|
|
|
"""Utility functions for Diffusion Models."""
|
|
|
|
import enum
|
|
import typing as tp
|
|
from abc import abstractmethod
|
|
from collections import OrderedDict, defaultdict
|
|
from dataclasses import dataclass, field
|
|
|
|
|
|
import torch.nn as nn
|
|
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU, SwiGLU
|
|
from diffusers.models.attention import BasicTransformerBlock, FeedForward, JointTransformerBlock
|
|
from diffusers.models.attention_processor import Attention, SanaLinearAttnProcessor2_0
|
|
from diffusers.models.embeddings import (
|
|
CombinedTimestepGuidanceTextProjEmbeddings,
|
|
CombinedTimestepTextProjEmbeddings,
|
|
ImageHintTimeEmbedding,
|
|
ImageProjection,
|
|
ImageTimeEmbedding,
|
|
PatchEmbed,
|
|
PixArtAlphaTextProjection,
|
|
TextImageProjection,
|
|
TextImageTimeEmbedding,
|
|
TextTimeEmbedding,
|
|
TimestepEmbedding,
|
|
)
|
|
from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormSingle, AdaLayerNormZero
|
|
from diffusers.models.resnet import Downsample2D, ResnetBlock2D, Upsample2D
|
|
from diffusers.models.transformers.pixart_transformer_2d import PixArtTransformer2DModel
|
|
from diffusers.models.transformers.sana_transformer import GLUMBConv, SanaTransformer2DModel, SanaTransformerBlock
|
|
from diffusers.models.transformers.transformer_2d import Transformer2DModel
|
|
from diffusers.models.transformers.transformer_flux import (
|
|
FluxSingleTransformerBlock,
|
|
FluxTransformer2DModel,
|
|
FluxTransformerBlock,
|
|
FluxAttention
|
|
)
|
|
from diffusers.models.transformers.transformer_sd3 import SD3Transformer2DModel
|
|
from diffusers.models.unets.unet_2d import UNet2DModel
|
|
from diffusers.models.unets.unet_2d_blocks import (
|
|
CrossAttnDownBlock2D,
|
|
CrossAttnUpBlock2D,
|
|
DownBlock2D,
|
|
UNetMidBlock2D,
|
|
UNetMidBlock2DCrossAttn,
|
|
UpBlock2D,
|
|
)
|
|
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
|
from diffusers.pipelines import (
|
|
FluxControlPipeline,
|
|
FluxFillPipeline,
|
|
FluxPipeline,
|
|
FluxKontextPipeline,
|
|
PixArtAlphaPipeline,
|
|
PixArtSigmaPipeline,
|
|
SanaPipeline,
|
|
StableDiffusion3Pipeline,
|
|
StableDiffusionPipeline,
|
|
StableDiffusionXLPipeline,
|
|
)
|
|
|
|
from deepcompressor.nn.patch.conv import ConcatConv2d, ShiftedConv2d
|
|
from deepcompressor.nn.patch.linear import ConcatLinear, ShiftedLinear
|
|
from deepcompressor.nn.struct.attn import (
|
|
AttentionConfigStruct,
|
|
AttentionStruct,
|
|
BaseTransformerStruct,
|
|
FeedForwardConfigStruct,
|
|
FeedForwardStruct,
|
|
TransformerBlockStruct,
|
|
)
|
|
from deepcompressor.nn.struct.base import BaseModuleStruct
|
|
from deepcompressor.utils.common import join_name
|
|
|
|
from .attention import DiffusionAttentionProcessor
|
|
|
|
|
|
|
|
|
|
__all__ = ["DiffusionModelStruct", "DiffusionBlockStruct", "DiffusionModelStruct"]
|
|
|
|
|
|
DIT_BLOCK_CLS = tp.Union[
|
|
BasicTransformerBlock,
|
|
JointTransformerBlock,
|
|
FluxSingleTransformerBlock,
|
|
FluxTransformerBlock,
|
|
SanaTransformerBlock,
|
|
]
|
|
UNET_BLOCK_CLS = tp.Union[
|
|
DownBlock2D,
|
|
CrossAttnDownBlock2D,
|
|
UNetMidBlock2D,
|
|
UNetMidBlock2DCrossAttn,
|
|
UpBlock2D,
|
|
CrossAttnUpBlock2D,
|
|
]
|
|
DIT_CLS = tp.Union[
|
|
Transformer2DModel,
|
|
PixArtTransformer2DModel,
|
|
SD3Transformer2DModel,
|
|
FluxTransformer2DModel,
|
|
SanaTransformer2DModel,
|
|
]
|
|
UNET_CLS = tp.Union[UNet2DModel, UNet2DConditionModel]
|
|
MODEL_CLS = tp.Union[DIT_CLS, UNET_CLS]
|
|
UNET_PIPELINE_CLS = tp.Union[StableDiffusionPipeline, StableDiffusionXLPipeline]
|
|
DIT_PIPELINE_CLS = tp.Union[
|
|
StableDiffusion3Pipeline,
|
|
PixArtAlphaPipeline,
|
|
PixArtSigmaPipeline,
|
|
FluxPipeline,
|
|
FluxKontextPipeline,
|
|
FluxControlPipeline,
|
|
FluxFillPipeline,
|
|
SanaPipeline,
|
|
]
|
|
PIPELINE_CLS = tp.Union[UNET_PIPELINE_CLS, DIT_PIPELINE_CLS]
|
|
|
|
ATTENTION_CLS = tp.Union[
|
|
|
|
FluxAttention,
|
|
]
|
|
|
|
@dataclass(kw_only=True)
|
|
class DiffusionModuleStruct(BaseModuleStruct):
|
|
def named_key_modules(self) -> tp.Generator[tuple[str, str, nn.Module, BaseModuleStruct, str], None, None]:
|
|
if isinstance(self.module, (nn.Linear, nn.Conv2d)):
|
|
yield self.key, self.name, self.module, self.parent, self.fname
|
|
else:
|
|
for name, module in self.module.named_modules():
|
|
if name and isinstance(module, (nn.Linear, nn.Conv2d)):
|
|
module_name = join_name(self.name, name)
|
|
field_name = join_name(self.fname, name)
|
|
yield self.key, module_name, module, self.parent, field_name
|
|
|
|
|
|
@dataclass(kw_only=True)
|
|
class DiffusionBlockStruct(BaseModuleStruct):
|
|
@abstractmethod
|
|
def iter_attention_structs(self) -> tp.Generator["DiffusionAttentionStruct", None, None]: ...
|
|
|
|
@abstractmethod
|
|
def iter_transformer_block_structs(self) -> tp.Generator["DiffusionTransformerBlockStruct", None, None]: ...
|
|
|
|
|
|
@dataclass(kw_only=True)
|
|
class DiffusionModelStruct(DiffusionBlockStruct):
|
|
pre_module_structs: OrderedDict[str, DiffusionModuleStruct] = field(init=False, repr=False)
|
|
post_module_structs: OrderedDict[str, DiffusionModuleStruct] = field(init=False, repr=False)
|
|
|
|
@property
|
|
@abstractmethod
|
|
def num_blocks(self) -> int: ...
|
|
|
|
@property
|
|
@abstractmethod
|
|
def block_structs(self) -> list[DiffusionBlockStruct]: ...
|
|
|
|
@abstractmethod
|
|
def get_prev_module_keys(self) -> tuple[str, ...]: ...
|
|
|
|
@abstractmethod
|
|
def get_post_module_keys(self) -> tuple[str, ...]: ...
|
|
|
|
@abstractmethod
|
|
def _get_iter_block_activations_args(
|
|
self, **input_kwargs
|
|
) -> tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]: ...
|
|
|
|
def _get_iter_pre_module_activations_args(
|
|
self,
|
|
) -> tuple[list[nn.Module], list[DiffusionModuleStruct], list[bool], list[bool]]:
|
|
layers, layer_structs, recomputes, use_prev_layer_outputs = [], [], [], []
|
|
for layer_struct in self.pre_module_structs.values():
|
|
layers.append(layer_struct.module)
|
|
layer_structs.append(layer_struct)
|
|
recomputes.append(False)
|
|
use_prev_layer_outputs.append(False)
|
|
return layers, layer_structs, recomputes, use_prev_layer_outputs
|
|
|
|
def _get_iter_post_module_activations_args(
|
|
self,
|
|
) -> tuple[list[nn.Module], list[DiffusionModuleStruct], list[bool], list[bool]]:
|
|
layers, layer_structs, recomputes, use_prev_layer_outputs = [], [], [], []
|
|
for layer_struct in self.post_module_structs.values():
|
|
layers.append(layer_struct.module)
|
|
layer_structs.append(layer_struct)
|
|
recomputes.append(False)
|
|
use_prev_layer_outputs.append(False)
|
|
return layers, layer_structs, recomputes, use_prev_layer_outputs
|
|
|
|
def get_iter_layer_activations_args(
|
|
self, skip_pre_modules: bool, skip_post_modules: bool, **input_kwargs
|
|
) -> tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]:
|
|
"""
|
|
Get the arguments for iterating over the layers and their activations.
|
|
|
|
Args:
|
|
skip_pre_modules (`bool`):
|
|
Whether to skip the pre-modules
|
|
skip_post_modules (`bool`):
|
|
Whether to skip the post-modules
|
|
|
|
Returns:
|
|
`tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]`:
|
|
the layers, the layer structs, the recomputes, and the use_prev_layer_outputs
|
|
"""
|
|
layers, structs, recomputes, uses = [], [], [], []
|
|
if not skip_pre_modules:
|
|
layers, structs, recomputes, uses = self._get_iter_pre_module_activations_args()
|
|
_layers, _structs, _recomputes, _uses = self._get_iter_block_activations_args(**input_kwargs)
|
|
layers.extend(_layers)
|
|
structs.extend(_structs)
|
|
recomputes.extend(_recomputes)
|
|
uses.extend(_uses)
|
|
if not skip_post_modules:
|
|
_layers, _structs, _recomputes, _uses = self._get_iter_post_module_activations_args()
|
|
layers.extend(_layers)
|
|
structs.extend(_structs)
|
|
recomputes.extend(_recomputes)
|
|
uses.extend(_uses)
|
|
return layers, structs, recomputes, uses
|
|
|
|
def named_key_modules(self) -> tp.Generator[tp.Tuple[str, str, nn.Module, BaseModuleStruct, str], None, None]:
|
|
for module in self.pre_module_structs.values():
|
|
yield from module.named_key_modules()
|
|
for block in self.block_structs:
|
|
yield from block.named_key_modules()
|
|
for module in self.post_module_structs.values():
|
|
yield from module.named_key_modules()
|
|
|
|
def iter_attention_structs(self) -> tp.Generator["AttentionStruct", None, None]:
|
|
for block in self.block_structs:
|
|
yield from block.iter_attention_structs()
|
|
|
|
def iter_transformer_block_structs(self) -> tp.Generator["DiffusionTransformerBlockStruct", None, None]:
|
|
for block in self.block_structs:
|
|
yield from block.iter_transformer_block_structs()
|
|
|
|
def get_named_layers(
|
|
self, skip_pre_modules: bool, skip_post_modules: bool, skip_blocks: bool = False
|
|
) -> OrderedDict[str, DiffusionBlockStruct | DiffusionModuleStruct]:
|
|
named_layers = OrderedDict()
|
|
if not skip_pre_modules:
|
|
named_layers.update(self.pre_module_structs)
|
|
if not skip_blocks:
|
|
for block in self.block_structs:
|
|
named_layers[block.name] = block
|
|
if not skip_post_modules:
|
|
named_layers.update(self.post_module_structs)
|
|
return named_layers
|
|
|
|
@staticmethod
|
|
def _default_construct(
|
|
module: tp.Union[PIPELINE_CLS, MODEL_CLS],
|
|
/,
|
|
parent: tp.Optional[BaseModuleStruct] = None,
|
|
fname: str = "",
|
|
rname: str = "",
|
|
rkey: str = "",
|
|
idx: int = 0,
|
|
**kwargs,
|
|
) -> "DiffusionModelStruct":
|
|
if isinstance(module, UNET_PIPELINE_CLS):
|
|
module = module.unet
|
|
elif isinstance(module, DIT_PIPELINE_CLS):
|
|
module = module.transformer
|
|
if isinstance(module, UNET_CLS):
|
|
return UNetStruct.construct(module, parent=parent, fname=fname, rname=rname, rkey=rkey, idx=idx, **kwargs)
|
|
elif isinstance(module, DIT_CLS):
|
|
return DiTStruct.construct(module, parent=parent, fname=fname, rname=rname, rkey=rkey, idx=idx, **kwargs)
|
|
raise NotImplementedError(f"Unsupported module type: {type(module)}")
|
|
|
|
@classmethod
|
|
def _get_default_key_map(cls) -> dict[str, set[str]]:
|
|
unet_key_map = UNetStruct._get_default_key_map()
|
|
dit_key_map = DiTStruct._get_default_key_map()
|
|
flux_key_map = FluxStruct._get_default_key_map()
|
|
key_map: dict[str, set[str]] = defaultdict(set)
|
|
for rkey, keys in unet_key_map.items():
|
|
key_map[rkey].update(keys)
|
|
for rkey, keys in dit_key_map.items():
|
|
key_map[rkey].update(keys)
|
|
for rkey, keys in flux_key_map.items():
|
|
key_map[rkey].update(keys)
|
|
return {k: v for k, v in key_map.items() if v}
|
|
|
|
@staticmethod
|
|
def _simplify_keys(keys: tp.Iterable[str], *, key_map: dict[str, set[str]]) -> list[str]:
|
|
"""Simplify the keys based on the key map.
|
|
|
|
Args:
|
|
keys (`Iterable[str]`):
|
|
The keys to simplify.
|
|
key_map (`dict[str, set[str]]`):
|
|
The key map.
|
|
|
|
Returns:
|
|
`list[str]`:
|
|
The simplified keys.
|
|
"""
|
|
|
|
key_map = dict(sorted(key_map.items(), key=lambda item: len(item[1]), reverse=True))
|
|
ukeys, skeys = set(keys), set()
|
|
for k, v in key_map.items():
|
|
if k in ukeys:
|
|
skeys.add(k)
|
|
ukeys.discard(k)
|
|
ukeys.difference_update(v)
|
|
continue
|
|
if ukeys.issuperset(v):
|
|
skeys.add(k)
|
|
ukeys.difference_update(v)
|
|
assert not ukeys, f"Unrecognized keys: {ukeys}"
|
|
return sorted(skeys)
|
|
|
|
|
|
@dataclass(kw_only=True)
|
|
class DiffusionAttentionStruct(AttentionStruct):
|
|
module: Attention = field(repr=False, kw_only=False)
|
|
"""the module of AttentionBlock"""
|
|
parent: tp.Optional["DiffusionTransformerBlockStruct"] = field(repr=False)
|
|
|
|
def filter_kwargs(self, kwargs: dict) -> dict:
|
|
"""Filter layer kwargs to attn kwargs."""
|
|
if isinstance(self.parent.module, BasicTransformerBlock):
|
|
if kwargs.get("cross_attention_kwargs", None) is None:
|
|
attn_kwargs = {}
|
|
else:
|
|
attn_kwargs = dict(kwargs["cross_attention_kwargs"].items())
|
|
attn_kwargs.pop("gligen", None)
|
|
if self.idx == 0:
|
|
attn_kwargs["attention_mask"] = kwargs.get("attention_mask", None)
|
|
else:
|
|
attn_kwargs["attention_mask"] = kwargs.get("encoder_attention_mask", None)
|
|
else:
|
|
attn_kwargs = {}
|
|
return attn_kwargs
|
|
|
|
@staticmethod
|
|
def _default_construct(
|
|
module: Attention,
|
|
/,
|
|
parent: tp.Optional["DiffusionTransformerBlockStruct"] = None,
|
|
fname: str = "",
|
|
rname: str = "",
|
|
rkey: str = "",
|
|
idx: int = 0,
|
|
**kwargs,
|
|
) -> "DiffusionAttentionStruct":
|
|
if isinstance(module, FluxAttention):
|
|
|
|
with_rope = True
|
|
num_query_heads = module.heads
|
|
num_key_value_heads = module.heads
|
|
|
|
|
|
|
|
o_proj = None
|
|
o_proj_rname = ""
|
|
|
|
|
|
if hasattr(module, 'to_out') and module.to_out is not None:
|
|
o_proj = module.to_out[0] if isinstance(module.to_out, (list, tuple)) else module.to_out
|
|
o_proj_rname = "to_out.0" if isinstance(module.to_out, (list, tuple)) else "to_out"
|
|
elif hasattr(module, 'to_add_out'):
|
|
o_proj = module.to_add_out
|
|
o_proj_rname = "to_add_out"
|
|
|
|
q_proj, k_proj, v_proj = module.to_q, module.to_k, module.to_v
|
|
q_proj_rname, k_proj_rname, v_proj_rname = "to_q", "to_k", "to_v"
|
|
q, k, v = module.to_q, module.to_k, module.to_v
|
|
q_rname, k_rname, v_rname = "to_q", "to_k", "to_v"
|
|
|
|
|
|
add_q_proj = getattr(module, "add_q_proj", None)
|
|
add_k_proj = getattr(module, "add_k_proj", None)
|
|
add_v_proj = getattr(module, "add_v_proj", None)
|
|
add_o_proj = getattr(module, "to_add_out", None)
|
|
add_q_proj_rname = "add_q_proj" if add_q_proj else ""
|
|
add_k_proj_rname = "add_k_proj" if add_k_proj else ""
|
|
add_v_proj_rname = "add_v_proj" if add_v_proj else ""
|
|
add_o_proj_rname = "to_add_out" if add_o_proj else ""
|
|
|
|
kwargs = (
|
|
"encoder_hidden_states",
|
|
"attention_mask",
|
|
"image_rotary_emb",
|
|
)
|
|
cross_attention = add_k_proj is not None
|
|
elif module.is_cross_attention:
|
|
q_proj, k_proj, v_proj = module.to_q, None, None
|
|
add_q_proj, add_k_proj, add_v_proj, add_o_proj = None, module.to_k, module.to_v, None
|
|
q_proj_rname, k_proj_rname, v_proj_rname = "to_q", "", ""
|
|
add_q_proj_rname, add_k_proj_rname, add_v_proj_rname, add_o_proj_rname = "", "to_k", "to_v", ""
|
|
else:
|
|
q_proj, k_proj, v_proj = module.to_q, module.to_k, module.to_v
|
|
add_q_proj = getattr(module, "add_q_proj", None)
|
|
add_k_proj = getattr(module, "add_k_proj", None)
|
|
add_v_proj = getattr(module, "add_v_proj", None)
|
|
add_o_proj = getattr(module, "to_add_out", None)
|
|
q_proj_rname, k_proj_rname, v_proj_rname = "to_q", "to_k", "to_v"
|
|
add_q_proj_rname, add_k_proj_rname, add_v_proj_rname = "add_q_proj", "add_k_proj", "add_v_proj"
|
|
add_o_proj_rname = "to_add_out"
|
|
if getattr(module, "to_out", None) is not None:
|
|
o_proj = module.to_out[0]
|
|
o_proj_rname = "to_out.0"
|
|
assert isinstance(o_proj, nn.Linear)
|
|
elif parent is not None:
|
|
assert isinstance(parent.module, FluxSingleTransformerBlock)
|
|
assert isinstance(parent.module.proj_out, ConcatLinear)
|
|
assert len(parent.module.proj_out.linears) == 2
|
|
o_proj = parent.module.proj_out.linears[0]
|
|
o_proj_rname = ".proj_out.linears.0"
|
|
else:
|
|
raise RuntimeError("Cannot find the output projection.")
|
|
if isinstance(module.processor, DiffusionAttentionProcessor):
|
|
with_rope = module.processor.rope is not None
|
|
elif module.processor.__class__.__name__.startswith("Flux"):
|
|
with_rope = True
|
|
else:
|
|
with_rope = False
|
|
config = AttentionConfigStruct(
|
|
hidden_size=q_proj.weight.shape[1],
|
|
add_hidden_size=add_k_proj.weight.shape[1] if add_k_proj is not None else 0,
|
|
inner_size=q_proj.weight.shape[0],
|
|
num_query_heads=module.heads,
|
|
num_key_value_heads=module.to_k.weight.shape[0] // (module.to_q.weight.shape[0] // module.heads),
|
|
with_qk_norm=module.norm_q is not None,
|
|
with_rope=with_rope,
|
|
linear_attn=isinstance(module.processor, SanaLinearAttnProcessor2_0),
|
|
)
|
|
return DiffusionAttentionStruct(
|
|
module=module,
|
|
parent=parent,
|
|
fname=fname,
|
|
idx=idx,
|
|
rname=rname,
|
|
rkey=rkey,
|
|
config=config,
|
|
q_proj=q_proj,
|
|
k_proj=k_proj,
|
|
v_proj=v_proj,
|
|
o_proj=o_proj,
|
|
add_q_proj=add_q_proj,
|
|
add_k_proj=add_k_proj,
|
|
add_v_proj=add_v_proj,
|
|
add_o_proj=add_o_proj,
|
|
q=None,
|
|
k=None,
|
|
v=None,
|
|
q_proj_rname=q_proj_rname,
|
|
k_proj_rname=k_proj_rname,
|
|
v_proj_rname=v_proj_rname,
|
|
o_proj_rname=o_proj_rname,
|
|
add_q_proj_rname=add_q_proj_rname,
|
|
add_k_proj_rname=add_k_proj_rname,
|
|
add_v_proj_rname=add_v_proj_rname,
|
|
add_o_proj_rname=add_o_proj_rname,
|
|
q_rname="",
|
|
k_rname="",
|
|
v_rname="",
|
|
)
|
|
|
|
|
|
@dataclass(kw_only=True)
|
|
class DiffusionFeedForwardStruct(FeedForwardStruct):
|
|
module: FeedForward = field(repr=False, kw_only=False)
|
|
"""the module of FeedForward"""
|
|
parent: tp.Optional["DiffusionTransformerBlockStruct"] = field(repr=False)
|
|
|
|
moe_gate: None = field(init=False, repr=False, default=None)
|
|
experts: list[nn.Module] = field(init=False, repr=False)
|
|
|
|
|
|
moe_gate_rname: str = field(init=False, repr=False, default="")
|
|
experts_rname: str = field(init=False, repr=False, default="")
|
|
|
|
|
|
|
|
|
|
@property
|
|
def up_proj(self) -> nn.Linear:
|
|
return self.up_projs[0]
|
|
|
|
@property
|
|
def down_proj(self) -> nn.Linear:
|
|
return self.down_projs[0]
|
|
|
|
@property
|
|
def up_proj_rname(self) -> str:
|
|
return self.up_proj_rnames[0]
|
|
|
|
@property
|
|
def down_proj_rname(self) -> str:
|
|
return self.down_proj_rnames[0]
|
|
|
|
@property
|
|
def up_proj_name(self) -> str:
|
|
return self.up_proj_names[0]
|
|
|
|
@property
|
|
def down_proj_name(self) -> str:
|
|
return self.down_proj_names[0]
|
|
|
|
|
|
|
|
def __post_init__(self) -> None:
|
|
assert len(self.up_projs) == len(self.down_projs) == 1
|
|
assert len(self.up_proj_rnames) == len(self.down_proj_rnames) == 1
|
|
self.experts = [self.module]
|
|
super().__post_init__()
|
|
|
|
@staticmethod
|
|
def _default_construct(
|
|
module: FeedForward | FluxSingleTransformerBlock | GLUMBConv,
|
|
/,
|
|
parent: tp.Optional["DiffusionTransformerBlockStruct"] = None,
|
|
fname: str = "",
|
|
rname: str = "",
|
|
rkey: str = "",
|
|
idx: int = 0,
|
|
**kwargs,
|
|
) -> "DiffusionFeedForwardStruct":
|
|
if isinstance(module, FeedForward):
|
|
layer_1, layer_2 = module.net[0], module.net[2]
|
|
assert isinstance(layer_1, (GEGLU, GELU, ApproximateGELU, SwiGLU))
|
|
up_proj, up_proj_rname = layer_1.proj, "net.0.proj"
|
|
assert isinstance(up_proj, nn.Linear)
|
|
down_proj, down_proj_rname = layer_2, "net.2"
|
|
if isinstance(layer_1, GEGLU):
|
|
act_type = "gelu_glu"
|
|
elif isinstance(layer_1, SwiGLU):
|
|
act_type = "swish_glu"
|
|
else:
|
|
assert layer_1.__class__.__name__.lower().endswith("gelu")
|
|
act_type = "gelu"
|
|
if isinstance(layer_2, ShiftedLinear):
|
|
down_proj, down_proj_rname = layer_2.linear, "net.2.linear"
|
|
act_type = "gelu_shifted"
|
|
assert isinstance(down_proj, nn.Linear)
|
|
ffn = module
|
|
elif isinstance(module, FluxSingleTransformerBlock):
|
|
up_proj, up_proj_rname = module.proj_mlp, "proj_mlp"
|
|
act_type = "gelu"
|
|
assert isinstance(module.proj_out, ConcatLinear)
|
|
assert len(module.proj_out.linears) == 2
|
|
layer_2 = module.proj_out.linears[1]
|
|
if isinstance(layer_2, ShiftedLinear):
|
|
down_proj, down_proj_rname = layer_2.linear, "proj_out.linears.1.linear"
|
|
act_type = "gelu_shifted"
|
|
else:
|
|
down_proj, down_proj_rname = layer_2, "proj_out.linears.1"
|
|
ffn = nn.Sequential(up_proj, module.act_mlp, layer_2)
|
|
assert not rname, f"Unsupported rname: {rname}"
|
|
elif isinstance(module, GLUMBConv):
|
|
ffn = module
|
|
up_proj, up_proj_rname = module.conv_inverted, "conv_inverted"
|
|
down_proj, down_proj_rname = module.conv_point, "conv_point"
|
|
act_type = "silu_conv_silu_glu"
|
|
else:
|
|
raise NotImplementedError(f"Unsupported module type: {type(module)}")
|
|
config = FeedForwardConfigStruct(
|
|
hidden_size=up_proj.weight.shape[1],
|
|
intermediate_size=down_proj.weight.shape[1],
|
|
intermediate_act_type=act_type,
|
|
num_experts=1,
|
|
)
|
|
return DiffusionFeedForwardStruct(
|
|
module=ffn,
|
|
parent=parent,
|
|
fname=fname,
|
|
idx=idx,
|
|
rname=rname,
|
|
rkey=rkey,
|
|
config=config,
|
|
up_projs=[up_proj],
|
|
down_projs=[down_proj],
|
|
up_proj_rnames=[up_proj_rname],
|
|
down_proj_rnames=[down_proj_rname],
|
|
)
|
|
|
|
|
|
@dataclass(kw_only=True)
|
|
class DiffusionTransformerBlockStruct(TransformerBlockStruct, DiffusionBlockStruct):
|
|
|
|
norm_rkey: tp.ClassVar[str] = "transformer_norm"
|
|
add_norm_rkey: tp.ClassVar[str] = "transformer_add_norm"
|
|
attn_struct_cls: tp.ClassVar[type[DiffusionAttentionStruct]] = DiffusionAttentionStruct
|
|
ffn_struct_cls: tp.ClassVar[type[DiffusionFeedForwardStruct]] = DiffusionFeedForwardStruct
|
|
|
|
|
|
parent: tp.Optional["DiffusionTransformerStruct"] = field(repr=False)
|
|
|
|
post_attn_norms: list[nn.LayerNorm] = field(init=False, repr=False, default_factory=list)
|
|
post_attn_add_norms: list[nn.LayerNorm] = field(init=False, repr=False, default_factory=list)
|
|
post_ffn_norm: None = field(init=False, repr=False, default=None)
|
|
post_add_ffn_norm: None = field(init=False, repr=False, default=None)
|
|
|
|
|
|
post_attn_norm_rnames: list[str] = field(init=False, repr=False, default_factory=list)
|
|
post_attn_add_norm_rnames: list[str] = field(init=False, repr=False, default_factory=list)
|
|
post_ffn_norm_rname: str = field(init=False, repr=False, default="")
|
|
post_add_ffn_norm_rname: str = field(init=False, repr=False, default="")
|
|
|
|
|
|
norm_type: str
|
|
add_norm_type: str
|
|
|
|
|
|
norm_key: str = field(init=False, repr=False)
|
|
add_norm_key: str = field(init=False, repr=False)
|
|
|
|
|
|
pre_attn_norm_structs: list[DiffusionModuleStruct | None] = field(init=False, repr=False)
|
|
pre_attn_add_norm_structs: list[DiffusionModuleStruct | None] = field(init=False, repr=False)
|
|
pre_ffn_norm_struct: DiffusionModuleStruct = field(init=False, repr=False, default=None)
|
|
pre_add_ffn_norm_struct: DiffusionModuleStruct | None = field(init=False, repr=False, default=None)
|
|
attn_structs: list[DiffusionAttentionStruct] = field(init=False, repr=False)
|
|
ffn_struct: DiffusionFeedForwardStruct | None = field(init=False, repr=False)
|
|
add_ffn_struct: DiffusionFeedForwardStruct | None = field(init=False, repr=False)
|
|
|
|
|
|
def __post_init__(self) -> None:
|
|
super().__post_init__()
|
|
self.norm_key = join_name(self.key, self.norm_rkey, sep="_")
|
|
self.add_norm_key = join_name(self.key, self.add_norm_rkey, sep="_")
|
|
self.attn_norm_structs = [
|
|
DiffusionModuleStruct(norm, parent=self, fname="pre_attn_norm", rname=rname, rkey=self.norm_rkey, idx=idx)
|
|
for idx, (norm, rname) in enumerate(zip(self.pre_attn_norms, self.pre_attn_norm_rnames, strict=True))
|
|
]
|
|
self.add_attn_norm_structs = [
|
|
DiffusionModuleStruct(
|
|
norm, parent=self, fname="pre_attn_add_norm", rname=rname, rkey=self.add_norm_rkey, idx=idx
|
|
)
|
|
for idx, (norm, rname) in enumerate(
|
|
zip(self.pre_attn_add_norms, self.pre_attn_add_norm_rnames, strict=True)
|
|
)
|
|
]
|
|
if self.pre_ffn_norm is not None:
|
|
self.pre_ffn_norm_struct = DiffusionModuleStruct(
|
|
self.pre_ffn_norm, parent=self, fname="pre_ffn_norm", rname=self.pre_ffn_norm_rname, rkey=self.norm_rkey
|
|
)
|
|
if self.pre_add_ffn_norm is not None:
|
|
self.pre_add_ffn_norm_struct = DiffusionModuleStruct(
|
|
self.pre_add_ffn_norm,
|
|
parent=self,
|
|
fname="pre_add_ffn_norm",
|
|
rname=self.pre_add_ffn_norm_rname,
|
|
rkey=self.add_norm_rkey,
|
|
)
|
|
|
|
def named_key_modules(self) -> tp.Generator[tp.Tuple[str, str, nn.Module, BaseModuleStruct, str], None, None]:
|
|
for attn_norm in self.attn_norm_structs:
|
|
if attn_norm.module is not None:
|
|
yield from attn_norm.named_key_modules()
|
|
for add_attn_norm in self.add_attn_norm_structs:
|
|
if add_attn_norm.module is not None:
|
|
yield from add_attn_norm.named_key_modules()
|
|
for attn_struct in self.attn_structs:
|
|
yield from attn_struct.named_key_modules()
|
|
if self.pre_ffn_norm_struct is not None:
|
|
if self.pre_attn_norms and self.pre_attn_norms[0] is not self.pre_ffn_norm:
|
|
yield from self.pre_ffn_norm_struct.named_key_modules()
|
|
if self.ffn_struct is not None:
|
|
yield from self.ffn_struct.named_key_modules()
|
|
if self.pre_add_ffn_norm_struct is not None:
|
|
if self.pre_attn_add_norms and self.pre_attn_add_norms[0] is not self.pre_add_ffn_norm:
|
|
yield from self.pre_add_ffn_norm_struct.named_key_modules()
|
|
if self.add_ffn_struct is not None:
|
|
yield from self.add_ffn_struct.named_key_modules()
|
|
|
|
@staticmethod
|
|
def _default_construct(
|
|
module: DIT_BLOCK_CLS,
|
|
/,
|
|
parent: tp.Optional["DiffusionTransformerStruct"] = None,
|
|
fname: str = "",
|
|
rname: str = "",
|
|
rkey: str = "",
|
|
idx: int = 0,
|
|
**kwargs,
|
|
) -> "DiffusionTransformerBlockStruct":
|
|
if isinstance(module, (BasicTransformerBlock, SanaTransformerBlock)):
|
|
parallel = False
|
|
if isinstance(module, SanaTransformerBlock):
|
|
norm_type = add_norm_type = "ada_norm_single"
|
|
else:
|
|
norm_type = add_norm_type = module.norm_type
|
|
pre_attn_norms, pre_attn_norm_rnames = [], []
|
|
attns, attn_rnames = [], []
|
|
pre_attn_add_norms, pre_attn_add_norm_rnames = [], []
|
|
assert module.norm1 is not None
|
|
assert module.attn1 is not None
|
|
pre_attn_norms.append(module.norm1)
|
|
pre_attn_norm_rnames.append("norm1")
|
|
attns.append(module.attn1)
|
|
attn_rnames.append("attn1")
|
|
pre_attn_add_norms.append(module.attn1.norm_cross)
|
|
pre_attn_add_norm_rnames.append("attn1.norm_cross")
|
|
if module.attn2 is not None:
|
|
if norm_type == "ada_norm_single":
|
|
pre_attn_norms.append(None)
|
|
pre_attn_norm_rnames.append("")
|
|
else:
|
|
assert module.norm2 is not None
|
|
pre_attn_norms.append(module.norm2)
|
|
pre_attn_norm_rnames.append("norm2")
|
|
attns.append(module.attn2)
|
|
attn_rnames.append("attn2")
|
|
pre_attn_add_norms.append(module.attn2.norm_cross)
|
|
pre_attn_add_norm_rnames.append("attn2.norm_cross")
|
|
if norm_type == "ada_norm_single":
|
|
assert module.norm2 is not None
|
|
pre_ffn_norm, pre_ffn_norm_rname = module.norm2, "norm2"
|
|
else:
|
|
pre_ffn_norm, pre_ffn_norm_rname = module.norm3, "" if module.norm3 is None else "norm3"
|
|
ffn, ffn_rname = module.ff, "" if module.ff is None else "ff"
|
|
pre_add_ffn_norm, pre_add_ffn_norm_rname, add_ffn, add_ffn_rname = None, "", None, ""
|
|
elif isinstance(module, JointTransformerBlock):
|
|
parallel = False
|
|
norm_type = "ada_norm_zero"
|
|
pre_attn_norms, pre_attn_norm_rnames = [module.norm1], ["norm1"]
|
|
if isinstance(module.norm1_context, AdaLayerNormZero):
|
|
add_norm_type = "ada_norm_zero"
|
|
else:
|
|
add_norm_type = "ada_norm_continous"
|
|
pre_attn_add_norms, pre_attn_add_norm_rnames = [module.norm1_context], ["norm1_context"]
|
|
attns, attn_rnames = [module.attn], ["attn"]
|
|
pre_ffn_norm, pre_ffn_norm_rname = module.norm2, "norm2"
|
|
ffn, ffn_rname = module.ff, "ff"
|
|
pre_add_ffn_norm, pre_add_ffn_norm_rname = module.norm2_context, "norm2_context"
|
|
add_ffn, add_ffn_rname = module.ff_context, "ff_context"
|
|
elif isinstance(module, FluxSingleTransformerBlock):
|
|
parallel = True
|
|
norm_type = add_norm_type = "ada_norm_zero_single"
|
|
pre_attn_norms, pre_attn_norm_rnames = [module.norm], ["norm"]
|
|
attns, attn_rnames = [module.attn], ["attn"]
|
|
pre_attn_add_norms, pre_attn_add_norm_rnames = [], []
|
|
pre_ffn_norm, pre_ffn_norm_rname = module.norm, "norm"
|
|
ffn, ffn_rname = module, ""
|
|
pre_add_ffn_norm, pre_add_ffn_norm_rname, add_ffn, add_ffn_rname = None, "", None, ""
|
|
elif isinstance(module, FluxTransformerBlock):
|
|
parallel = False
|
|
norm_type = add_norm_type = "ada_norm_zero"
|
|
pre_attn_norms, pre_attn_norm_rnames = [module.norm1], ["norm1"]
|
|
attns, attn_rnames = [module.attn], ["attn"]
|
|
pre_attn_add_norms, pre_attn_add_norm_rnames = [module.norm1_context], ["norm1_context"]
|
|
pre_ffn_norm, pre_ffn_norm_rname = module.norm2, "norm2"
|
|
ffn, ffn_rname = module.ff, "ff"
|
|
pre_add_ffn_norm, pre_add_ffn_norm_rname = module.norm2_context, "norm2_context"
|
|
add_ffn, add_ffn_rname = module.ff_context, "ff_context"
|
|
else:
|
|
raise NotImplementedError(f"Unsupported module type: {type(module)}")
|
|
return DiffusionTransformerBlockStruct(
|
|
module=module,
|
|
parent=parent,
|
|
fname=fname,
|
|
idx=idx,
|
|
rname=rname,
|
|
rkey=rkey,
|
|
parallel=parallel,
|
|
pre_attn_norms=pre_attn_norms,
|
|
pre_attn_add_norms=pre_attn_add_norms,
|
|
attns=attns,
|
|
pre_ffn_norm=pre_ffn_norm,
|
|
ffn=ffn,
|
|
pre_add_ffn_norm=pre_add_ffn_norm,
|
|
add_ffn=add_ffn,
|
|
pre_attn_norm_rnames=pre_attn_norm_rnames,
|
|
pre_attn_add_norm_rnames=pre_attn_add_norm_rnames,
|
|
attn_rnames=attn_rnames,
|
|
pre_ffn_norm_rname=pre_ffn_norm_rname,
|
|
ffn_rname=ffn_rname,
|
|
pre_add_ffn_norm_rname=pre_add_ffn_norm_rname,
|
|
add_ffn_rname=add_ffn_rname,
|
|
norm_type=norm_type,
|
|
add_norm_type=add_norm_type,
|
|
)
|
|
|
|
@classmethod
|
|
def _get_default_key_map(cls) -> dict[str, set[str]]:
|
|
"""Get the default allowed keys."""
|
|
key_map: dict[str, set[str]] = defaultdict(set)
|
|
norm_rkey = norm_key = cls.norm_rkey
|
|
add_norm_rkey = add_norm_key = cls.add_norm_rkey
|
|
key_map[norm_rkey].add(norm_key)
|
|
key_map[add_norm_rkey].add(add_norm_key)
|
|
attn_cls = cls.attn_struct_cls
|
|
attn_key = attn_rkey = cls.attn_rkey
|
|
qkv_proj_key = qkv_proj_rkey = join_name(attn_key, attn_cls.qkv_proj_rkey, sep="_")
|
|
out_proj_key = out_proj_rkey = join_name(attn_key, attn_cls.out_proj_rkey, sep="_")
|
|
add_qkv_proj_key = add_qkv_proj_rkey = join_name(attn_key, attn_cls.add_qkv_proj_rkey, sep="_")
|
|
add_out_proj_key = add_out_proj_rkey = join_name(attn_key, attn_cls.add_out_proj_rkey, sep="_")
|
|
key_map[attn_rkey].add(qkv_proj_key)
|
|
key_map[attn_rkey].add(out_proj_key)
|
|
if attn_cls.add_qkv_proj_rkey.startswith("add_") and attn_cls.add_out_proj_rkey.startswith("add_"):
|
|
add_attn_rkey = join_name(attn_rkey, "add", sep="_")
|
|
key_map[add_attn_rkey].add(add_qkv_proj_key)
|
|
key_map[add_attn_rkey].add(add_out_proj_key)
|
|
key_map[qkv_proj_rkey].add(qkv_proj_key)
|
|
key_map[out_proj_rkey].add(out_proj_key)
|
|
key_map[add_qkv_proj_rkey].add(add_qkv_proj_key)
|
|
key_map[add_out_proj_rkey].add(add_out_proj_key)
|
|
ffn_cls = cls.ffn_struct_cls
|
|
ffn_key = ffn_rkey = cls.ffn_rkey
|
|
add_ffn_key = add_ffn_rkey = cls.add_ffn_rkey
|
|
up_proj_key = up_proj_rkey = join_name(ffn_key, ffn_cls.up_proj_rkey, sep="_")
|
|
down_proj_key = down_proj_rkey = join_name(ffn_key, ffn_cls.down_proj_rkey, sep="_")
|
|
add_up_proj_key = add_up_proj_rkey = join_name(add_ffn_key, ffn_cls.up_proj_rkey, sep="_")
|
|
add_down_proj_key = add_down_proj_rkey = join_name(add_ffn_key, ffn_cls.down_proj_rkey, sep="_")
|
|
key_map[ffn_rkey].add(up_proj_key)
|
|
key_map[ffn_rkey].add(down_proj_key)
|
|
key_map[add_ffn_rkey].add(add_up_proj_key)
|
|
key_map[add_ffn_rkey].add(add_down_proj_key)
|
|
key_map[up_proj_rkey].add(up_proj_key)
|
|
key_map[down_proj_rkey].add(down_proj_key)
|
|
key_map[add_up_proj_rkey].add(add_up_proj_key)
|
|
key_map[add_down_proj_rkey].add(add_down_proj_key)
|
|
return {k: v for k, v in key_map.items() if v}
|
|
|
|
|
|
@dataclass(kw_only=True)
|
|
class DiffusionTransformerStruct(BaseTransformerStruct, DiffusionBlockStruct):
|
|
|
|
proj_in_rkey: tp.ClassVar[str] = "transformer_proj_in"
|
|
proj_out_rkey: tp.ClassVar[str] = "transformer_proj_out"
|
|
transformer_block_rkey: tp.ClassVar[str] = ""
|
|
transformer_block_struct_cls: tp.ClassVar[type[DiffusionTransformerBlockStruct]] = DiffusionTransformerBlockStruct
|
|
|
|
|
|
module: Transformer2DModel = field(repr=False, kw_only=False)
|
|
|
|
norm_in: nn.GroupNorm | None
|
|
"""Input normalization"""
|
|
proj_in: nn.Linear | nn.Conv2d
|
|
"""Input projection"""
|
|
norm_out: nn.GroupNorm | None
|
|
"""Output normalization"""
|
|
proj_out: nn.Linear | nn.Conv2d
|
|
"""Output projection"""
|
|
transformer_blocks: nn.ModuleList = field(repr=False)
|
|
"""Transformer blocks"""
|
|
|
|
|
|
transformer_blocks_rname: str
|
|
|
|
|
|
transformer_blocks_name: str = field(init=False, repr=False)
|
|
transformer_block_names: list[str] = field(init=False, repr=False)
|
|
|
|
|
|
transformer_block_structs: list[DiffusionTransformerBlockStruct] = field(init=False, repr=False)
|
|
|
|
|
|
|
|
|
|
@property
|
|
def num_blocks(self) -> int:
|
|
return len(self.transformer_blocks)
|
|
|
|
@property
|
|
def block_structs(self) -> list[DiffusionBlockStruct]:
|
|
return self.transformer_block_structs
|
|
|
|
@property
|
|
def block_names(self) -> list[str]:
|
|
return self.transformer_block_names
|
|
|
|
|
|
|
|
def __post_init__(self):
|
|
super().__post_init__()
|
|
transformer_block_rnames = [
|
|
f"{self.transformer_blocks_rname}.{idx}" for idx in range(len(self.transformer_blocks))
|
|
]
|
|
self.transformer_blocks_name = join_name(self.name, self.transformer_blocks_rname)
|
|
self.transformer_block_names = [join_name(self.name, rname) for rname in transformer_block_rnames]
|
|
self.transformer_block_structs = [
|
|
self.transformer_block_struct_cls.construct(
|
|
layer,
|
|
parent=self,
|
|
fname="transformer_block",
|
|
rname=rname,
|
|
rkey=self.transformer_block_rkey,
|
|
idx=idx,
|
|
)
|
|
for idx, (layer, rname) in enumerate(zip(self.transformer_blocks, transformer_block_rnames, strict=True))
|
|
]
|
|
|
|
@staticmethod
|
|
def _default_construct(
|
|
module: Transformer2DModel,
|
|
/,
|
|
parent: BaseModuleStruct = None,
|
|
fname: str = "",
|
|
rname: str = "",
|
|
rkey: str = "",
|
|
idx: int = 0,
|
|
**kwargs,
|
|
) -> "DiffusionTransformerStruct":
|
|
if isinstance(module, Transformer2DModel):
|
|
assert module.is_input_continuous, "input must be continuous"
|
|
transformer_blocks, transformer_blocks_rname = module.transformer_blocks, "transformer_blocks"
|
|
norm_in, norm_in_rname = module.norm, "norm"
|
|
proj_in, proj_in_rname = module.proj_in, "proj_in"
|
|
proj_out, proj_out_rname = module.proj_out, "proj_out"
|
|
norm_out, norm_out_rname = None, ""
|
|
else:
|
|
raise NotImplementedError(f"Unsupported module type: {type(module)}")
|
|
return DiffusionTransformerStruct(
|
|
module=module,
|
|
parent=parent,
|
|
fname=fname,
|
|
idx=idx,
|
|
rname=rname,
|
|
rkey=rkey,
|
|
norm_in=norm_in,
|
|
proj_in=proj_in,
|
|
transformer_blocks=transformer_blocks,
|
|
proj_out=proj_out,
|
|
norm_out=norm_out,
|
|
norm_in_rname=norm_in_rname,
|
|
proj_in_rname=proj_in_rname,
|
|
transformer_blocks_rname=transformer_blocks_rname,
|
|
norm_out_rname=norm_out_rname,
|
|
proj_out_rname=proj_out_rname,
|
|
)
|
|
|
|
@classmethod
|
|
def _get_default_key_map(cls) -> dict[str, set[str]]:
|
|
"""Get the default allowed keys."""
|
|
key_map: dict[str, set[str]] = defaultdict(set)
|
|
proj_in_rkey = proj_in_key = cls.proj_in_rkey
|
|
proj_out_rkey = proj_out_key = cls.proj_out_rkey
|
|
key_map[proj_in_rkey].add(proj_in_key)
|
|
key_map[proj_out_rkey].add(proj_out_key)
|
|
block_cls = cls.transformer_block_struct_cls
|
|
block_key = block_rkey = cls.transformer_block_rkey
|
|
block_key_map = block_cls._get_default_key_map()
|
|
for rkey, keys in block_key_map.items():
|
|
rkey = join_name(block_rkey, rkey, sep="_")
|
|
for key in keys:
|
|
key = join_name(block_key, key, sep="_")
|
|
key_map[rkey].add(key)
|
|
return {k: v for k, v in key_map.items() if v}
|
|
|
|
|
|
@dataclass(kw_only=True)
|
|
class DiffusionResnetStruct(BaseModuleStruct):
|
|
|
|
conv_rkey: tp.ClassVar[str] = "conv"
|
|
shortcut_rkey: tp.ClassVar[str] = "shortcut"
|
|
time_proj_rkey: tp.ClassVar[str] = "time_proj"
|
|
|
|
|
|
module: ResnetBlock2D = field(repr=False, kw_only=False)
|
|
"""the module of Resnet"""
|
|
config: FeedForwardConfigStruct
|
|
|
|
norms: list[nn.GroupNorm]
|
|
convs: list[list[nn.Conv2d]]
|
|
shortcut: nn.Conv2d | None
|
|
time_proj: nn.Linear | None
|
|
|
|
|
|
norm_rnames: list[str]
|
|
conv_rnames: list[list[str]]
|
|
shortcut_rname: str
|
|
time_proj_rname: str
|
|
|
|
|
|
norm_names: list[str] = field(init=False, repr=False)
|
|
conv_names: list[list[str]] = field(init=False, repr=False)
|
|
shortcut_name: str = field(init=False, repr=False)
|
|
time_proj_name: str = field(init=False, repr=False)
|
|
|
|
|
|
conv_key: str = field(init=False, repr=False)
|
|
shortcut_key: str = field(init=False, repr=False)
|
|
time_proj_key: str = field(init=False, repr=False)
|
|
|
|
|
|
def __post_init__(self):
|
|
super().__post_init__()
|
|
self.norm_names = [join_name(self.name, rname) for rname in self.norm_rnames]
|
|
self.conv_names = [[join_name(self.name, rname) for rname in rnames] for rnames in self.conv_rnames]
|
|
self.shortcut_name = join_name(self.name, self.shortcut_rname)
|
|
self.time_proj_name = join_name(self.name, self.time_proj_rname)
|
|
self.conv_key = join_name(self.key, self.conv_rkey, sep="_")
|
|
self.shortcut_key = join_name(self.key, self.shortcut_rkey, sep="_")
|
|
self.time_proj_key = join_name(self.key, self.time_proj_rkey, sep="_")
|
|
|
|
def named_key_modules(self) -> tp.Generator[tp.Tuple[str, str, nn.Module, BaseModuleStruct, str], None, None]:
|
|
for convs, names in zip(self.convs, self.conv_names, strict=True):
|
|
for conv, name in zip(convs, names, strict=True):
|
|
yield self.conv_key, name, conv, self, "conv"
|
|
if self.shortcut is not None:
|
|
yield self.shortcut_key, self.shortcut_name, self.shortcut, self, "shortcut"
|
|
if self.time_proj is not None:
|
|
yield self.time_proj_key, self.time_proj_name, self.time_proj, self, "time_proj"
|
|
|
|
@staticmethod
|
|
def construct(
|
|
module: ResnetBlock2D,
|
|
/,
|
|
parent: BaseModuleStruct = None,
|
|
fname: str = "",
|
|
rname: str = "",
|
|
rkey: str = "",
|
|
idx: int = 0,
|
|
**kwargs,
|
|
) -> "DiffusionResnetStruct":
|
|
if isinstance(module, ResnetBlock2D):
|
|
assert module.upsample is None, "upsample must be None"
|
|
assert module.downsample is None, "downsample must be None"
|
|
act_type = module.nonlinearity.__class__.__name__.lower()
|
|
shifted = False
|
|
if isinstance(module.conv1, ConcatConv2d):
|
|
conv1_convs, conv1_names = [], []
|
|
for conv_idx, conv in enumerate(module.conv1.convs):
|
|
if isinstance(conv, ShiftedConv2d):
|
|
shifted = True
|
|
conv1_convs.append(conv.conv)
|
|
conv1_names.append(f"conv1.convs.{conv_idx}.conv")
|
|
else:
|
|
assert isinstance(conv, nn.Conv2d)
|
|
conv1_convs.append(conv)
|
|
conv1_names.append(f"conv1.convs.{conv_idx}")
|
|
elif isinstance(module.conv1, ShiftedConv2d):
|
|
shifted = True
|
|
conv1_convs = [module.conv1.conv]
|
|
conv1_names = ["conv1.conv"]
|
|
else:
|
|
assert isinstance(module.conv1, nn.Conv2d)
|
|
conv1_convs, conv1_names = [module.conv1], ["conv1"]
|
|
if isinstance(module.conv2, ConcatConv2d):
|
|
conv2_convs, conv2_names = [], []
|
|
for conv_idx, conv in enumerate(module.conv2.convs):
|
|
if isinstance(conv, ShiftedConv2d):
|
|
shifted = True
|
|
conv2_convs.append(conv.conv)
|
|
conv2_names.append(f"conv2.convs.{conv_idx}.conv")
|
|
else:
|
|
assert isinstance(conv, nn.Conv2d)
|
|
conv2_convs.append(conv)
|
|
conv2_names.append(f"conv2.convs.{conv_idx}")
|
|
elif isinstance(module.conv2, ShiftedConv2d):
|
|
shifted = True
|
|
conv2_convs = [module.conv2.conv]
|
|
conv2_names = ["conv2.conv"]
|
|
else:
|
|
assert isinstance(module.conv2, nn.Conv2d)
|
|
conv2_convs, conv2_names = [module.conv2], ["conv2"]
|
|
convs, conv_rnames = [conv1_convs, conv2_convs], [conv1_names, conv2_names]
|
|
norms, norm_rnames = [module.norm1, module.norm2], ["norm1", "norm2"]
|
|
shortcut, shortcut_rname = module.conv_shortcut, "" if module.conv_shortcut is None else "conv_shortcut"
|
|
time_proj, time_proj_rname = module.time_emb_proj, "" if module.time_emb_proj is None else "time_emb_proj"
|
|
if shifted:
|
|
assert all(hasattr(conv, "shifted") and conv.shifted for level_convs in convs for conv in level_convs)
|
|
act_type += "_shifted"
|
|
else:
|
|
raise NotImplementedError(f"Unsupported module type: {type(module)}")
|
|
config = FeedForwardConfigStruct(
|
|
hidden_size=convs[0][0].weight.shape[1],
|
|
intermediate_size=convs[0][0].weight.shape[0],
|
|
intermediate_act_type=act_type,
|
|
num_experts=1,
|
|
)
|
|
return DiffusionResnetStruct(
|
|
module=module,
|
|
parent=parent,
|
|
fname=fname,
|
|
idx=idx,
|
|
rname=rname,
|
|
rkey=rkey,
|
|
config=config,
|
|
norms=norms,
|
|
convs=convs,
|
|
shortcut=shortcut,
|
|
time_proj=time_proj,
|
|
norm_rnames=norm_rnames,
|
|
conv_rnames=conv_rnames,
|
|
shortcut_rname=shortcut_rname,
|
|
time_proj_rname=time_proj_rname,
|
|
)
|
|
|
|
@classmethod
|
|
def _get_default_key_map(cls) -> dict[str, set[str]]:
|
|
"""Get the default allowed keys."""
|
|
key_map: dict[str, set[str]] = defaultdict(set)
|
|
conv_key = conv_rkey = cls.conv_rkey
|
|
shortcut_key = shortcut_rkey = cls.shortcut_rkey
|
|
time_proj_key = time_proj_rkey = cls.time_proj_rkey
|
|
key_map[conv_rkey].add(conv_key)
|
|
key_map[shortcut_rkey].add(shortcut_key)
|
|
key_map[time_proj_rkey].add(time_proj_key)
|
|
return {k: v for k, v in key_map.items() if v}
|
|
|
|
|
|
@dataclass(kw_only=True)
|
|
class UNetBlockStruct(DiffusionBlockStruct):
|
|
class BlockType(enum.StrEnum):
|
|
DOWN = "down"
|
|
MID = "mid"
|
|
UP = "up"
|
|
|
|
|
|
resnet_rkey: tp.ClassVar[str] = "resblock"
|
|
sampler_rkey: tp.ClassVar[str] = "sample"
|
|
transformer_rkey: tp.ClassVar[str] = ""
|
|
resnet_struct_cls: tp.ClassVar[type[DiffusionResnetStruct]] = DiffusionResnetStruct
|
|
transformer_struct_cls: tp.ClassVar[type[DiffusionTransformerStruct]] = DiffusionTransformerStruct
|
|
|
|
|
|
parent: tp.Optional["UNetStruct"] = field(repr=False)
|
|
|
|
block_type: BlockType
|
|
|
|
|
|
resnets: nn.ModuleList = field(repr=False)
|
|
transformers: nn.ModuleList = field(repr=False)
|
|
sampler: nn.Conv2d | None
|
|
|
|
|
|
resnets_rname: str
|
|
transformers_rname: str
|
|
sampler_rname: str
|
|
|
|
|
|
resnets_name: str = field(init=False, repr=False)
|
|
transformers_name: str = field(init=False, repr=False)
|
|
sampler_name: str = field(init=False, repr=False)
|
|
resnet_names: list[str] = field(init=False, repr=False)
|
|
transformer_names: list[str] = field(init=False, repr=False)
|
|
|
|
|
|
sampler_key: str = field(init=False, repr=False)
|
|
|
|
|
|
resnet_structs: list[DiffusionResnetStruct] = field(init=False, repr=False)
|
|
transformer_structs: list[DiffusionTransformerStruct] = field(init=False, repr=False)
|
|
|
|
|
|
@property
|
|
def downsample(self) -> nn.Conv2d | None:
|
|
return self.sampler if self.is_downsample_block() else None
|
|
|
|
@property
|
|
def upsample(self) -> nn.Conv2d | None:
|
|
return self.sampler if self.is_upsample_block() else None
|
|
|
|
def __post_init__(self) -> None:
|
|
super().__post_init__()
|
|
if self.is_downsample_block():
|
|
assert len(self.resnets) == len(self.transformers) or len(self.transformers) == 0
|
|
if self.parent is not None and isinstance(self.parent, UNetStruct):
|
|
assert self.rname == f"{self.parent.down_blocks_rname}.{self.idx}"
|
|
elif self.is_mid_block():
|
|
assert len(self.resnets) == len(self.transformers) + 1 or len(self.transformers) == 0
|
|
if self.parent is not None and isinstance(self.parent, UNetStruct):
|
|
assert self.rname == self.parent.mid_block_name
|
|
assert self.idx == 0
|
|
else:
|
|
assert self.is_upsample_block(), f"Unsupported block type: {self.block_type}"
|
|
assert len(self.resnets) == len(self.transformers) or len(self.transformers) == 0
|
|
if self.parent is not None and isinstance(self.parent, UNetStruct):
|
|
assert self.rname == f"{self.parent.up_blocks_rname}.{self.idx}"
|
|
resnet_rnames = [f"{self.resnets_rname}.{idx}" for idx in range(len(self.resnets))]
|
|
transformer_rnames = [f"{self.transformers_rname}.{idx}" for idx in range(len(self.transformers))]
|
|
self.resnets_name = join_name(self.name, self.resnets_rname)
|
|
self.transformers_name = join_name(self.name, self.transformers_rname)
|
|
self.resnet_names = [join_name(self.name, rname) for rname in resnet_rnames]
|
|
self.transformer_names = [join_name(self.name, rname) for rname in transformer_rnames]
|
|
self.sampler_name = join_name(self.name, self.sampler_rname)
|
|
self.sampler_key = join_name(self.key, self.sampler_rkey, sep="_")
|
|
self.resnet_structs = [
|
|
self.resnet_struct_cls.construct(
|
|
resnet, parent=self, fname="resnet", rname=rname, rkey=self.resnet_rkey, idx=idx
|
|
)
|
|
for idx, (resnet, rname) in enumerate(zip(self.resnets, resnet_rnames, strict=True))
|
|
]
|
|
self.transformer_structs = [
|
|
self.transformer_struct_cls.construct(
|
|
transformer, parent=self, fname="transformer", rname=rname, rkey=self.transformer_rkey, idx=idx
|
|
)
|
|
for idx, (transformer, rname) in enumerate(zip(self.transformers, transformer_rnames, strict=True))
|
|
]
|
|
|
|
def is_downsample_block(self) -> bool:
|
|
return self.block_type == self.BlockType.DOWN
|
|
|
|
def is_mid_block(self) -> bool:
|
|
return self.block_type == self.BlockType.MID
|
|
|
|
def is_upsample_block(self) -> bool:
|
|
return self.block_type == self.BlockType.UP
|
|
|
|
def has_downsample(self) -> bool:
|
|
return self.is_downsample_block() and self.sampler is not None
|
|
|
|
def has_upsample(self) -> bool:
|
|
return self.is_upsample_block() and self.sampler is not None
|
|
|
|
def named_key_modules(self) -> tp.Generator[tp.Tuple[str, str, nn.Module, BaseModuleStruct, str], None, None]:
|
|
for resnet in self.resnet_structs:
|
|
yield from resnet.named_key_modules()
|
|
for transformer in self.transformer_structs:
|
|
yield from transformer.named_key_modules()
|
|
if self.sampler is not None:
|
|
yield self.sampler_key, self.sampler_name, self.sampler, self, "sampler"
|
|
|
|
def iter_attention_structs(self) -> tp.Generator[DiffusionAttentionStruct, None, None]:
|
|
for transformer in self.transformer_structs:
|
|
yield from transformer.iter_attention_structs()
|
|
|
|
def iter_transformer_block_structs(self) -> tp.Generator[DiffusionTransformerBlockStruct, None, None]:
|
|
for transformer in self.transformer_structs:
|
|
yield from transformer.iter_transformer_block_structs()
|
|
|
|
@staticmethod
|
|
def _default_construct(
|
|
module: UNET_BLOCK_CLS,
|
|
/,
|
|
parent: tp.Optional["UNetStruct"] = None,
|
|
fname: str = "",
|
|
rname: str = "",
|
|
rkey: str = "",
|
|
idx: int = 0,
|
|
**kwargs,
|
|
) -> "UNetBlockStruct":
|
|
resnets, resnets_rname = module.resnets, "resnets"
|
|
if isinstance(module, (DownBlock2D, CrossAttnDownBlock2D)):
|
|
block_type = UNetBlockStruct.BlockType.DOWN
|
|
if isinstance(module, CrossAttnDownBlock2D) and module.attentions is not None:
|
|
transformers, transformers_rname = module.attentions, "attentions"
|
|
else:
|
|
transformers, transformers_rname = [], ""
|
|
if module.downsamplers is None:
|
|
sampler, sampler_rname = None, ""
|
|
else:
|
|
assert len(module.downsamplers) == 1
|
|
downsampler = module.downsamplers[0]
|
|
assert isinstance(downsampler, Downsample2D)
|
|
sampler, sampler_rname = downsampler.conv, "downsamplers.0.conv"
|
|
assert isinstance(sampler, nn.Conv2d)
|
|
elif isinstance(module, (UNetMidBlock2D, UNetMidBlock2DCrossAttn)):
|
|
block_type = UNetBlockStruct.BlockType.MID
|
|
if (isinstance(module, UNetMidBlock2DCrossAttn) or module.add_attention) and module.attentions is not None:
|
|
transformers, transformers_rname = module.attentions, "attentions"
|
|
else:
|
|
transformers, transformers_rname = [], ""
|
|
sampler, sampler_rname = None, ""
|
|
elif isinstance(module, (UpBlock2D, CrossAttnUpBlock2D)):
|
|
block_type = UNetBlockStruct.BlockType.UP
|
|
if isinstance(module, CrossAttnUpBlock2D) and module.attentions is not None:
|
|
transformers, transformers_rname = module.attentions, "attentions"
|
|
else:
|
|
transformers, transformers_rname = [], ""
|
|
if module.upsamplers is None:
|
|
sampler, sampler_rname = None, ""
|
|
else:
|
|
assert len(module.upsamplers) == 1
|
|
upsampler = module.upsamplers[0]
|
|
assert isinstance(upsampler, Upsample2D)
|
|
sampler, sampler_rname = upsampler.conv, "upsamplers.0.conv"
|
|
assert isinstance(sampler, nn.Conv2d)
|
|
else:
|
|
raise NotImplementedError(f"Unsupported module type: {type(module)}")
|
|
return UNetBlockStruct(
|
|
module=module,
|
|
parent=parent,
|
|
fname=fname,
|
|
idx=idx,
|
|
rname=rname,
|
|
rkey=rkey,
|
|
block_type=block_type,
|
|
resnets=resnets,
|
|
transformers=transformers,
|
|
sampler=sampler,
|
|
resnets_rname=resnets_rname,
|
|
transformers_rname=transformers_rname,
|
|
sampler_rname=sampler_rname,
|
|
)
|
|
|
|
@classmethod
|
|
def _get_default_key_map(cls) -> dict[str, set[str]]:
|
|
"""Get the default allowed keys."""
|
|
key_map: dict[str, set[str]] = defaultdict(set)
|
|
resnet_cls = cls.resnet_struct_cls
|
|
resnet_key = resnet_rkey = cls.resnet_rkey
|
|
resnet_key_map = resnet_cls._get_default_key_map()
|
|
for rkey, keys in resnet_key_map.items():
|
|
rkey = join_name(resnet_rkey, rkey, sep="_")
|
|
for key in keys:
|
|
key = join_name(resnet_key, key, sep="_")
|
|
key_map[rkey].add(key)
|
|
key_map[resnet_rkey].add(key)
|
|
transformer_cls = cls.transformer_struct_cls
|
|
transformer_key = transformer_rkey = cls.transformer_rkey
|
|
transformer_key_map = transformer_cls._get_default_key_map()
|
|
for rkey, keys in transformer_key_map.items():
|
|
trkey = join_name(transformer_rkey, rkey, sep="_")
|
|
for key in keys:
|
|
key = join_name(transformer_key, key, sep="_")
|
|
key_map[rkey].add(key)
|
|
key_map[trkey].add(key)
|
|
return {k: v for k, v in key_map.items() if v}
|
|
|
|
|
|
@dataclass(kw_only=True)
|
|
class UNetStruct(DiffusionModelStruct):
|
|
|
|
input_embed_rkey: tp.ClassVar[str] = "input_embed"
|
|
"""hidden_states = input_embed(hidden_states), e.g., conv_in"""
|
|
time_embed_rkey: tp.ClassVar[str] = "time_embed"
|
|
"""temb = time_embed(timesteps, hidden_states)"""
|
|
add_time_embed_rkey: tp.ClassVar[str] = "time_embed"
|
|
"""add_temb = add_time_embed(timesteps, encoder_hidden_states)"""
|
|
text_embed_rkey: tp.ClassVar[str] = "text_embed"
|
|
"""encoder_hidden_states = text_embed(encoder_hidden_states)"""
|
|
norm_out_rkey: tp.ClassVar[str] = "output_embed"
|
|
"""hidden_states = norm_out(hidden_states), e.g., conv_norm_out"""
|
|
proj_out_rkey: tp.ClassVar[str] = "output_embed"
|
|
"""hidden_states = output_embed(hidden_states), e.g., conv_out"""
|
|
down_block_rkey: tp.ClassVar[str] = "down"
|
|
mid_block_rkey: tp.ClassVar[str] = "mid"
|
|
up_block_rkey: tp.ClassVar[str] = "up"
|
|
down_block_struct_cls: tp.ClassVar[type[UNetBlockStruct]] = UNetBlockStruct
|
|
mid_block_struct_cls: tp.ClassVar[type[UNetBlockStruct]] = UNetBlockStruct
|
|
up_block_struct_cls: tp.ClassVar[type[UNetBlockStruct]] = UNetBlockStruct
|
|
|
|
|
|
|
|
|
|
input_embed: nn.Conv2d
|
|
time_embed: TimestepEmbedding
|
|
"""Time embedding"""
|
|
add_time_embed: (
|
|
TextTimeEmbedding
|
|
| TextImageTimeEmbedding
|
|
| TimestepEmbedding
|
|
| ImageTimeEmbedding
|
|
| ImageHintTimeEmbedding
|
|
| None
|
|
)
|
|
"""Additional time embedding"""
|
|
text_embed: nn.Linear | ImageProjection | TextImageProjection | None
|
|
"""Text embedding"""
|
|
|
|
norm_out: nn.GroupNorm | None
|
|
proj_out: nn.Conv2d
|
|
|
|
|
|
down_blocks: nn.ModuleList = field(repr=False)
|
|
mid_block: nn.Module = field(repr=False)
|
|
up_blocks: nn.ModuleList = field(repr=False)
|
|
|
|
|
|
input_embed_rname: str
|
|
time_embed_rname: str
|
|
add_time_embed_rname: str
|
|
text_embed_rname: str
|
|
norm_out_rname: str
|
|
proj_out_rname: str
|
|
down_blocks_rname: str
|
|
mid_block_rname: str
|
|
up_blocks_rname: str
|
|
|
|
|
|
input_embed_name: str = field(init=False, repr=False)
|
|
time_embed_name: str = field(init=False, repr=False)
|
|
add_time_embed_name: str = field(init=False, repr=False)
|
|
text_embed_name: str = field(init=False, repr=False)
|
|
norm_out_name: str = field(init=False, repr=False)
|
|
proj_out_name: str = field(init=False, repr=False)
|
|
down_blocks_name: str = field(init=False, repr=False)
|
|
mid_block_name: str = field(init=False, repr=False)
|
|
up_blocks_name: str = field(init=False, repr=False)
|
|
down_block_names: list[str] = field(init=False, repr=False)
|
|
up_block_names: list[str] = field(init=False, repr=False)
|
|
|
|
|
|
input_embed_key: str = field(init=False, repr=False)
|
|
time_embed_key: str = field(init=False, repr=False)
|
|
add_time_embed_key: str = field(init=False, repr=False)
|
|
text_embed_key: str = field(init=False, repr=False)
|
|
norm_out_key: str = field(init=False, repr=False)
|
|
proj_out_key: str = field(init=False, repr=False)
|
|
|
|
|
|
down_block_structs: list[UNetBlockStruct] = field(init=False, repr=False)
|
|
mid_block_struct: UNetBlockStruct = field(init=False, repr=False)
|
|
up_block_structs: list[UNetBlockStruct] = field(init=False, repr=False)
|
|
|
|
|
|
@property
|
|
def num_down_blocks(self) -> int:
|
|
return len(self.down_blocks)
|
|
|
|
@property
|
|
def num_up_blocks(self) -> int:
|
|
return len(self.up_blocks)
|
|
|
|
@property
|
|
def num_blocks(self) -> int:
|
|
return self.num_down_blocks + 1 + self.num_up_blocks
|
|
|
|
@property
|
|
def block_structs(self) -> list[UNetBlockStruct]:
|
|
return [*self.down_block_structs, self.mid_block_struct, *self.up_block_structs]
|
|
|
|
def __post_init__(self) -> None:
|
|
super().__post_init__()
|
|
down_block_rnames = [f"{self.down_blocks_rname}.{idx}" for idx in range(len(self.down_blocks))]
|
|
up_block_rnames = [f"{self.up_blocks_rname}.{idx}" for idx in range(len(self.up_blocks))]
|
|
self.down_blocks_name = join_name(self.name, self.down_blocks_rname)
|
|
self.mid_block_name = join_name(self.name, self.mid_block_rname)
|
|
self.up_blocks_name = join_name(self.name, self.up_blocks_rname)
|
|
self.down_block_names = [join_name(self.name, rname) for rname in down_block_rnames]
|
|
self.up_block_names = [join_name(self.name, rname) for rname in up_block_rnames]
|
|
self.pre_module_structs = {}
|
|
for fname in ("time_embed", "add_time_embed", "text_embed", "input_embed"):
|
|
module, rname, rkey = getattr(self, fname), getattr(self, f"{fname}_rname"), getattr(self, f"{fname}_rkey")
|
|
setattr(self, f"{fname}_key", join_name(self.key, rkey, sep="_"))
|
|
if module is not None or rname:
|
|
setattr(self, f"{fname}_name", join_name(self.name, rname))
|
|
else:
|
|
setattr(self, f"{fname}_name", "")
|
|
if module is not None:
|
|
assert rname, f"rname of {fname} must not be empty"
|
|
self.pre_module_structs[getattr(self, f"{fname}_name")] = DiffusionModuleStruct(
|
|
module=module, parent=self, fname=fname, rname=rname, rkey=rkey
|
|
)
|
|
self.post_module_structs = {}
|
|
for fname in ("norm_out", "proj_out"):
|
|
module, rname, rkey = getattr(self, fname), getattr(self, f"{fname}_rname"), getattr(self, f"{fname}_rkey")
|
|
setattr(self, f"{fname}_key", join_name(self.key, rkey, sep="_"))
|
|
if module is not None or rname:
|
|
setattr(self, f"{fname}_name", join_name(self.name, rname))
|
|
else:
|
|
setattr(self, f"{fname}_name", "")
|
|
if module is not None:
|
|
self.post_module_structs[getattr(self, f"{fname}_name")] = DiffusionModuleStruct(
|
|
module=module, parent=self, fname=fname, rname=rname, rkey=rkey
|
|
)
|
|
self.down_block_structs = [
|
|
self.down_block_struct_cls.construct(
|
|
block, parent=self, fname="down_block", rname=rname, rkey=self.down_block_rkey, idx=idx
|
|
)
|
|
for idx, (block, rname) in enumerate(zip(self.down_blocks, down_block_rnames, strict=True))
|
|
]
|
|
self.mid_block_struct = self.mid_block_struct_cls.construct(
|
|
self.mid_block, parent=self, fname="mid_block", rname=self.mid_block_name, rkey=self.mid_block_rkey
|
|
)
|
|
self.up_block_structs = [
|
|
self.up_block_struct_cls.construct(
|
|
block, parent=self, fname="up_block", rname=rname, rkey=self.up_block_rkey, idx=idx
|
|
)
|
|
for idx, (block, rname) in enumerate(zip(self.up_blocks, up_block_rnames, strict=True))
|
|
]
|
|
|
|
def get_prev_module_keys(self) -> tuple[str, ...]:
|
|
return tuple({self.input_embed_key, self.time_embed_key, self.add_time_embed_key, self.text_embed_key})
|
|
|
|
def get_post_module_keys(self) -> tuple[str, ...]:
|
|
return tuple({self.norm_out_key, self.proj_out_key})
|
|
|
|
def _get_iter_block_activations_args(
|
|
self, **input_kwargs
|
|
) -> tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]:
|
|
layers, layer_structs, recomputes, use_prev_layer_outputs = [], [], [], []
|
|
num_down_blocks = len(self.down_blocks)
|
|
num_up_blocks = len(self.up_blocks)
|
|
layers.extend(self.down_blocks)
|
|
layer_structs.extend(self.down_block_structs)
|
|
use_prev_layer_outputs.append(False)
|
|
use_prev_layer_outputs.extend([True] * (num_down_blocks - 1))
|
|
recomputes.append(False)
|
|
|
|
_mid_block_additional_residual = input_kwargs.get("mid_block_additional_residual", None)
|
|
_down_block_additional_residuals = input_kwargs.get("down_block_additional_residuals", None)
|
|
_is_adapter = input_kwargs.get("down_intrablock_additional_residuals", None) is not None
|
|
if not _is_adapter and _mid_block_additional_residual is None and _down_block_additional_residuals is not None:
|
|
_is_adapter = True
|
|
for down_block in self.down_blocks:
|
|
if hasattr(down_block, "has_cross_attention") and down_block.has_cross_attention:
|
|
|
|
recomputes.append(False)
|
|
elif _is_adapter:
|
|
|
|
recomputes.append(True)
|
|
else:
|
|
|
|
recomputes.append(False)
|
|
|
|
layers.append(self.mid_block)
|
|
layer_structs.append(self.mid_block_struct)
|
|
use_prev_layer_outputs.append(False)
|
|
|
|
layers.extend(self.up_blocks)
|
|
layer_structs.extend(self.up_block_structs)
|
|
use_prev_layer_outputs.append(False)
|
|
use_prev_layer_outputs.extend([True] * (num_up_blocks - 1))
|
|
recomputes += [True] * num_up_blocks
|
|
return layers, layer_structs, recomputes, use_prev_layer_outputs
|
|
|
|
@staticmethod
|
|
def _default_construct(
|
|
module: tp.Union[UNET_PIPELINE_CLS, UNET_CLS],
|
|
/,
|
|
parent: tp.Optional[BaseModuleStruct] = None,
|
|
fname: str = "",
|
|
rname: str = "",
|
|
rkey: str = "",
|
|
idx: int = 0,
|
|
**kwargs,
|
|
) -> "UNetStruct":
|
|
if isinstance(module, UNET_PIPELINE_CLS):
|
|
module = module.unet
|
|
if isinstance(module, (UNet2DConditionModel, UNet2DModel)):
|
|
input_embed, time_embed = module.conv_in, module.time_embedding
|
|
input_embed_rname, time_embed_rname = "conv_in", "time_embedding"
|
|
text_embed, text_embed_rname = None, ""
|
|
add_time_embed, add_time_embed_rname = None, ""
|
|
if hasattr(module, "encoder_hid_proj"):
|
|
text_embed, text_embed_rname = module.encoder_hid_proj, "encoder_hid_proj"
|
|
if hasattr(module, "add_embedding"):
|
|
add_time_embed, add_time_embed_rname = module.add_embedding, "add_embedding"
|
|
norm_out, norm_out_rname = module.conv_norm_out, "conv_norm_out"
|
|
proj_out, proj_out_rname = module.conv_out, "conv_out"
|
|
down_blocks, down_blocks_rname = module.down_blocks, "down_blocks"
|
|
mid_block, mid_block_rname = module.mid_block, "mid_block"
|
|
up_blocks, up_blocks_rname = module.up_blocks, "up_blocks"
|
|
return UNetStruct(
|
|
module=module,
|
|
parent=parent,
|
|
fname=fname,
|
|
idx=idx,
|
|
rname=rname,
|
|
rkey=rkey,
|
|
input_embed=input_embed,
|
|
time_embed=time_embed,
|
|
add_time_embed=add_time_embed,
|
|
text_embed=text_embed,
|
|
norm_out=norm_out,
|
|
proj_out=proj_out,
|
|
down_blocks=down_blocks,
|
|
mid_block=mid_block,
|
|
up_blocks=up_blocks,
|
|
input_embed_rname=input_embed_rname,
|
|
time_embed_rname=time_embed_rname,
|
|
add_time_embed_rname=add_time_embed_rname,
|
|
text_embed_rname=text_embed_rname,
|
|
norm_out_rname=norm_out_rname,
|
|
proj_out_rname=proj_out_rname,
|
|
down_blocks_rname=down_blocks_rname,
|
|
mid_block_rname=mid_block_rname,
|
|
up_blocks_rname=up_blocks_rname,
|
|
)
|
|
raise NotImplementedError(f"Unsupported module type: {type(module)}")
|
|
|
|
@classmethod
|
|
def _get_default_key_map(cls) -> dict[str, set[str]]:
|
|
"""Get the default allowed keys."""
|
|
key_map: dict[str, set[str]] = defaultdict(set)
|
|
for idx, (block_key, block_cls) in enumerate(
|
|
(
|
|
(cls.down_block_rkey, cls.down_block_struct_cls),
|
|
(cls.mid_block_rkey, cls.mid_block_struct_cls),
|
|
(cls.up_block_rkey, cls.up_block_struct_cls),
|
|
)
|
|
):
|
|
block_key_map: dict[str, set[str]] = defaultdict(set)
|
|
if idx != 1:
|
|
sampler_key = join_name(block_key, block_cls.sampler_rkey, sep="_")
|
|
sampler_rkey = block_cls.sampler_rkey
|
|
block_key_map[sampler_rkey].add(sampler_key)
|
|
_block_key_map = block_cls._get_default_key_map()
|
|
for rkey, keys in _block_key_map.items():
|
|
for key in keys:
|
|
key = join_name(block_key, key, sep="_")
|
|
block_key_map[rkey].add(key)
|
|
for rkey, keys in block_key_map.items():
|
|
key_map[rkey].update(keys)
|
|
if block_key:
|
|
key_map[block_key].update(keys)
|
|
keys: set[str] = set()
|
|
keys.add(cls.input_embed_rkey)
|
|
keys.add(cls.time_embed_rkey)
|
|
keys.add(cls.add_time_embed_rkey)
|
|
keys.add(cls.text_embed_rkey)
|
|
keys.add(cls.norm_out_rkey)
|
|
keys.add(cls.proj_out_rkey)
|
|
for mapped_keys in key_map.values():
|
|
for key in mapped_keys:
|
|
keys.add(key)
|
|
if "embed" not in keys and "embed" not in key_map:
|
|
key_map["embed"].add(cls.input_embed_rkey)
|
|
key_map["embed"].add(cls.time_embed_rkey)
|
|
key_map["embed"].add(cls.add_time_embed_rkey)
|
|
key_map["embed"].add(cls.text_embed_rkey)
|
|
key_map["embed"].add(cls.norm_out_rkey)
|
|
key_map["embed"].add(cls.proj_out_rkey)
|
|
for key in keys:
|
|
if key in key_map:
|
|
key_map[key].clear()
|
|
key_map[key].add(key)
|
|
return {k: v for k, v in key_map.items() if v}
|
|
|
|
|
|
@dataclass(kw_only=True)
|
|
class DiTStruct(DiffusionModelStruct, DiffusionTransformerStruct):
|
|
|
|
input_embed_rkey: tp.ClassVar[str] = "input_embed"
|
|
"""hidden_states = input_embed(hidden_states), e.g., conv_in"""
|
|
time_embed_rkey: tp.ClassVar[str] = "time_embed"
|
|
"""temb = time_embed(timesteps)"""
|
|
text_embed_rkey: tp.ClassVar[str] = "text_embed"
|
|
"""encoder_hidden_states = text_embed(encoder_hidden_states)"""
|
|
norm_in_rkey: tp.ClassVar[str] = "input_embed"
|
|
"""hidden_states = norm_in(hidden_states)"""
|
|
proj_in_rkey: tp.ClassVar[str] = "input_embed"
|
|
"""hidden_states = proj_in(hidden_states)"""
|
|
norm_out_rkey: tp.ClassVar[str] = "output_embed"
|
|
"""hidden_states = norm_out(hidden_states)"""
|
|
proj_out_rkey: tp.ClassVar[str] = "output_embed"
|
|
"""hidden_states = proj_out(hidden_states)"""
|
|
transformer_block_rkey: tp.ClassVar[str] = ""
|
|
|
|
|
|
|
|
input_embed: PatchEmbed
|
|
time_embed: AdaLayerNormSingle | CombinedTimestepTextProjEmbeddings | TimestepEmbedding
|
|
text_embed: PixArtAlphaTextProjection | nn.Linear
|
|
norm_in: None = field(init=False, repr=False, default=None)
|
|
proj_in: None = field(init=False, repr=False, default=None)
|
|
norm_out: nn.LayerNorm | AdaLayerNormContinuous | None
|
|
proj_out: nn.Linear
|
|
|
|
|
|
input_embed_rname: str
|
|
time_embed_rname: str
|
|
text_embed_rname: str
|
|
norm_in_rname: str = field(init=False, repr=False, default="")
|
|
proj_in_rname: str = field(init=False, repr=False, default="")
|
|
norm_out_rname: str
|
|
proj_out_rname: str
|
|
|
|
|
|
input_embed_name: str = field(init=False, repr=False)
|
|
time_embed_name: str = field(init=False, repr=False)
|
|
text_embed_name: str = field(init=False, repr=False)
|
|
|
|
|
|
input_embed_key: str = field(init=False, repr=False)
|
|
time_embed_key: str = field(init=False, repr=False)
|
|
text_embed_key: str = field(init=False, repr=False)
|
|
norm_out_key: str = field(init=False, repr=False)
|
|
|
|
|
|
@property
|
|
def num_blocks(self) -> int:
|
|
return len(self.transformer_blocks)
|
|
|
|
@property
|
|
def block_structs(self) -> list[DiffusionTransformerBlockStruct]:
|
|
return self.transformer_block_structs
|
|
|
|
@property
|
|
def block_names(self) -> list[str]:
|
|
return self.transformer_block_names
|
|
|
|
def __post_init__(self) -> None:
|
|
super().__post_init__()
|
|
self.pre_module_structs = {}
|
|
for fname in ("input_embed", "time_embed", "text_embed"):
|
|
module, rname, rkey = getattr(self, fname), getattr(self, f"{fname}_rname"), getattr(self, f"{fname}_rkey")
|
|
setattr(self, f"{fname}_key", join_name(self.key, rkey, sep="_"))
|
|
if module is not None or rname:
|
|
setattr(self, f"{fname}_name", join_name(self.name, rname))
|
|
else:
|
|
setattr(self, f"{fname}_name", "")
|
|
if module is not None:
|
|
self.pre_module_structs.setdefault(
|
|
getattr(self, f"{fname}_name"),
|
|
DiffusionModuleStruct(module=module, parent=self, fname=fname, rname=rname, rkey=rkey),
|
|
)
|
|
self.post_module_structs = {}
|
|
self.norm_out_key = join_name(self.key, self.norm_out_rkey, sep="_")
|
|
for fname in ("norm_out", "proj_out"):
|
|
module, rname, rkey = getattr(self, fname), getattr(self, f"{fname}_rname"), getattr(self, f"{fname}_rkey")
|
|
if module is not None:
|
|
self.post_module_structs.setdefault(
|
|
getattr(self, f"{fname}_name"),
|
|
DiffusionModuleStruct(module=module, parent=self, fname=fname, rname=rname, rkey=rkey),
|
|
)
|
|
|
|
def get_prev_module_keys(self) -> tuple[str, ...]:
|
|
return tuple({self.input_embed_key, self.time_embed_key, self.text_embed_key})
|
|
|
|
def get_post_module_keys(self) -> tuple[str, ...]:
|
|
return tuple({self.norm_out_key, self.proj_out_key})
|
|
|
|
def _get_iter_block_activations_args(
|
|
self, **input_kwargs
|
|
) -> tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]:
|
|
"""
|
|
Get the arguments for iterating over the layers and their activations.
|
|
|
|
Args:
|
|
skip_pre_modules (`bool`):
|
|
Whether to skip the pre-modules
|
|
skip_post_modules (`bool`):
|
|
Whether to skip the post-modules
|
|
|
|
Returns:
|
|
`tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]`:
|
|
the layers, the layer structs, the recomputes, and the use_prev_layer_outputs
|
|
"""
|
|
layers, layer_structs, recomputes, use_prev_layer_outputs = [], [], [], []
|
|
layers.extend(self.transformer_blocks)
|
|
layer_structs.extend(self.transformer_block_structs)
|
|
use_prev_layer_outputs.append(False)
|
|
use_prev_layer_outputs.extend([True] * (len(self.transformer_blocks) - 1))
|
|
recomputes.extend([False] * len(self.transformer_blocks))
|
|
return layers, layer_structs, recomputes, use_prev_layer_outputs
|
|
|
|
@staticmethod
|
|
def _default_construct(
|
|
module: tp.Union[DIT_PIPELINE_CLS, DIT_CLS],
|
|
/,
|
|
parent: tp.Optional[BaseModuleStruct] = None,
|
|
fname: str = "",
|
|
rname: str = "",
|
|
rkey: str = "",
|
|
idx: int = 0,
|
|
**kwargs,
|
|
) -> "DiTStruct":
|
|
if isinstance(module, DIT_PIPELINE_CLS):
|
|
module = module.transformer
|
|
if isinstance(module, FluxTransformer2DModel):
|
|
return FluxStruct.construct(module, parent=parent, fname=fname, rname=rname, rkey=rkey, idx=idx, **kwargs)
|
|
else:
|
|
if isinstance(module, PixArtTransformer2DModel):
|
|
input_embed, input_embed_rname = module.pos_embed, "pos_embed"
|
|
time_embed, time_embed_rname = module.adaln_single, "adaln_single"
|
|
text_embed, text_embed_rname = module.caption_projection, "caption_projection"
|
|
norm_out, norm_out_rname = module.norm_out, "norm_out"
|
|
proj_out, proj_out_rname = module.proj_out, "proj_out"
|
|
transformer_blocks, transformer_blocks_rname = module.transformer_blocks, "transformer_blocks"
|
|
|
|
|
|
|
|
elif isinstance(module, SanaTransformer2DModel):
|
|
input_embed, input_embed_rname = module.patch_embed, "patch_embed"
|
|
time_embed, time_embed_rname = module.time_embed, "time_embed"
|
|
text_embed, text_embed_rname = module.caption_projection, "caption_projection"
|
|
norm_out, norm_out_rname = module.norm_out, "norm_out"
|
|
proj_out, proj_out_rname = module.proj_out, "proj_out"
|
|
transformer_blocks, transformer_blocks_rname = module.transformer_blocks, "transformer_blocks"
|
|
elif isinstance(module, SD3Transformer2DModel):
|
|
input_embed, input_embed_rname = module.pos_embed, "pos_embed"
|
|
time_embed, time_embed_rname = module.time_text_embed, "time_text_embed"
|
|
text_embed, text_embed_rname = module.context_embedder, "context_embedder"
|
|
norm_out, norm_out_rname = module.norm_out, "norm_out"
|
|
proj_out, proj_out_rname = module.proj_out, "proj_out"
|
|
transformer_blocks, transformer_blocks_rname = module.transformer_blocks, "transformer_blocks"
|
|
else:
|
|
raise NotImplementedError(f"Unsupported module type: {type(module)}")
|
|
return DiTStruct(
|
|
module=module,
|
|
parent=parent,
|
|
fname=fname,
|
|
idx=idx,
|
|
rname=rname,
|
|
rkey=rkey,
|
|
input_embed=input_embed,
|
|
time_embed=time_embed,
|
|
text_embed=text_embed,
|
|
transformer_blocks=transformer_blocks,
|
|
norm_out=norm_out,
|
|
proj_out=proj_out,
|
|
input_embed_rname=input_embed_rname,
|
|
time_embed_rname=time_embed_rname,
|
|
text_embed_rname=text_embed_rname,
|
|
norm_out_rname=norm_out_rname,
|
|
proj_out_rname=proj_out_rname,
|
|
transformer_blocks_rname=transformer_blocks_rname,
|
|
)
|
|
|
|
@classmethod
|
|
def _get_default_key_map(cls) -> dict[str, set[str]]:
|
|
"""Get the default allowed keys."""
|
|
key_map: dict[str, set[str]] = defaultdict(set)
|
|
block_cls = cls.transformer_block_struct_cls
|
|
block_key = block_rkey = cls.transformer_block_rkey
|
|
block_key_map = block_cls._get_default_key_map()
|
|
for rkey, keys in block_key_map.items():
|
|
brkey = join_name(block_rkey, rkey, sep="_")
|
|
for key in keys:
|
|
key = join_name(block_key, key, sep="_")
|
|
key_map[rkey].add(key)
|
|
key_map[brkey].add(key)
|
|
if block_rkey:
|
|
key_map[block_rkey].add(key)
|
|
keys: set[str] = set()
|
|
keys.add(cls.input_embed_rkey)
|
|
keys.add(cls.time_embed_rkey)
|
|
keys.add(cls.text_embed_rkey)
|
|
keys.add(cls.norm_in_rkey)
|
|
keys.add(cls.proj_in_rkey)
|
|
keys.add(cls.norm_out_rkey)
|
|
keys.add(cls.proj_out_rkey)
|
|
for mapped_keys in key_map.values():
|
|
for key in mapped_keys:
|
|
keys.add(key)
|
|
if "embed" not in keys and "embed" not in key_map:
|
|
key_map["embed"].add(cls.input_embed_rkey)
|
|
key_map["embed"].add(cls.time_embed_rkey)
|
|
key_map["embed"].add(cls.text_embed_rkey)
|
|
key_map["embed"].add(cls.norm_in_rkey)
|
|
key_map["embed"].add(cls.proj_in_rkey)
|
|
key_map["embed"].add(cls.norm_out_rkey)
|
|
key_map["embed"].add(cls.proj_out_rkey)
|
|
for key in keys:
|
|
if key in key_map:
|
|
key_map[key].clear()
|
|
key_map[key].add(key)
|
|
return {k: v for k, v in key_map.items() if v}
|
|
|
|
|
|
@dataclass(kw_only=True)
|
|
class FluxStruct(DiTStruct):
|
|
|
|
single_transformer_block_rkey: tp.ClassVar[str] = ""
|
|
single_transformer_block_struct_cls: tp.ClassVar[type[DiffusionTransformerBlockStruct]] = (
|
|
DiffusionTransformerBlockStruct
|
|
)
|
|
|
|
|
|
module: FluxTransformer2DModel = field(repr=False, kw_only=False)
|
|
"""the module of FluxTransformer2DModel"""
|
|
|
|
input_embed: nn.Linear
|
|
time_embed: CombinedTimestepGuidanceTextProjEmbeddings | CombinedTimestepTextProjEmbeddings
|
|
text_embed: nn.Linear
|
|
single_transformer_blocks: nn.ModuleList = field(repr=False)
|
|
|
|
|
|
single_transformer_blocks_rname: str
|
|
|
|
|
|
single_transformer_blocks_name: str = field(init=False, repr=False)
|
|
single_transformer_block_names: list[str] = field(init=False, repr=False)
|
|
|
|
|
|
single_transformer_block_structs: list[DiffusionTransformerBlockStruct] = field(init=False)
|
|
|
|
|
|
@property
|
|
def num_blocks(self) -> int:
|
|
return len(self.transformer_block_structs) + len(self.single_transformer_block_structs)
|
|
|
|
@property
|
|
def block_structs(self) -> list[DiffusionTransformerBlockStruct]:
|
|
return [*self.transformer_block_structs, *self.single_transformer_block_structs]
|
|
|
|
@property
|
|
def block_names(self) -> list[str]:
|
|
return [*self.transformer_block_names, *self.single_transformer_block_names]
|
|
|
|
def __post_init__(self) -> None:
|
|
super().__post_init__()
|
|
single_transformer_block_rnames = [
|
|
f"{self.single_transformer_blocks_rname}.{idx}" for idx in range(len(self.single_transformer_blocks))
|
|
]
|
|
self.single_transformer_blocks_name = join_name(self.name, self.single_transformer_blocks_rname)
|
|
self.single_transformer_block_names = [join_name(self.name, rname) for rname in single_transformer_block_rnames]
|
|
self.single_transformer_block_structs = [
|
|
self.single_transformer_block_struct_cls.construct(
|
|
block,
|
|
parent=self,
|
|
fname="single_transformer_block",
|
|
rname=rname,
|
|
rkey=self.single_transformer_block_rkey,
|
|
idx=idx,
|
|
)
|
|
for idx, (block, rname) in enumerate(
|
|
zip(self.single_transformer_blocks, single_transformer_block_rnames, strict=True)
|
|
)
|
|
]
|
|
|
|
def _get_iter_block_activations_args(
|
|
self, **input_kwargs
|
|
) -> tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]:
|
|
layers, layer_structs, recomputes, use_prev_layer_outputs = super()._get_iter_block_activations_args()
|
|
layers.extend(self.single_transformer_blocks)
|
|
layer_structs.extend(self.single_transformer_block_structs)
|
|
use_prev_layer_outputs.append(False)
|
|
use_prev_layer_outputs.extend([True] * (len(self.single_transformer_blocks) - 1))
|
|
recomputes.extend([False] * len(self.single_transformer_blocks))
|
|
return layers, layer_structs, recomputes, use_prev_layer_outputs
|
|
|
|
@staticmethod
|
|
def _default_construct(
|
|
module: tp.Union[FluxPipeline, FluxKontextPipeline, FluxControlPipeline, FluxTransformer2DModel],
|
|
/,
|
|
parent: tp.Optional[BaseModuleStruct] = None,
|
|
fname: str = "",
|
|
rname: str = "",
|
|
rkey: str = "",
|
|
idx: int = 0,
|
|
**kwargs,
|
|
) -> "FluxStruct":
|
|
if isinstance(module, (FluxPipeline, FluxKontextPipeline, FluxControlPipeline)):
|
|
module = module.transformer
|
|
if isinstance(module, FluxTransformer2DModel):
|
|
input_embed, time_embed, text_embed = module.x_embedder, module.time_text_embed, module.context_embedder
|
|
input_embed_rname, time_embed_rname, text_embed_rname = "x_embedder", "time_text_embed", "context_embedder"
|
|
norm_out, norm_out_rname = module.norm_out, "norm_out"
|
|
proj_out, proj_out_rname = module.proj_out, "proj_out"
|
|
transformer_blocks, transformer_blocks_rname = module.transformer_blocks, "transformer_blocks"
|
|
single_transformer_blocks = module.single_transformer_blocks
|
|
single_transformer_blocks_rname = "single_transformer_blocks"
|
|
return FluxStruct(
|
|
module=module,
|
|
parent=parent,
|
|
fname=fname,
|
|
idx=idx,
|
|
rname=rname,
|
|
rkey=rkey,
|
|
input_embed=input_embed,
|
|
time_embed=time_embed,
|
|
text_embed=text_embed,
|
|
transformer_blocks=transformer_blocks,
|
|
single_transformer_blocks=single_transformer_blocks,
|
|
norm_out=norm_out,
|
|
proj_out=proj_out,
|
|
input_embed_rname=input_embed_rname,
|
|
time_embed_rname=time_embed_rname,
|
|
text_embed_rname=text_embed_rname,
|
|
norm_out_rname=norm_out_rname,
|
|
proj_out_rname=proj_out_rname,
|
|
transformer_blocks_rname=transformer_blocks_rname,
|
|
single_transformer_blocks_rname=single_transformer_blocks_rname,
|
|
)
|
|
raise NotImplementedError(f"Unsupported module type: {type(module)}")
|
|
|
|
@classmethod
|
|
def _get_default_key_map(cls) -> dict[str, set[str]]:
|
|
"""Get the default allowed keys."""
|
|
key_map: dict[str, set[str]] = defaultdict(set)
|
|
for block_rkey, block_cls in (
|
|
(cls.transformer_block_rkey, cls.transformer_block_struct_cls),
|
|
(cls.single_transformer_block_rkey, cls.single_transformer_block_struct_cls),
|
|
):
|
|
block_key = block_rkey
|
|
block_key_map = block_cls._get_default_key_map()
|
|
for rkey, keys in block_key_map.items():
|
|
brkey = join_name(block_rkey, rkey, sep="_")
|
|
for key in keys:
|
|
key = join_name(block_key, key, sep="_")
|
|
key_map[rkey].add(key)
|
|
key_map[brkey].add(key)
|
|
if block_rkey:
|
|
key_map[block_rkey].add(key)
|
|
keys: set[str] = set()
|
|
keys.add(cls.input_embed_rkey)
|
|
keys.add(cls.time_embed_rkey)
|
|
keys.add(cls.text_embed_rkey)
|
|
keys.add(cls.norm_in_rkey)
|
|
keys.add(cls.proj_in_rkey)
|
|
keys.add(cls.norm_out_rkey)
|
|
keys.add(cls.proj_out_rkey)
|
|
for mapped_keys in key_map.values():
|
|
for key in mapped_keys:
|
|
keys.add(key)
|
|
if "embed" not in keys and "embed" not in key_map:
|
|
key_map["embed"].add(cls.input_embed_rkey)
|
|
key_map["embed"].add(cls.time_embed_rkey)
|
|
key_map["embed"].add(cls.text_embed_rkey)
|
|
key_map["embed"].add(cls.norm_in_rkey)
|
|
key_map["embed"].add(cls.proj_in_rkey)
|
|
key_map["embed"].add(cls.norm_out_rkey)
|
|
key_map["embed"].add(cls.proj_out_rkey)
|
|
for key in keys:
|
|
if key in key_map:
|
|
key_map[key].clear()
|
|
key_map[key].add(key)
|
|
return {k: v for k, v in key_map.items() if v}
|
|
|
|
|
|
DiffusionAttentionStruct.register_factory(Attention, DiffusionAttentionStruct._default_construct)
|
|
|
|
DiffusionFeedForwardStruct.register_factory(
|
|
(FeedForward, FluxSingleTransformerBlock, GLUMBConv), DiffusionFeedForwardStruct._default_construct
|
|
)
|
|
|
|
DiffusionTransformerBlockStruct.register_factory(DIT_BLOCK_CLS, DiffusionTransformerBlockStruct._default_construct)
|
|
|
|
UNetBlockStruct.register_factory(UNET_BLOCK_CLS, UNetBlockStruct._default_construct)
|
|
|
|
UNetStruct.register_factory(tp.Union[UNET_PIPELINE_CLS, UNET_CLS], UNetStruct._default_construct)
|
|
|
|
FluxStruct.register_factory(
|
|
tp.Union[FluxPipeline, FluxKontextPipeline, FluxControlPipeline, FluxTransformer2DModel], FluxStruct._default_construct
|
|
)
|
|
|
|
DiTStruct.register_factory(tp.Union[DIT_PIPELINE_CLS, DIT_CLS], DiTStruct._default_construct)
|
|
|
|
DiffusionTransformerStruct.register_factory(Transformer2DModel, DiffusionTransformerStruct._default_construct)
|
|
|
|
DiffusionModelStruct.register_factory(tp.Union[PIPELINE_CLS, MODEL_CLS], DiffusionModelStruct._default_construct)
|
|
|
|
|
|
DiffusionAttentionStruct.register_factory(ATTENTION_CLS, DiffusionAttentionStruct._default_construct) |