.single_transformer_block_struct_cls),
):
block_key = block_rkey
block_key_map = block_cls._get_default_key_map()
for rkey, keys in block_key_map.items():
brkey = join_name(block_rkey, rkey, sep="_")
for key in keys:
key = join_name(block_key, key, sep="_")
key_map[rkey].add(key)
key_map[brkey].add(key)
if block_rkey:
key_map[block_rkey].add(key)
keys: set[str] = set()
keys.add(cls.input_embed_rkey)
keys.add(cls.time_embed_rkey)
keys.add(cls.text_embed_rkey)
keys.add(cls.norm_in_rkey)
keys.add(cls.proj_in_rkey)
keys.add(cls.norm_out_rkey)
keys.add(cls.proj_out_rkey)
for mapped_keys in key_map.values():
for key in mapped_keys:
keys.add(key)
if "embed" not in keys and "embed" not in key_map:
key_map["embed"].add(cls.input_embed_rkey)
key_map["embed"].add(cls.time_embed_rkey)
key_map["embed"].add(cls.text_embed_rkey)
key_map["embed"].add(cls.norm_in_rkey)
key_map["embed"].add(cls.proj_in_rkey)
key_map["embed"].add(cls.norm_out_rkey)
key_map["embed"].add(cls.proj_out_rkey)
for key in keys:
if key in key_map:
key_map[key].clear()
key_map[key].add(key)
return {k: v for k, v in key_map.items() if v}
DiffusionAttentionStruct.register_factory(Attention, DiffusionAttentionStruct._default_construct)
DiffusionFeedForwardStruct.register_factory(
(FeedForward, FluxSingleTransformerBlock, GLUMBConv), DiffusionFeedForwardStruct._default_construct
)
DiffusionTransformerBlockStruct.register_factory(DIT_BLOCK_CLS, DiffusionTransformerBlockStruct._default_construct)
UNetBlockStruct.register_factory(UNET_BLOCK_CLS, UNetBlockStruct._default_construct)
UNetStruct.register_factory(tp.Union[UNET_PIPELINE_CLS, UNET_CLS], UNetStruct._default_construct)
FluxStruct.register_factory(
tp.Union[FluxPipeline, FluxKontextPipeline, FluxControlPipeline, FluxTransformer2DModel], FluxStruct._default_construct
)
DiTStruct.register_factory(tp.Union[DIT_PIPELINE_CLS, DIT_CLS], DiTStruct._default_construct)
DiffusionTransformerStruct.register_factory(Transformer2DModel, DiffusionTransformerStruct._default_construct)
DiffusionModelStruct.register_factory(tp.Union[PIPELINE_CLS, MODEL_CLS], DiffusionModelStruct._default_construct)
# Register the factory (usually at the bottom of the file)
DiffusionAttentionStruct.register_factory(ATTENTION_CLS, DiffusionAttentionStruct._default_construct)