File size: 91,735 Bytes
5f212ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
# -*- coding: utf-8 -*-
"""Utility functions for Diffusion Models."""

import enum
import typing as tp
from abc import abstractmethod
from collections import OrderedDict, defaultdict
from dataclasses import dataclass, field

# region imports
import torch.nn as nn
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU, SwiGLU
from diffusers.models.attention import BasicTransformerBlock, FeedForward, JointTransformerBlock
from diffusers.models.attention_processor import Attention, SanaLinearAttnProcessor2_0
from diffusers.models.embeddings import (
    CombinedTimestepGuidanceTextProjEmbeddings,
    CombinedTimestepTextProjEmbeddings,
    ImageHintTimeEmbedding,
    ImageProjection,
    ImageTimeEmbedding,
    PatchEmbed,
    PixArtAlphaTextProjection,
    TextImageProjection,
    TextImageTimeEmbedding,
    TextTimeEmbedding,
    TimestepEmbedding,
)
from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormSingle, AdaLayerNormZero
from diffusers.models.resnet import Downsample2D, ResnetBlock2D, Upsample2D
from diffusers.models.transformers.pixart_transformer_2d import PixArtTransformer2DModel
from diffusers.models.transformers.sana_transformer import GLUMBConv, SanaTransformer2DModel, SanaTransformerBlock
from diffusers.models.transformers.transformer_2d import Transformer2DModel
from diffusers.models.transformers.transformer_flux import (
    FluxSingleTransformerBlock,
    FluxTransformer2DModel,
    FluxTransformerBlock,
    FluxAttention
)
from diffusers.models.transformers.transformer_sd3 import SD3Transformer2DModel
from diffusers.models.unets.unet_2d import UNet2DModel
from diffusers.models.unets.unet_2d_blocks import (
    CrossAttnDownBlock2D,
    CrossAttnUpBlock2D,
    DownBlock2D,
    UNetMidBlock2D,
    UNetMidBlock2DCrossAttn,
    UpBlock2D,
)
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.pipelines import (
    FluxControlPipeline,
    FluxFillPipeline,
    FluxPipeline,
    FluxKontextPipeline,
    PixArtAlphaPipeline,
    PixArtSigmaPipeline,
    SanaPipeline,
    StableDiffusion3Pipeline,
    StableDiffusionPipeline,
    StableDiffusionXLPipeline,
)

from deepcompressor.nn.patch.conv import ConcatConv2d, ShiftedConv2d
from deepcompressor.nn.patch.linear import ConcatLinear, ShiftedLinear
from deepcompressor.nn.struct.attn import (
    AttentionConfigStruct,
    AttentionStruct,
    BaseTransformerStruct,
    FeedForwardConfigStruct,
    FeedForwardStruct,
    TransformerBlockStruct,
)
from deepcompressor.nn.struct.base import BaseModuleStruct
from deepcompressor.utils.common import join_name

from .attention import DiffusionAttentionProcessor

# endregion


__all__ = ["DiffusionModelStruct", "DiffusionBlockStruct", "DiffusionModelStruct"]


DIT_BLOCK_CLS = tp.Union[
    BasicTransformerBlock,
    JointTransformerBlock,
    FluxSingleTransformerBlock,
    FluxTransformerBlock,
    SanaTransformerBlock,
]
UNET_BLOCK_CLS = tp.Union[
    DownBlock2D,
    CrossAttnDownBlock2D,
    UNetMidBlock2D,
    UNetMidBlock2DCrossAttn,
    UpBlock2D,
    CrossAttnUpBlock2D,
]
DIT_CLS = tp.Union[
    Transformer2DModel,
    PixArtTransformer2DModel,
    SD3Transformer2DModel,
    FluxTransformer2DModel,
    SanaTransformer2DModel,
]
UNET_CLS = tp.Union[UNet2DModel, UNet2DConditionModel]
MODEL_CLS = tp.Union[DIT_CLS, UNET_CLS]
UNET_PIPELINE_CLS = tp.Union[StableDiffusionPipeline, StableDiffusionXLPipeline]
DIT_PIPELINE_CLS = tp.Union[
    StableDiffusion3Pipeline,
    PixArtAlphaPipeline,
    PixArtSigmaPipeline,
    FluxPipeline,
    FluxKontextPipeline,
    FluxControlPipeline,
    FluxFillPipeline,
    SanaPipeline,
]
PIPELINE_CLS = tp.Union[UNET_PIPELINE_CLS, DIT_PIPELINE_CLS]

ATTENTION_CLS = tp.Union[  
    # existing types...  
    FluxAttention,  
]

@dataclass(kw_only=True)
class DiffusionModuleStruct(BaseModuleStruct):
    def named_key_modules(self) -> tp.Generator[tuple[str, str, nn.Module, BaseModuleStruct, str], None, None]:
        if isinstance(self.module, (nn.Linear, nn.Conv2d)):
            yield self.key, self.name, self.module, self.parent, self.fname
        else:
            for name, module in self.module.named_modules():
                if name and isinstance(module, (nn.Linear, nn.Conv2d)):
                    module_name = join_name(self.name, name)
                    field_name = join_name(self.fname, name)
                    yield self.key, module_name, module, self.parent, field_name


@dataclass(kw_only=True)
class DiffusionBlockStruct(BaseModuleStruct):
    @abstractmethod
    def iter_attention_structs(self) -> tp.Generator["DiffusionAttentionStruct", None, None]: ...

    @abstractmethod
    def iter_transformer_block_structs(self) -> tp.Generator["DiffusionTransformerBlockStruct", None, None]: ...


@dataclass(kw_only=True)
class DiffusionModelStruct(DiffusionBlockStruct):
    pre_module_structs: OrderedDict[str, DiffusionModuleStruct] = field(init=False, repr=False)
    post_module_structs: OrderedDict[str, DiffusionModuleStruct] = field(init=False, repr=False)

    @property
    @abstractmethod
    def num_blocks(self) -> int: ...

    @property
    @abstractmethod
    def block_structs(self) -> list[DiffusionBlockStruct]: ...

    @abstractmethod
    def get_prev_module_keys(self) -> tuple[str, ...]: ...

    @abstractmethod
    def get_post_module_keys(self) -> tuple[str, ...]: ...

    @abstractmethod
    def _get_iter_block_activations_args(

        self, **input_kwargs

    ) -> tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]: ...

    def _get_iter_pre_module_activations_args(

        self,

    ) -> tuple[list[nn.Module], list[DiffusionModuleStruct], list[bool], list[bool]]:
        layers, layer_structs, recomputes, use_prev_layer_outputs = [], [], [], []
        for layer_struct in self.pre_module_structs.values():
            layers.append(layer_struct.module)
            layer_structs.append(layer_struct)
            recomputes.append(False)
            use_prev_layer_outputs.append(False)
        return layers, layer_structs, recomputes, use_prev_layer_outputs

    def _get_iter_post_module_activations_args(

        self,

    ) -> tuple[list[nn.Module], list[DiffusionModuleStruct], list[bool], list[bool]]:
        layers, layer_structs, recomputes, use_prev_layer_outputs = [], [], [], []
        for layer_struct in self.post_module_structs.values():
            layers.append(layer_struct.module)
            layer_structs.append(layer_struct)
            recomputes.append(False)
            use_prev_layer_outputs.append(False)
        return layers, layer_structs, recomputes, use_prev_layer_outputs

    def get_iter_layer_activations_args(

        self, skip_pre_modules: bool, skip_post_modules: bool, **input_kwargs

    ) -> tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]:
        """

        Get the arguments for iterating over the layers and their activations.



        Args:

            skip_pre_modules (`bool`):

                Whether to skip the pre-modules

            skip_post_modules (`bool`):

                Whether to skip the post-modules



        Returns:

            `tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]`:

                the layers, the layer structs, the recomputes, and the use_prev_layer_outputs

        """
        layers, structs, recomputes, uses = [], [], [], []
        if not skip_pre_modules:
            layers, structs, recomputes, uses = self._get_iter_pre_module_activations_args()
        _layers, _structs, _recomputes, _uses = self._get_iter_block_activations_args(**input_kwargs)
        layers.extend(_layers)
        structs.extend(_structs)
        recomputes.extend(_recomputes)
        uses.extend(_uses)
        if not skip_post_modules:
            _layers, _structs, _recomputes, _uses = self._get_iter_post_module_activations_args()
            layers.extend(_layers)
            structs.extend(_structs)
            recomputes.extend(_recomputes)
            uses.extend(_uses)
        return layers, structs, recomputes, uses

    def named_key_modules(self) -> tp.Generator[tp.Tuple[str, str, nn.Module, BaseModuleStruct, str], None, None]:
        for module in self.pre_module_structs.values():
            yield from module.named_key_modules()
        for block in self.block_structs:
            yield from block.named_key_modules()
        for module in self.post_module_structs.values():
            yield from module.named_key_modules()

    def iter_attention_structs(self) -> tp.Generator["AttentionStruct", None, None]:
        for block in self.block_structs:
            yield from block.iter_attention_structs()

    def iter_transformer_block_structs(self) -> tp.Generator["DiffusionTransformerBlockStruct", None, None]:
        for block in self.block_structs:
            yield from block.iter_transformer_block_structs()

    def get_named_layers(

        self, skip_pre_modules: bool, skip_post_modules: bool, skip_blocks: bool = False

    ) -> OrderedDict[str, DiffusionBlockStruct | DiffusionModuleStruct]:
        named_layers = OrderedDict()
        if not skip_pre_modules:
            named_layers.update(self.pre_module_structs)
        if not skip_blocks:
            for block in self.block_structs:
                named_layers[block.name] = block
        if not skip_post_modules:
            named_layers.update(self.post_module_structs)
        return named_layers

    @staticmethod
    def _default_construct(

        module: tp.Union[PIPELINE_CLS, MODEL_CLS],

        /,

        parent: tp.Optional[BaseModuleStruct] = None,

        fname: str = "",

        rname: str = "",

        rkey: str = "",

        idx: int = 0,

        **kwargs,

    ) -> "DiffusionModelStruct":
        if isinstance(module, UNET_PIPELINE_CLS):
            module = module.unet
        elif isinstance(module, DIT_PIPELINE_CLS):
            module = module.transformer
        if isinstance(module, UNET_CLS):
            return UNetStruct.construct(module, parent=parent, fname=fname, rname=rname, rkey=rkey, idx=idx, **kwargs)
        elif isinstance(module, DIT_CLS):
            return DiTStruct.construct(module, parent=parent, fname=fname, rname=rname, rkey=rkey, idx=idx, **kwargs)
        raise NotImplementedError(f"Unsupported module type: {type(module)}")

    @classmethod
    def _get_default_key_map(cls) -> dict[str, set[str]]:
        unet_key_map = UNetStruct._get_default_key_map()
        dit_key_map = DiTStruct._get_default_key_map()
        flux_key_map = FluxStruct._get_default_key_map()
        key_map: dict[str, set[str]] = defaultdict(set)
        for rkey, keys in unet_key_map.items():
            key_map[rkey].update(keys)
        for rkey, keys in dit_key_map.items():
            key_map[rkey].update(keys)
        for rkey, keys in flux_key_map.items():
            key_map[rkey].update(keys)
        return {k: v for k, v in key_map.items() if v}

    @staticmethod
    def _simplify_keys(keys: tp.Iterable[str], *, key_map: dict[str, set[str]]) -> list[str]:
        """Simplify the keys based on the key map.



        Args:

            keys (`Iterable[str]`):

                The keys to simplify.

            key_map (`dict[str, set[str]]`):

                The key map.



        Returns:

            `list[str]`:

                The simplified keys.

        """
        # we first sort key_map by length of values in descending order
        key_map = dict(sorted(key_map.items(), key=lambda item: len(item[1]), reverse=True))
        ukeys, skeys = set(keys), set()
        for k, v in key_map.items():
            if k in ukeys:
                skeys.add(k)
                ukeys.discard(k)
                ukeys.difference_update(v)
                continue
            if ukeys.issuperset(v):
                skeys.add(k)
                ukeys.difference_update(v)
        assert not ukeys, f"Unrecognized keys: {ukeys}"
        return sorted(skeys)


@dataclass(kw_only=True)
class DiffusionAttentionStruct(AttentionStruct):
    module: Attention = field(repr=False, kw_only=False)
    """the module of AttentionBlock"""
    parent: tp.Optional["DiffusionTransformerBlockStruct"] = field(repr=False)

    def filter_kwargs(self, kwargs: dict) -> dict:
        """Filter layer kwargs to attn kwargs."""
        if isinstance(self.parent.module, BasicTransformerBlock):
            if kwargs.get("cross_attention_kwargs", None) is None:
                attn_kwargs = {}
            else:
                attn_kwargs = dict(kwargs["cross_attention_kwargs"].items())
            attn_kwargs.pop("gligen", None)
            if self.idx == 0:
                attn_kwargs["attention_mask"] = kwargs.get("attention_mask", None)
            else:
                attn_kwargs["attention_mask"] = kwargs.get("encoder_attention_mask", None)
        else:
            attn_kwargs = {}
        return attn_kwargs

    @staticmethod
    def _default_construct(

        module: Attention,

        /,

        parent: tp.Optional["DiffusionTransformerBlockStruct"] = None,

        fname: str = "",

        rname: str = "",

        rkey: str = "",

        idx: int = 0,

        **kwargs,

    ) -> "DiffusionAttentionStruct":
        if isinstance(module, FluxAttention):  
            # FluxAttention has different attribute names than standard attention  
            with_rope = True  
            num_query_heads = module.heads  # FluxAttention uses 'heads', not 'num_heads'  
            num_key_value_heads = module.heads  # FLUX typically uses same for q/k/v  
              
            # FluxAttention doesn't have 'to_out', but may have other output projections  
            # Check what output projection attributes actually exist  
            o_proj = None  
            o_proj_rname = ""  
              
            # Try to find the correct output projection  
            if hasattr(module, 'to_out') and module.to_out is not None:  
                o_proj = module.to_out[0] if isinstance(module.to_out, (list, tuple)) else module.to_out  
                o_proj_rname = "to_out.0" if isinstance(module.to_out, (list, tuple)) else "to_out"  
            elif hasattr(module, 'to_add_out'):  
                o_proj = module.to_add_out  
                o_proj_rname = "to_add_out"  
              
            q_proj, k_proj, v_proj = module.to_q, module.to_k, module.to_v  
            q_proj_rname, k_proj_rname, v_proj_rname = "to_q", "to_k", "to_v"  
            q, k, v = module.to_q, module.to_k, module.to_v  
            q_rname, k_rname, v_rname = "to_q", "to_k", "to_v"  
              
            # Handle the add_* projections that FluxAttention has  
            add_q_proj = getattr(module, "add_q_proj", None)  
            add_k_proj = getattr(module, "add_k_proj", None)   
            add_v_proj = getattr(module, "add_v_proj", None)  
            add_o_proj = getattr(module, "to_add_out", None)  
            add_q_proj_rname = "add_q_proj" if add_q_proj else ""  
            add_k_proj_rname = "add_k_proj" if add_k_proj else ""  
            add_v_proj_rname = "add_v_proj" if add_v_proj else ""  
            add_o_proj_rname = "to_add_out" if add_o_proj else ""  
              
            kwargs = (  
                "encoder_hidden_states",  
                "attention_mask",   
                "image_rotary_emb",  
            )  
            cross_attention = add_k_proj is not None
        elif module.is_cross_attention:
            q_proj, k_proj, v_proj = module.to_q, None, None
            add_q_proj, add_k_proj, add_v_proj, add_o_proj = None, module.to_k, module.to_v, None
            q_proj_rname, k_proj_rname, v_proj_rname = "to_q", "", ""
            add_q_proj_rname, add_k_proj_rname, add_v_proj_rname, add_o_proj_rname = "", "to_k", "to_v", ""
        else:
            q_proj, k_proj, v_proj = module.to_q, module.to_k, module.to_v
            add_q_proj = getattr(module, "add_q_proj", None)
            add_k_proj = getattr(module, "add_k_proj", None)
            add_v_proj = getattr(module, "add_v_proj", None)
            add_o_proj = getattr(module, "to_add_out", None)
            q_proj_rname, k_proj_rname, v_proj_rname = "to_q", "to_k", "to_v"
            add_q_proj_rname, add_k_proj_rname, add_v_proj_rname = "add_q_proj", "add_k_proj", "add_v_proj"
            add_o_proj_rname = "to_add_out"
        if getattr(module, "to_out", None) is not None:
            o_proj = module.to_out[0]
            o_proj_rname = "to_out.0"
            assert isinstance(o_proj, nn.Linear)
        elif parent is not None:
            assert isinstance(parent.module, FluxSingleTransformerBlock)
            assert isinstance(parent.module.proj_out, ConcatLinear)
            assert len(parent.module.proj_out.linears) == 2
            o_proj = parent.module.proj_out.linears[0]
            o_proj_rname = ".proj_out.linears.0"
        else:
            raise RuntimeError("Cannot find the output projection.")
        if isinstance(module.processor, DiffusionAttentionProcessor):
            with_rope = module.processor.rope is not None
        elif module.processor.__class__.__name__.startswith("Flux"):
            with_rope = True
        else:
            with_rope = False  # TODO: fix for other processors
        config = AttentionConfigStruct(
            hidden_size=q_proj.weight.shape[1],
            add_hidden_size=add_k_proj.weight.shape[1] if add_k_proj is not None else 0,
            inner_size=q_proj.weight.shape[0],
            num_query_heads=module.heads,
            num_key_value_heads=module.to_k.weight.shape[0] // (module.to_q.weight.shape[0] // module.heads),
            with_qk_norm=module.norm_q is not None,
            with_rope=with_rope,
            linear_attn=isinstance(module.processor, SanaLinearAttnProcessor2_0),
        )
        return DiffusionAttentionStruct(
            module=module,
            parent=parent,
            fname=fname,
            idx=idx,
            rname=rname,
            rkey=rkey,
            config=config,
            q_proj=q_proj,
            k_proj=k_proj,
            v_proj=v_proj,
            o_proj=o_proj,
            add_q_proj=add_q_proj,
            add_k_proj=add_k_proj,
            add_v_proj=add_v_proj,
            add_o_proj=add_o_proj,
            q=None,  # TODO: add q, k, v
            k=None,
            v=None,
            q_proj_rname=q_proj_rname,
            k_proj_rname=k_proj_rname,
            v_proj_rname=v_proj_rname,
            o_proj_rname=o_proj_rname,
            add_q_proj_rname=add_q_proj_rname,
            add_k_proj_rname=add_k_proj_rname,
            add_v_proj_rname=add_v_proj_rname,
            add_o_proj_rname=add_o_proj_rname,
            q_rname="",
            k_rname="",
            v_rname="",
        )


@dataclass(kw_only=True)
class DiffusionFeedForwardStruct(FeedForwardStruct):
    module: FeedForward = field(repr=False, kw_only=False)
    """the module of FeedForward"""
    parent: tp.Optional["DiffusionTransformerBlockStruct"] = field(repr=False)
    # region modules
    moe_gate: None = field(init=False, repr=False, default=None)
    experts: list[nn.Module] = field(init=False, repr=False)
    # endregion
    # region names
    moe_gate_rname: str = field(init=False, repr=False, default="")
    experts_rname: str = field(init=False, repr=False, default="")
    # endregion

    # region aliases

    @property
    def up_proj(self) -> nn.Linear:
        return self.up_projs[0]

    @property
    def down_proj(self) -> nn.Linear:
        return self.down_projs[0]

    @property
    def up_proj_rname(self) -> str:
        return self.up_proj_rnames[0]

    @property
    def down_proj_rname(self) -> str:
        return self.down_proj_rnames[0]

    @property
    def up_proj_name(self) -> str:
        return self.up_proj_names[0]

    @property
    def down_proj_name(self) -> str:
        return self.down_proj_names[0]

    # endregion

    def __post_init__(self) -> None:
        assert len(self.up_projs) == len(self.down_projs) == 1
        assert len(self.up_proj_rnames) == len(self.down_proj_rnames) == 1
        self.experts = [self.module]
        super().__post_init__()

    @staticmethod
    def _default_construct(

        module: FeedForward | FluxSingleTransformerBlock | GLUMBConv,

        /,

        parent: tp.Optional["DiffusionTransformerBlockStruct"] = None,

        fname: str = "",

        rname: str = "",

        rkey: str = "",

        idx: int = 0,

        **kwargs,

    ) -> "DiffusionFeedForwardStruct":
        if isinstance(module, FeedForward):
            layer_1, layer_2 = module.net[0], module.net[2]
            assert isinstance(layer_1, (GEGLU, GELU, ApproximateGELU, SwiGLU))
            up_proj, up_proj_rname = layer_1.proj, "net.0.proj"
            assert isinstance(up_proj, nn.Linear)
            down_proj, down_proj_rname = layer_2, "net.2"
            if isinstance(layer_1, GEGLU):
                act_type = "gelu_glu"
            elif isinstance(layer_1, SwiGLU):
                act_type = "swish_glu"
            else:
                assert layer_1.__class__.__name__.lower().endswith("gelu")
                act_type = "gelu"
                if isinstance(layer_2, ShiftedLinear):
                    down_proj, down_proj_rname = layer_2.linear, "net.2.linear"
                    act_type = "gelu_shifted"
            assert isinstance(down_proj, nn.Linear)
            ffn = module
        elif isinstance(module, FluxSingleTransformerBlock):
            up_proj, up_proj_rname = module.proj_mlp, "proj_mlp"
            act_type = "gelu"
            assert isinstance(module.proj_out, ConcatLinear)
            assert len(module.proj_out.linears) == 2
            layer_2 = module.proj_out.linears[1]
            if isinstance(layer_2, ShiftedLinear):
                down_proj, down_proj_rname = layer_2.linear, "proj_out.linears.1.linear"
                act_type = "gelu_shifted"
            else:
                down_proj, down_proj_rname = layer_2, "proj_out.linears.1"
            ffn = nn.Sequential(up_proj, module.act_mlp, layer_2)
            assert not rname, f"Unsupported rname: {rname}"
        elif isinstance(module, GLUMBConv):
            ffn = module
            up_proj, up_proj_rname = module.conv_inverted, "conv_inverted"
            down_proj, down_proj_rname = module.conv_point, "conv_point"
            act_type = "silu_conv_silu_glu"
        else:
            raise NotImplementedError(f"Unsupported module type: {type(module)}")
        config = FeedForwardConfigStruct(
            hidden_size=up_proj.weight.shape[1],
            intermediate_size=down_proj.weight.shape[1],
            intermediate_act_type=act_type,
            num_experts=1,
        )
        return DiffusionFeedForwardStruct(
            module=ffn,  # this may be a virtual module
            parent=parent,
            fname=fname,
            idx=idx,
            rname=rname,
            rkey=rkey,
            config=config,
            up_projs=[up_proj],
            down_projs=[down_proj],
            up_proj_rnames=[up_proj_rname],
            down_proj_rnames=[down_proj_rname],
        )


@dataclass(kw_only=True)
class DiffusionTransformerBlockStruct(TransformerBlockStruct, DiffusionBlockStruct):
    # region relative keys
    norm_rkey: tp.ClassVar[str] = "transformer_norm"
    add_norm_rkey: tp.ClassVar[str] = "transformer_add_norm"
    attn_struct_cls: tp.ClassVar[type[DiffusionAttentionStruct]] = DiffusionAttentionStruct
    ffn_struct_cls: tp.ClassVar[type[DiffusionFeedForwardStruct]] = DiffusionFeedForwardStruct
    # endregion

    parent: tp.Optional["DiffusionTransformerStruct"] = field(repr=False)
    # region child modules
    post_attn_norms: list[nn.LayerNorm] = field(init=False, repr=False, default_factory=list)
    post_attn_add_norms: list[nn.LayerNorm] = field(init=False, repr=False, default_factory=list)
    post_ffn_norm: None = field(init=False, repr=False, default=None)
    post_add_ffn_norm: None = field(init=False, repr=False, default=None)
    # endregion
    # region relative names
    post_attn_norm_rnames: list[str] = field(init=False, repr=False, default_factory=list)
    post_attn_add_norm_rnames: list[str] = field(init=False, repr=False, default_factory=list)
    post_ffn_norm_rname: str = field(init=False, repr=False, default="")
    post_add_ffn_norm_rname: str = field(init=False, repr=False, default="")
    # endregion
    # region attributes
    norm_type: str
    add_norm_type: str
    # endregion
    # region absolute keys
    norm_key: str = field(init=False, repr=False)
    add_norm_key: str = field(init=False, repr=False)
    # endregion
    # region child structs
    pre_attn_norm_structs: list[DiffusionModuleStruct | None] = field(init=False, repr=False)
    pre_attn_add_norm_structs: list[DiffusionModuleStruct | None] = field(init=False, repr=False)
    pre_ffn_norm_struct: DiffusionModuleStruct = field(init=False, repr=False, default=None)
    pre_add_ffn_norm_struct: DiffusionModuleStruct | None = field(init=False, repr=False, default=None)
    attn_structs: list[DiffusionAttentionStruct] = field(init=False, repr=False)
    ffn_struct: DiffusionFeedForwardStruct | None = field(init=False, repr=False)
    add_ffn_struct: DiffusionFeedForwardStruct | None = field(init=False, repr=False)
    # endregion

    def __post_init__(self) -> None:
        super().__post_init__()
        self.norm_key = join_name(self.key, self.norm_rkey, sep="_")
        self.add_norm_key = join_name(self.key, self.add_norm_rkey, sep="_")
        self.attn_norm_structs = [
            DiffusionModuleStruct(norm, parent=self, fname="pre_attn_norm", rname=rname, rkey=self.norm_rkey, idx=idx)
            for idx, (norm, rname) in enumerate(zip(self.pre_attn_norms, self.pre_attn_norm_rnames, strict=True))
        ]
        self.add_attn_norm_structs = [
            DiffusionModuleStruct(
                norm, parent=self, fname="pre_attn_add_norm", rname=rname, rkey=self.add_norm_rkey, idx=idx
            )
            for idx, (norm, rname) in enumerate(
                zip(self.pre_attn_add_norms, self.pre_attn_add_norm_rnames, strict=True)
            )
        ]
        if self.pre_ffn_norm is not None:
            self.pre_ffn_norm_struct = DiffusionModuleStruct(
                self.pre_ffn_norm, parent=self, fname="pre_ffn_norm", rname=self.pre_ffn_norm_rname, rkey=self.norm_rkey
            )
        if self.pre_add_ffn_norm is not None:
            self.pre_add_ffn_norm_struct = DiffusionModuleStruct(
                self.pre_add_ffn_norm,
                parent=self,
                fname="pre_add_ffn_norm",
                rname=self.pre_add_ffn_norm_rname,
                rkey=self.add_norm_rkey,
            )

    def named_key_modules(self) -> tp.Generator[tp.Tuple[str, str, nn.Module, BaseModuleStruct, str], None, None]:
        for attn_norm in self.attn_norm_structs:
            if attn_norm.module is not None:
                yield from attn_norm.named_key_modules()
        for add_attn_norm in self.add_attn_norm_structs:
            if add_attn_norm.module is not None:
                yield from add_attn_norm.named_key_modules()
        for attn_struct in self.attn_structs:
            yield from attn_struct.named_key_modules()
        if self.pre_ffn_norm_struct is not None:
            if self.pre_attn_norms and self.pre_attn_norms[0] is not self.pre_ffn_norm:
                yield from self.pre_ffn_norm_struct.named_key_modules()
        if self.ffn_struct is not None:
            yield from self.ffn_struct.named_key_modules()
        if self.pre_add_ffn_norm_struct is not None:
            if self.pre_attn_add_norms and self.pre_attn_add_norms[0] is not self.pre_add_ffn_norm:
                yield from self.pre_add_ffn_norm_struct.named_key_modules()
        if self.add_ffn_struct is not None:
            yield from self.add_ffn_struct.named_key_modules()

    @staticmethod
    def _default_construct(

        module: DIT_BLOCK_CLS,

        /,

        parent: tp.Optional["DiffusionTransformerStruct"] = None,

        fname: str = "",

        rname: str = "",

        rkey: str = "",

        idx: int = 0,

        **kwargs,

    ) -> "DiffusionTransformerBlockStruct":
        if isinstance(module, (BasicTransformerBlock, SanaTransformerBlock)):
            parallel = False
            if isinstance(module, SanaTransformerBlock):
                norm_type = add_norm_type = "ada_norm_single"
            else:
                norm_type = add_norm_type = module.norm_type
            pre_attn_norms, pre_attn_norm_rnames = [], []
            attns, attn_rnames = [], []
            pre_attn_add_norms, pre_attn_add_norm_rnames = [], []
            assert module.norm1 is not None
            assert module.attn1 is not None
            pre_attn_norms.append(module.norm1)
            pre_attn_norm_rnames.append("norm1")
            attns.append(module.attn1)
            attn_rnames.append("attn1")
            pre_attn_add_norms.append(module.attn1.norm_cross)
            pre_attn_add_norm_rnames.append("attn1.norm_cross")
            if module.attn2 is not None:
                if norm_type == "ada_norm_single":
                    pre_attn_norms.append(None)
                    pre_attn_norm_rnames.append("")
                else:
                    assert module.norm2 is not None
                    pre_attn_norms.append(module.norm2)
                    pre_attn_norm_rnames.append("norm2")
                attns.append(module.attn2)
                attn_rnames.append("attn2")
                pre_attn_add_norms.append(module.attn2.norm_cross)
                pre_attn_add_norm_rnames.append("attn2.norm_cross")
            if norm_type == "ada_norm_single":
                assert module.norm2 is not None
                pre_ffn_norm, pre_ffn_norm_rname = module.norm2, "norm2"
            else:
                pre_ffn_norm, pre_ffn_norm_rname = module.norm3, "" if module.norm3 is None else "norm3"
            ffn, ffn_rname = module.ff, "" if module.ff is None else "ff"
            pre_add_ffn_norm, pre_add_ffn_norm_rname, add_ffn, add_ffn_rname = None, "", None, ""
        elif isinstance(module, JointTransformerBlock):
            parallel = False
            norm_type = "ada_norm_zero"
            pre_attn_norms, pre_attn_norm_rnames = [module.norm1], ["norm1"]
            if isinstance(module.norm1_context, AdaLayerNormZero):
                add_norm_type = "ada_norm_zero"
            else:
                add_norm_type = "ada_norm_continous"
            pre_attn_add_norms, pre_attn_add_norm_rnames = [module.norm1_context], ["norm1_context"]
            attns, attn_rnames = [module.attn], ["attn"]
            pre_ffn_norm, pre_ffn_norm_rname = module.norm2, "norm2"
            ffn, ffn_rname = module.ff, "ff"
            pre_add_ffn_norm, pre_add_ffn_norm_rname = module.norm2_context, "norm2_context"
            add_ffn, add_ffn_rname = module.ff_context, "ff_context"
        elif isinstance(module, FluxSingleTransformerBlock):
            parallel = True
            norm_type = add_norm_type = "ada_norm_zero_single"
            pre_attn_norms, pre_attn_norm_rnames = [module.norm], ["norm"]
            attns, attn_rnames = [module.attn], ["attn"]
            pre_attn_add_norms, pre_attn_add_norm_rnames = [], []
            pre_ffn_norm, pre_ffn_norm_rname = module.norm, "norm"
            ffn, ffn_rname = module, ""
            pre_add_ffn_norm, pre_add_ffn_norm_rname, add_ffn, add_ffn_rname = None, "", None, ""
        elif isinstance(module, FluxTransformerBlock):
            parallel = False
            norm_type = add_norm_type = "ada_norm_zero"
            pre_attn_norms, pre_attn_norm_rnames = [module.norm1], ["norm1"]
            attns, attn_rnames = [module.attn], ["attn"]
            pre_attn_add_norms, pre_attn_add_norm_rnames = [module.norm1_context], ["norm1_context"]
            pre_ffn_norm, pre_ffn_norm_rname = module.norm2, "norm2"
            ffn, ffn_rname = module.ff, "ff"
            pre_add_ffn_norm, pre_add_ffn_norm_rname = module.norm2_context, "norm2_context"
            add_ffn, add_ffn_rname = module.ff_context, "ff_context"
        else:
            raise NotImplementedError(f"Unsupported module type: {type(module)}")
        return DiffusionTransformerBlockStruct(
            module=module,
            parent=parent,
            fname=fname,
            idx=idx,
            rname=rname,
            rkey=rkey,
            parallel=parallel,
            pre_attn_norms=pre_attn_norms,
            pre_attn_add_norms=pre_attn_add_norms,
            attns=attns,
            pre_ffn_norm=pre_ffn_norm,
            ffn=ffn,
            pre_add_ffn_norm=pre_add_ffn_norm,
            add_ffn=add_ffn,
            pre_attn_norm_rnames=pre_attn_norm_rnames,
            pre_attn_add_norm_rnames=pre_attn_add_norm_rnames,
            attn_rnames=attn_rnames,
            pre_ffn_norm_rname=pre_ffn_norm_rname,
            ffn_rname=ffn_rname,
            pre_add_ffn_norm_rname=pre_add_ffn_norm_rname,
            add_ffn_rname=add_ffn_rname,
            norm_type=norm_type,
            add_norm_type=add_norm_type,
        )

    @classmethod
    def _get_default_key_map(cls) -> dict[str, set[str]]:
        """Get the default allowed keys."""
        key_map: dict[str, set[str]] = defaultdict(set)
        norm_rkey = norm_key = cls.norm_rkey
        add_norm_rkey = add_norm_key = cls.add_norm_rkey
        key_map[norm_rkey].add(norm_key)
        key_map[add_norm_rkey].add(add_norm_key)
        attn_cls = cls.attn_struct_cls
        attn_key = attn_rkey = cls.attn_rkey
        qkv_proj_key = qkv_proj_rkey = join_name(attn_key, attn_cls.qkv_proj_rkey, sep="_")
        out_proj_key = out_proj_rkey = join_name(attn_key, attn_cls.out_proj_rkey, sep="_")
        add_qkv_proj_key = add_qkv_proj_rkey = join_name(attn_key, attn_cls.add_qkv_proj_rkey, sep="_")
        add_out_proj_key = add_out_proj_rkey = join_name(attn_key, attn_cls.add_out_proj_rkey, sep="_")
        key_map[attn_rkey].add(qkv_proj_key)
        key_map[attn_rkey].add(out_proj_key)
        if attn_cls.add_qkv_proj_rkey.startswith("add_") and attn_cls.add_out_proj_rkey.startswith("add_"):
            add_attn_rkey = join_name(attn_rkey, "add", sep="_")
            key_map[add_attn_rkey].add(add_qkv_proj_key)
            key_map[add_attn_rkey].add(add_out_proj_key)
        key_map[qkv_proj_rkey].add(qkv_proj_key)
        key_map[out_proj_rkey].add(out_proj_key)
        key_map[add_qkv_proj_rkey].add(add_qkv_proj_key)
        key_map[add_out_proj_rkey].add(add_out_proj_key)
        ffn_cls = cls.ffn_struct_cls
        ffn_key = ffn_rkey = cls.ffn_rkey
        add_ffn_key = add_ffn_rkey = cls.add_ffn_rkey
        up_proj_key = up_proj_rkey = join_name(ffn_key, ffn_cls.up_proj_rkey, sep="_")
        down_proj_key = down_proj_rkey = join_name(ffn_key, ffn_cls.down_proj_rkey, sep="_")
        add_up_proj_key = add_up_proj_rkey = join_name(add_ffn_key, ffn_cls.up_proj_rkey, sep="_")
        add_down_proj_key = add_down_proj_rkey = join_name(add_ffn_key, ffn_cls.down_proj_rkey, sep="_")
        key_map[ffn_rkey].add(up_proj_key)
        key_map[ffn_rkey].add(down_proj_key)
        key_map[add_ffn_rkey].add(add_up_proj_key)
        key_map[add_ffn_rkey].add(add_down_proj_key)
        key_map[up_proj_rkey].add(up_proj_key)
        key_map[down_proj_rkey].add(down_proj_key)
        key_map[add_up_proj_rkey].add(add_up_proj_key)
        key_map[add_down_proj_rkey].add(add_down_proj_key)
        return {k: v for k, v in key_map.items() if v}


@dataclass(kw_only=True)
class DiffusionTransformerStruct(BaseTransformerStruct, DiffusionBlockStruct):
    # region relative keys
    proj_in_rkey: tp.ClassVar[str] = "transformer_proj_in"
    proj_out_rkey: tp.ClassVar[str] = "transformer_proj_out"
    transformer_block_rkey: tp.ClassVar[str] = ""
    transformer_block_struct_cls: tp.ClassVar[type[DiffusionTransformerBlockStruct]] = DiffusionTransformerBlockStruct
    # endregion

    module: Transformer2DModel = field(repr=False, kw_only=False)
    # region modules
    norm_in: nn.GroupNorm | None
    """Input normalization"""
    proj_in: nn.Linear | nn.Conv2d
    """Input projection"""
    norm_out: nn.GroupNorm | None
    """Output normalization"""
    proj_out: nn.Linear | nn.Conv2d
    """Output projection"""
    transformer_blocks: nn.ModuleList = field(repr=False)
    """Transformer blocks"""
    # endregion
    # region relative names
    transformer_blocks_rname: str
    # endregion
    # region absolute names
    transformer_blocks_name: str = field(init=False, repr=False)
    transformer_block_names: list[str] = field(init=False, repr=False)
    # endregion
    # region child structs
    transformer_block_structs: list[DiffusionTransformerBlockStruct] = field(init=False, repr=False)
    # endregion

    # region aliases

    @property
    def num_blocks(self) -> int:
        return len(self.transformer_blocks)

    @property
    def block_structs(self) -> list[DiffusionBlockStruct]:
        return self.transformer_block_structs

    @property
    def block_names(self) -> list[str]:
        return self.transformer_block_names

    # endregion

    def __post_init__(self):
        super().__post_init__()
        transformer_block_rnames = [
            f"{self.transformer_blocks_rname}.{idx}" for idx in range(len(self.transformer_blocks))
        ]
        self.transformer_blocks_name = join_name(self.name, self.transformer_blocks_rname)
        self.transformer_block_names = [join_name(self.name, rname) for rname in transformer_block_rnames]
        self.transformer_block_structs = [
            self.transformer_block_struct_cls.construct(
                layer,
                parent=self,
                fname="transformer_block",
                rname=rname,
                rkey=self.transformer_block_rkey,
                idx=idx,
            )
            for idx, (layer, rname) in enumerate(zip(self.transformer_blocks, transformer_block_rnames, strict=True))
        ]

    @staticmethod
    def _default_construct(

        module: Transformer2DModel,

        /,

        parent: BaseModuleStruct = None,

        fname: str = "",

        rname: str = "",

        rkey: str = "",

        idx: int = 0,

        **kwargs,

    ) -> "DiffusionTransformerStruct":
        if isinstance(module, Transformer2DModel):
            assert module.is_input_continuous, "input must be continuous"
            transformer_blocks, transformer_blocks_rname = module.transformer_blocks, "transformer_blocks"
            norm_in, norm_in_rname = module.norm, "norm"
            proj_in, proj_in_rname = module.proj_in, "proj_in"
            proj_out, proj_out_rname = module.proj_out, "proj_out"
            norm_out, norm_out_rname = None, ""
        else:
            raise NotImplementedError(f"Unsupported module type: {type(module)}")
        return DiffusionTransformerStruct(
            module=module,
            parent=parent,
            fname=fname,
            idx=idx,
            rname=rname,
            rkey=rkey,
            norm_in=norm_in,
            proj_in=proj_in,
            transformer_blocks=transformer_blocks,
            proj_out=proj_out,
            norm_out=norm_out,
            norm_in_rname=norm_in_rname,
            proj_in_rname=proj_in_rname,
            transformer_blocks_rname=transformer_blocks_rname,
            norm_out_rname=norm_out_rname,
            proj_out_rname=proj_out_rname,
        )

    @classmethod
    def _get_default_key_map(cls) -> dict[str, set[str]]:
        """Get the default allowed keys."""
        key_map: dict[str, set[str]] = defaultdict(set)
        proj_in_rkey = proj_in_key = cls.proj_in_rkey
        proj_out_rkey = proj_out_key = cls.proj_out_rkey
        key_map[proj_in_rkey].add(proj_in_key)
        key_map[proj_out_rkey].add(proj_out_key)
        block_cls = cls.transformer_block_struct_cls
        block_key = block_rkey = cls.transformer_block_rkey
        block_key_map = block_cls._get_default_key_map()
        for rkey, keys in block_key_map.items():
            rkey = join_name(block_rkey, rkey, sep="_")
            for key in keys:
                key = join_name(block_key, key, sep="_")
                key_map[rkey].add(key)
        return {k: v for k, v in key_map.items() if v}


@dataclass(kw_only=True)
class DiffusionResnetStruct(BaseModuleStruct):
    # region relative keys
    conv_rkey: tp.ClassVar[str] = "conv"
    shortcut_rkey: tp.ClassVar[str] = "shortcut"
    time_proj_rkey: tp.ClassVar[str] = "time_proj"
    # endregion

    module: ResnetBlock2D = field(repr=False, kw_only=False)
    """the module of Resnet"""
    config: FeedForwardConfigStruct
    # region child modules
    norms: list[nn.GroupNorm]
    convs: list[list[nn.Conv2d]]
    shortcut: nn.Conv2d | None
    time_proj: nn.Linear | None
    # endregion
    # region relative names
    norm_rnames: list[str]
    conv_rnames: list[list[str]]
    shortcut_rname: str
    time_proj_rname: str
    # endregion
    # region absolute names
    norm_names: list[str] = field(init=False, repr=False)
    conv_names: list[list[str]] = field(init=False, repr=False)
    shortcut_name: str = field(init=False, repr=False)
    time_proj_name: str = field(init=False, repr=False)
    # endregion
    # region absolute keys
    conv_key: str = field(init=False, repr=False)
    shortcut_key: str = field(init=False, repr=False)
    time_proj_key: str = field(init=False, repr=False)
    # endregion

    def __post_init__(self):
        super().__post_init__()
        self.norm_names = [join_name(self.name, rname) for rname in self.norm_rnames]
        self.conv_names = [[join_name(self.name, rname) for rname in rnames] for rnames in self.conv_rnames]
        self.shortcut_name = join_name(self.name, self.shortcut_rname)
        self.time_proj_name = join_name(self.name, self.time_proj_rname)
        self.conv_key = join_name(self.key, self.conv_rkey, sep="_")
        self.shortcut_key = join_name(self.key, self.shortcut_rkey, sep="_")
        self.time_proj_key = join_name(self.key, self.time_proj_rkey, sep="_")

    def named_key_modules(self) -> tp.Generator[tp.Tuple[str, str, nn.Module, BaseModuleStruct, str], None, None]:
        for convs, names in zip(self.convs, self.conv_names, strict=True):
            for conv, name in zip(convs, names, strict=True):
                yield self.conv_key, name, conv, self, "conv"
        if self.shortcut is not None:
            yield self.shortcut_key, self.shortcut_name, self.shortcut, self, "shortcut"
        if self.time_proj is not None:
            yield self.time_proj_key, self.time_proj_name, self.time_proj, self, "time_proj"

    @staticmethod
    def construct(

        module: ResnetBlock2D,

        /,

        parent: BaseModuleStruct = None,

        fname: str = "",

        rname: str = "",

        rkey: str = "",

        idx: int = 0,

        **kwargs,

    ) -> "DiffusionResnetStruct":
        if isinstance(module, ResnetBlock2D):
            assert module.upsample is None, "upsample must be None"
            assert module.downsample is None, "downsample must be None"
            act_type = module.nonlinearity.__class__.__name__.lower()
            shifted = False
            if isinstance(module.conv1, ConcatConv2d):
                conv1_convs, conv1_names = [], []
                for conv_idx, conv in enumerate(module.conv1.convs):
                    if isinstance(conv, ShiftedConv2d):
                        shifted = True
                        conv1_convs.append(conv.conv)
                        conv1_names.append(f"conv1.convs.{conv_idx}.conv")
                    else:
                        assert isinstance(conv, nn.Conv2d)
                        conv1_convs.append(conv)
                        conv1_names.append(f"conv1.convs.{conv_idx}")
            elif isinstance(module.conv1, ShiftedConv2d):
                shifted = True
                conv1_convs = [module.conv1.conv]
                conv1_names = ["conv1.conv"]
            else:
                assert isinstance(module.conv1, nn.Conv2d)
                conv1_convs, conv1_names = [module.conv1], ["conv1"]
            if isinstance(module.conv2, ConcatConv2d):
                conv2_convs, conv2_names = [], []
                for conv_idx, conv in enumerate(module.conv2.convs):
                    if isinstance(conv, ShiftedConv2d):
                        shifted = True
                        conv2_convs.append(conv.conv)
                        conv2_names.append(f"conv2.convs.{conv_idx}.conv")
                    else:
                        assert isinstance(conv, nn.Conv2d)
                        conv2_convs.append(conv)
                        conv2_names.append(f"conv2.convs.{conv_idx}")
            elif isinstance(module.conv2, ShiftedConv2d):
                shifted = True
                conv2_convs = [module.conv2.conv]
                conv2_names = ["conv2.conv"]
            else:
                assert isinstance(module.conv2, nn.Conv2d)
                conv2_convs, conv2_names = [module.conv2], ["conv2"]
            convs, conv_rnames = [conv1_convs, conv2_convs], [conv1_names, conv2_names]
            norms, norm_rnames = [module.norm1, module.norm2], ["norm1", "norm2"]
            shortcut, shortcut_rname = module.conv_shortcut, "" if module.conv_shortcut is None else "conv_shortcut"
            time_proj, time_proj_rname = module.time_emb_proj, "" if module.time_emb_proj is None else "time_emb_proj"
            if shifted:
                assert all(hasattr(conv, "shifted") and conv.shifted for level_convs in convs for conv in level_convs)
                act_type += "_shifted"
        else:
            raise NotImplementedError(f"Unsupported module type: {type(module)}")
        config = FeedForwardConfigStruct(
            hidden_size=convs[0][0].weight.shape[1],
            intermediate_size=convs[0][0].weight.shape[0],
            intermediate_act_type=act_type,
            num_experts=1,
        )
        return DiffusionResnetStruct(
            module=module,
            parent=parent,
            fname=fname,
            idx=idx,
            rname=rname,
            rkey=rkey,
            config=config,
            norms=norms,
            convs=convs,
            shortcut=shortcut,
            time_proj=time_proj,
            norm_rnames=norm_rnames,
            conv_rnames=conv_rnames,
            shortcut_rname=shortcut_rname,
            time_proj_rname=time_proj_rname,
        )

    @classmethod
    def _get_default_key_map(cls) -> dict[str, set[str]]:
        """Get the default allowed keys."""
        key_map: dict[str, set[str]] = defaultdict(set)
        conv_key = conv_rkey = cls.conv_rkey
        shortcut_key = shortcut_rkey = cls.shortcut_rkey
        time_proj_key = time_proj_rkey = cls.time_proj_rkey
        key_map[conv_rkey].add(conv_key)
        key_map[shortcut_rkey].add(shortcut_key)
        key_map[time_proj_rkey].add(time_proj_key)
        return {k: v for k, v in key_map.items() if v}


@dataclass(kw_only=True)
class UNetBlockStruct(DiffusionBlockStruct):
    class BlockType(enum.StrEnum):
        DOWN = "down"
        MID = "mid"
        UP = "up"

    # region relative keys
    resnet_rkey: tp.ClassVar[str] = "resblock"
    sampler_rkey: tp.ClassVar[str] = "sample"
    transformer_rkey: tp.ClassVar[str] = ""
    resnet_struct_cls: tp.ClassVar[type[DiffusionResnetStruct]] = DiffusionResnetStruct
    transformer_struct_cls: tp.ClassVar[type[DiffusionTransformerStruct]] = DiffusionTransformerStruct
    # endregion

    parent: tp.Optional["UNetStruct"] = field(repr=False)
    # region attributes
    block_type: BlockType
    # endregion
    # region modules
    resnets: nn.ModuleList = field(repr=False)
    transformers: nn.ModuleList = field(repr=False)
    sampler: nn.Conv2d | None
    # endregion
    # region relative names
    resnets_rname: str
    transformers_rname: str
    sampler_rname: str
    # endregion
    # region absolute names
    resnets_name: str = field(init=False, repr=False)
    transformers_name: str = field(init=False, repr=False)
    sampler_name: str = field(init=False, repr=False)
    resnet_names: list[str] = field(init=False, repr=False)
    transformer_names: list[str] = field(init=False, repr=False)
    # endregion
    # region absolute keys
    sampler_key: str = field(init=False, repr=False)
    # endregion
    # region child structs
    resnet_structs: list[DiffusionResnetStruct] = field(init=False, repr=False)
    transformer_structs: list[DiffusionTransformerStruct] = field(init=False, repr=False)
    # endregion

    @property
    def downsample(self) -> nn.Conv2d | None:
        return self.sampler if self.is_downsample_block() else None

    @property
    def upsample(self) -> nn.Conv2d | None:
        return self.sampler if self.is_upsample_block() else None

    def __post_init__(self) -> None:
        super().__post_init__()
        if self.is_downsample_block():
            assert len(self.resnets) == len(self.transformers) or len(self.transformers) == 0
            if self.parent is not None and isinstance(self.parent, UNetStruct):
                assert self.rname == f"{self.parent.down_blocks_rname}.{self.idx}"
        elif self.is_mid_block():
            assert len(self.resnets) == len(self.transformers) + 1 or len(self.transformers) == 0
            if self.parent is not None and isinstance(self.parent, UNetStruct):
                assert self.rname == self.parent.mid_block_name
                assert self.idx == 0
        else:
            assert self.is_upsample_block(), f"Unsupported block type: {self.block_type}"
            assert len(self.resnets) == len(self.transformers) or len(self.transformers) == 0
            if self.parent is not None and isinstance(self.parent, UNetStruct):
                assert self.rname == f"{self.parent.up_blocks_rname}.{self.idx}"
        resnet_rnames = [f"{self.resnets_rname}.{idx}" for idx in range(len(self.resnets))]
        transformer_rnames = [f"{self.transformers_rname}.{idx}" for idx in range(len(self.transformers))]
        self.resnets_name = join_name(self.name, self.resnets_rname)
        self.transformers_name = join_name(self.name, self.transformers_rname)
        self.resnet_names = [join_name(self.name, rname) for rname in resnet_rnames]
        self.transformer_names = [join_name(self.name, rname) for rname in transformer_rnames]
        self.sampler_name = join_name(self.name, self.sampler_rname)
        self.sampler_key = join_name(self.key, self.sampler_rkey, sep="_")
        self.resnet_structs = [
            self.resnet_struct_cls.construct(
                resnet, parent=self, fname="resnet", rname=rname, rkey=self.resnet_rkey, idx=idx
            )
            for idx, (resnet, rname) in enumerate(zip(self.resnets, resnet_rnames, strict=True))
        ]
        self.transformer_structs = [
            self.transformer_struct_cls.construct(
                transformer, parent=self, fname="transformer", rname=rname, rkey=self.transformer_rkey, idx=idx
            )
            for idx, (transformer, rname) in enumerate(zip(self.transformers, transformer_rnames, strict=True))
        ]

    def is_downsample_block(self) -> bool:
        return self.block_type == self.BlockType.DOWN

    def is_mid_block(self) -> bool:
        return self.block_type == self.BlockType.MID

    def is_upsample_block(self) -> bool:
        return self.block_type == self.BlockType.UP

    def has_downsample(self) -> bool:
        return self.is_downsample_block() and self.sampler is not None

    def has_upsample(self) -> bool:
        return self.is_upsample_block() and self.sampler is not None

    def named_key_modules(self) -> tp.Generator[tp.Tuple[str, str, nn.Module, BaseModuleStruct, str], None, None]:
        for resnet in self.resnet_structs:
            yield from resnet.named_key_modules()
        for transformer in self.transformer_structs:
            yield from transformer.named_key_modules()
        if self.sampler is not None:
            yield self.sampler_key, self.sampler_name, self.sampler, self, "sampler"

    def iter_attention_structs(self) -> tp.Generator[DiffusionAttentionStruct, None, None]:
        for transformer in self.transformer_structs:
            yield from transformer.iter_attention_structs()

    def iter_transformer_block_structs(self) -> tp.Generator[DiffusionTransformerBlockStruct, None, None]:
        for transformer in self.transformer_structs:
            yield from transformer.iter_transformer_block_structs()

    @staticmethod
    def _default_construct(

        module: UNET_BLOCK_CLS,

        /,

        parent: tp.Optional["UNetStruct"] = None,

        fname: str = "",

        rname: str = "",

        rkey: str = "",

        idx: int = 0,

        **kwargs,

    ) -> "UNetBlockStruct":
        resnets, resnets_rname = module.resnets, "resnets"
        if isinstance(module, (DownBlock2D, CrossAttnDownBlock2D)):
            block_type = UNetBlockStruct.BlockType.DOWN
            if isinstance(module, CrossAttnDownBlock2D) and module.attentions is not None:
                transformers, transformers_rname = module.attentions, "attentions"
            else:
                transformers, transformers_rname = [], ""
            if module.downsamplers is None:
                sampler, sampler_rname = None, ""
            else:
                assert len(module.downsamplers) == 1
                downsampler = module.downsamplers[0]
                assert isinstance(downsampler, Downsample2D)
                sampler, sampler_rname = downsampler.conv, "downsamplers.0.conv"
                assert isinstance(sampler, nn.Conv2d)
        elif isinstance(module, (UNetMidBlock2D, UNetMidBlock2DCrossAttn)):
            block_type = UNetBlockStruct.BlockType.MID
            if (isinstance(module, UNetMidBlock2DCrossAttn) or module.add_attention) and module.attentions is not None:
                transformers, transformers_rname = module.attentions, "attentions"
            else:
                transformers, transformers_rname = [], ""
            sampler, sampler_rname = None, ""
        elif isinstance(module, (UpBlock2D, CrossAttnUpBlock2D)):
            block_type = UNetBlockStruct.BlockType.UP
            if isinstance(module, CrossAttnUpBlock2D) and module.attentions is not None:
                transformers, transformers_rname = module.attentions, "attentions"
            else:
                transformers, transformers_rname = [], ""
            if module.upsamplers is None:
                sampler, sampler_rname = None, ""
            else:
                assert len(module.upsamplers) == 1
                upsampler = module.upsamplers[0]
                assert isinstance(upsampler, Upsample2D)
                sampler, sampler_rname = upsampler.conv, "upsamplers.0.conv"
                assert isinstance(sampler, nn.Conv2d)
        else:
            raise NotImplementedError(f"Unsupported module type: {type(module)}")
        return UNetBlockStruct(
            module=module,
            parent=parent,
            fname=fname,
            idx=idx,
            rname=rname,
            rkey=rkey,
            block_type=block_type,
            resnets=resnets,
            transformers=transformers,
            sampler=sampler,
            resnets_rname=resnets_rname,
            transformers_rname=transformers_rname,
            sampler_rname=sampler_rname,
        )

    @classmethod
    def _get_default_key_map(cls) -> dict[str, set[str]]:
        """Get the default allowed keys."""
        key_map: dict[str, set[str]] = defaultdict(set)
        resnet_cls = cls.resnet_struct_cls
        resnet_key = resnet_rkey = cls.resnet_rkey
        resnet_key_map = resnet_cls._get_default_key_map()
        for rkey, keys in resnet_key_map.items():
            rkey = join_name(resnet_rkey, rkey, sep="_")
            for key in keys:
                key = join_name(resnet_key, key, sep="_")
                key_map[rkey].add(key)
                key_map[resnet_rkey].add(key)
        transformer_cls = cls.transformer_struct_cls
        transformer_key = transformer_rkey = cls.transformer_rkey
        transformer_key_map = transformer_cls._get_default_key_map()
        for rkey, keys in transformer_key_map.items():
            trkey = join_name(transformer_rkey, rkey, sep="_")
            for key in keys:
                key = join_name(transformer_key, key, sep="_")
                key_map[rkey].add(key)
                key_map[trkey].add(key)
        return {k: v for k, v in key_map.items() if v}


@dataclass(kw_only=True)
class UNetStruct(DiffusionModelStruct):
    # region relative keys
    input_embed_rkey: tp.ClassVar[str] = "input_embed"
    """hidden_states = input_embed(hidden_states), e.g., conv_in"""
    time_embed_rkey: tp.ClassVar[str] = "time_embed"
    """temb = time_embed(timesteps, hidden_states)"""
    add_time_embed_rkey: tp.ClassVar[str] = "time_embed"
    """add_temb = add_time_embed(timesteps, encoder_hidden_states)"""
    text_embed_rkey: tp.ClassVar[str] = "text_embed"
    """encoder_hidden_states = text_embed(encoder_hidden_states)"""
    norm_out_rkey: tp.ClassVar[str] = "output_embed"
    """hidden_states = norm_out(hidden_states), e.g., conv_norm_out"""
    proj_out_rkey: tp.ClassVar[str] = "output_embed"
    """hidden_states = output_embed(hidden_states), e.g., conv_out"""
    down_block_rkey: tp.ClassVar[str] = "down"
    mid_block_rkey: tp.ClassVar[str] = "mid"
    up_block_rkey: tp.ClassVar[str] = "up"
    down_block_struct_cls: tp.ClassVar[type[UNetBlockStruct]] = UNetBlockStruct
    mid_block_struct_cls: tp.ClassVar[type[UNetBlockStruct]] = UNetBlockStruct
    up_block_struct_cls: tp.ClassVar[type[UNetBlockStruct]] = UNetBlockStruct
    # endregion

    # region child modules
    # region pre-block modules
    input_embed: nn.Conv2d
    time_embed: TimestepEmbedding
    """Time embedding"""
    add_time_embed: (
        TextTimeEmbedding
        | TextImageTimeEmbedding
        | TimestepEmbedding
        | ImageTimeEmbedding
        | ImageHintTimeEmbedding
        | None
    )
    """Additional time embedding"""
    text_embed: nn.Linear | ImageProjection | TextImageProjection | None
    """Text embedding"""
    # region post-block modules
    norm_out: nn.GroupNorm | None
    proj_out: nn.Conv2d
    # endregion
    # endregion
    down_blocks: nn.ModuleList = field(repr=False)
    mid_block: nn.Module = field(repr=False)
    up_blocks: nn.ModuleList = field(repr=False)
    # endregion
    # region relative names
    input_embed_rname: str
    time_embed_rname: str
    add_time_embed_rname: str
    text_embed_rname: str
    norm_out_rname: str
    proj_out_rname: str
    down_blocks_rname: str
    mid_block_rname: str
    up_blocks_rname: str
    # endregion
    # region absolute names
    input_embed_name: str = field(init=False, repr=False)
    time_embed_name: str = field(init=False, repr=False)
    add_time_embed_name: str = field(init=False, repr=False)
    text_embed_name: str = field(init=False, repr=False)
    norm_out_name: str = field(init=False, repr=False)
    proj_out_name: str = field(init=False, repr=False)
    down_blocks_name: str = field(init=False, repr=False)
    mid_block_name: str = field(init=False, repr=False)
    up_blocks_name: str = field(init=False, repr=False)
    down_block_names: list[str] = field(init=False, repr=False)
    up_block_names: list[str] = field(init=False, repr=False)
    # endregion
    # region absolute keys
    input_embed_key: str = field(init=False, repr=False)
    time_embed_key: str = field(init=False, repr=False)
    add_time_embed_key: str = field(init=False, repr=False)
    text_embed_key: str = field(init=False, repr=False)
    norm_out_key: str = field(init=False, repr=False)
    proj_out_key: str = field(init=False, repr=False)
    # endregion
    # region child structs
    down_block_structs: list[UNetBlockStruct] = field(init=False, repr=False)
    mid_block_struct: UNetBlockStruct = field(init=False, repr=False)
    up_block_structs: list[UNetBlockStruct] = field(init=False, repr=False)
    # endregion

    @property
    def num_down_blocks(self) -> int:
        return len(self.down_blocks)

    @property
    def num_up_blocks(self) -> int:
        return len(self.up_blocks)

    @property
    def num_blocks(self) -> int:
        return self.num_down_blocks + 1 + self.num_up_blocks

    @property
    def block_structs(self) -> list[UNetBlockStruct]:
        return [*self.down_block_structs, self.mid_block_struct, *self.up_block_structs]

    def __post_init__(self) -> None:
        super().__post_init__()
        down_block_rnames = [f"{self.down_blocks_rname}.{idx}" for idx in range(len(self.down_blocks))]
        up_block_rnames = [f"{self.up_blocks_rname}.{idx}" for idx in range(len(self.up_blocks))]
        self.down_blocks_name = join_name(self.name, self.down_blocks_rname)
        self.mid_block_name = join_name(self.name, self.mid_block_rname)
        self.up_blocks_name = join_name(self.name, self.up_blocks_rname)
        self.down_block_names = [join_name(self.name, rname) for rname in down_block_rnames]
        self.up_block_names = [join_name(self.name, rname) for rname in up_block_rnames]
        self.pre_module_structs = {}
        for fname in ("time_embed", "add_time_embed", "text_embed", "input_embed"):
            module, rname, rkey = getattr(self, fname), getattr(self, f"{fname}_rname"), getattr(self, f"{fname}_rkey")
            setattr(self, f"{fname}_key", join_name(self.key, rkey, sep="_"))
            if module is not None or rname:
                setattr(self, f"{fname}_name", join_name(self.name, rname))
            else:
                setattr(self, f"{fname}_name", "")
            if module is not None:
                assert rname, f"rname of {fname} must not be empty"
                self.pre_module_structs[getattr(self, f"{fname}_name")] = DiffusionModuleStruct(
                    module=module, parent=self, fname=fname, rname=rname, rkey=rkey
                )
        self.post_module_structs = {}
        for fname in ("norm_out", "proj_out"):
            module, rname, rkey = getattr(self, fname), getattr(self, f"{fname}_rname"), getattr(self, f"{fname}_rkey")
            setattr(self, f"{fname}_key", join_name(self.key, rkey, sep="_"))
            if module is not None or rname:
                setattr(self, f"{fname}_name", join_name(self.name, rname))
            else:
                setattr(self, f"{fname}_name", "")
            if module is not None:
                self.post_module_structs[getattr(self, f"{fname}_name")] = DiffusionModuleStruct(
                    module=module, parent=self, fname=fname, rname=rname, rkey=rkey
                )
        self.down_block_structs = [
            self.down_block_struct_cls.construct(
                block, parent=self, fname="down_block", rname=rname, rkey=self.down_block_rkey, idx=idx
            )
            for idx, (block, rname) in enumerate(zip(self.down_blocks, down_block_rnames, strict=True))
        ]
        self.mid_block_struct = self.mid_block_struct_cls.construct(
            self.mid_block, parent=self, fname="mid_block", rname=self.mid_block_name, rkey=self.mid_block_rkey
        )
        self.up_block_structs = [
            self.up_block_struct_cls.construct(
                block, parent=self, fname="up_block", rname=rname, rkey=self.up_block_rkey, idx=idx
            )
            for idx, (block, rname) in enumerate(zip(self.up_blocks, up_block_rnames, strict=True))
        ]

    def get_prev_module_keys(self) -> tuple[str, ...]:
        return tuple({self.input_embed_key, self.time_embed_key, self.add_time_embed_key, self.text_embed_key})

    def get_post_module_keys(self) -> tuple[str, ...]:
        return tuple({self.norm_out_key, self.proj_out_key})

    def _get_iter_block_activations_args(

        self, **input_kwargs

    ) -> tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]:
        layers, layer_structs, recomputes, use_prev_layer_outputs = [], [], [], []
        num_down_blocks = len(self.down_blocks)
        num_up_blocks = len(self.up_blocks)
        layers.extend(self.down_blocks)
        layer_structs.extend(self.down_block_structs)
        use_prev_layer_outputs.append(False)
        use_prev_layer_outputs.extend([True] * (num_down_blocks - 1))
        recomputes.append(False)
        # region check whether down block's outputs are changed
        _mid_block_additional_residual = input_kwargs.get("mid_block_additional_residual", None)
        _down_block_additional_residuals = input_kwargs.get("down_block_additional_residuals", None)
        _is_adapter = input_kwargs.get("down_intrablock_additional_residuals", None) is not None
        if not _is_adapter and _mid_block_additional_residual is None and _down_block_additional_residuals is not None:
            _is_adapter = True
        for down_block in self.down_blocks:
            if hasattr(down_block, "has_cross_attention") and down_block.has_cross_attention:
                # outputs unchanged
                recomputes.append(False)
            elif _is_adapter:
                # outputs changed
                recomputes.append(True)
            else:
                # outputs unchanged
                recomputes.append(False)
        # endregion
        layers.append(self.mid_block)
        layer_structs.append(self.mid_block_struct)
        use_prev_layer_outputs.append(False)
        # recomputes is already appened in the previous down blocks
        layers.extend(self.up_blocks)
        layer_structs.extend(self.up_block_structs)
        use_prev_layer_outputs.append(False)
        use_prev_layer_outputs.extend([True] * (num_up_blocks - 1))
        recomputes += [True] * num_up_blocks
        return layers, layer_structs, recomputes, use_prev_layer_outputs

    @staticmethod
    def _default_construct(

        module: tp.Union[UNET_PIPELINE_CLS, UNET_CLS],

        /,

        parent: tp.Optional[BaseModuleStruct] = None,

        fname: str = "",

        rname: str = "",

        rkey: str = "",

        idx: int = 0,

        **kwargs,

    ) -> "UNetStruct":
        if isinstance(module, UNET_PIPELINE_CLS):
            module = module.unet
        if isinstance(module, (UNet2DConditionModel, UNet2DModel)):
            input_embed, time_embed = module.conv_in, module.time_embedding
            input_embed_rname, time_embed_rname = "conv_in", "time_embedding"
            text_embed, text_embed_rname = None, ""
            add_time_embed, add_time_embed_rname = None, ""
            if hasattr(module, "encoder_hid_proj"):
                text_embed, text_embed_rname = module.encoder_hid_proj, "encoder_hid_proj"
            if hasattr(module, "add_embedding"):
                add_time_embed, add_time_embed_rname = module.add_embedding, "add_embedding"
            norm_out, norm_out_rname = module.conv_norm_out, "conv_norm_out"
            proj_out, proj_out_rname = module.conv_out, "conv_out"
            down_blocks, down_blocks_rname = module.down_blocks, "down_blocks"
            mid_block, mid_block_rname = module.mid_block, "mid_block"
            up_blocks, up_blocks_rname = module.up_blocks, "up_blocks"
            return UNetStruct(
                module=module,
                parent=parent,
                fname=fname,
                idx=idx,
                rname=rname,
                rkey=rkey,
                input_embed=input_embed,
                time_embed=time_embed,
                add_time_embed=add_time_embed,
                text_embed=text_embed,
                norm_out=norm_out,
                proj_out=proj_out,
                down_blocks=down_blocks,
                mid_block=mid_block,
                up_blocks=up_blocks,
                input_embed_rname=input_embed_rname,
                time_embed_rname=time_embed_rname,
                add_time_embed_rname=add_time_embed_rname,
                text_embed_rname=text_embed_rname,
                norm_out_rname=norm_out_rname,
                proj_out_rname=proj_out_rname,
                down_blocks_rname=down_blocks_rname,
                mid_block_rname=mid_block_rname,
                up_blocks_rname=up_blocks_rname,
            )
        raise NotImplementedError(f"Unsupported module type: {type(module)}")

    @classmethod
    def _get_default_key_map(cls) -> dict[str, set[str]]:
        """Get the default allowed keys."""
        key_map: dict[str, set[str]] = defaultdict(set)
        for idx, (block_key, block_cls) in enumerate(
            (
                (cls.down_block_rkey, cls.down_block_struct_cls),
                (cls.mid_block_rkey, cls.mid_block_struct_cls),
                (cls.up_block_rkey, cls.up_block_struct_cls),
            )
        ):
            block_key_map: dict[str, set[str]] = defaultdict(set)
            if idx != 1:
                sampler_key = join_name(block_key, block_cls.sampler_rkey, sep="_")
                sampler_rkey = block_cls.sampler_rkey
                block_key_map[sampler_rkey].add(sampler_key)
            _block_key_map = block_cls._get_default_key_map()
            for rkey, keys in _block_key_map.items():
                for key in keys:
                    key = join_name(block_key, key, sep="_")
                    block_key_map[rkey].add(key)
            for rkey, keys in block_key_map.items():
                key_map[rkey].update(keys)
                if block_key:
                    key_map[block_key].update(keys)
        keys: set[str] = set()
        keys.add(cls.input_embed_rkey)
        keys.add(cls.time_embed_rkey)
        keys.add(cls.add_time_embed_rkey)
        keys.add(cls.text_embed_rkey)
        keys.add(cls.norm_out_rkey)
        keys.add(cls.proj_out_rkey)
        for mapped_keys in key_map.values():
            for key in mapped_keys:
                keys.add(key)
        if "embed" not in keys and "embed" not in key_map:
            key_map["embed"].add(cls.input_embed_rkey)
            key_map["embed"].add(cls.time_embed_rkey)
            key_map["embed"].add(cls.add_time_embed_rkey)
            key_map["embed"].add(cls.text_embed_rkey)
            key_map["embed"].add(cls.norm_out_rkey)
            key_map["embed"].add(cls.proj_out_rkey)
        for key in keys:
            if key in key_map:
                key_map[key].clear()
            key_map[key].add(key)
        return {k: v for k, v in key_map.items() if v}


@dataclass(kw_only=True)
class DiTStruct(DiffusionModelStruct, DiffusionTransformerStruct):
    # region relative keys
    input_embed_rkey: tp.ClassVar[str] = "input_embed"
    """hidden_states = input_embed(hidden_states), e.g., conv_in"""
    time_embed_rkey: tp.ClassVar[str] = "time_embed"
    """temb = time_embed(timesteps)"""
    text_embed_rkey: tp.ClassVar[str] = "text_embed"
    """encoder_hidden_states = text_embed(encoder_hidden_states)"""
    norm_in_rkey: tp.ClassVar[str] = "input_embed"
    """hidden_states = norm_in(hidden_states)"""
    proj_in_rkey: tp.ClassVar[str] = "input_embed"
    """hidden_states = proj_in(hidden_states)"""
    norm_out_rkey: tp.ClassVar[str] = "output_embed"
    """hidden_states = norm_out(hidden_states)"""
    proj_out_rkey: tp.ClassVar[str] = "output_embed"
    """hidden_states = proj_out(hidden_states)"""
    transformer_block_rkey: tp.ClassVar[str] = ""
    # endregion

    # region child modules
    input_embed: PatchEmbed
    time_embed: AdaLayerNormSingle | CombinedTimestepTextProjEmbeddings | TimestepEmbedding
    text_embed: PixArtAlphaTextProjection | nn.Linear
    norm_in: None = field(init=False, repr=False, default=None)
    proj_in: None = field(init=False, repr=False, default=None)
    norm_out: nn.LayerNorm | AdaLayerNormContinuous | None
    proj_out: nn.Linear
    # endregion
    # region relative names
    input_embed_rname: str
    time_embed_rname: str
    text_embed_rname: str
    norm_in_rname: str = field(init=False, repr=False, default="")
    proj_in_rname: str = field(init=False, repr=False, default="")
    norm_out_rname: str
    proj_out_rname: str
    # endregion
    # region absolute names
    input_embed_name: str = field(init=False, repr=False)
    time_embed_name: str = field(init=False, repr=False)
    text_embed_name: str = field(init=False, repr=False)
    # endregion
    # region absolute keys
    input_embed_key: str = field(init=False, repr=False)
    time_embed_key: str = field(init=False, repr=False)
    text_embed_key: str = field(init=False, repr=False)
    norm_out_key: str = field(init=False, repr=False)
    # endregion

    @property
    def num_blocks(self) -> int:
        return len(self.transformer_blocks)

    @property
    def block_structs(self) -> list[DiffusionTransformerBlockStruct]:
        return self.transformer_block_structs

    @property
    def block_names(self) -> list[str]:
        return self.transformer_block_names

    def __post_init__(self) -> None:
        super().__post_init__()
        self.pre_module_structs = {}
        for fname in ("input_embed", "time_embed", "text_embed"):
            module, rname, rkey = getattr(self, fname), getattr(self, f"{fname}_rname"), getattr(self, f"{fname}_rkey")
            setattr(self, f"{fname}_key", join_name(self.key, rkey, sep="_"))
            if module is not None or rname:
                setattr(self, f"{fname}_name", join_name(self.name, rname))
            else:
                setattr(self, f"{fname}_name", "")
            if module is not None:
                self.pre_module_structs.setdefault(
                    getattr(self, f"{fname}_name"),
                    DiffusionModuleStruct(module=module, parent=self, fname=fname, rname=rname, rkey=rkey),
                )
        self.post_module_structs = {}
        self.norm_out_key = join_name(self.key, self.norm_out_rkey, sep="_")
        for fname in ("norm_out", "proj_out"):
            module, rname, rkey = getattr(self, fname), getattr(self, f"{fname}_rname"), getattr(self, f"{fname}_rkey")
            if module is not None:
                self.post_module_structs.setdefault(
                    getattr(self, f"{fname}_name"),
                    DiffusionModuleStruct(module=module, parent=self, fname=fname, rname=rname, rkey=rkey),
                )

    def get_prev_module_keys(self) -> tuple[str, ...]:
        return tuple({self.input_embed_key, self.time_embed_key, self.text_embed_key})

    def get_post_module_keys(self) -> tuple[str, ...]:
        return tuple({self.norm_out_key, self.proj_out_key})

    def _get_iter_block_activations_args(

        self, **input_kwargs

    ) -> tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]:
        """

        Get the arguments for iterating over the layers and their activations.



        Args:

            skip_pre_modules (`bool`):

                Whether to skip the pre-modules

            skip_post_modules (`bool`):

                Whether to skip the post-modules



        Returns:

            `tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]`:

                the layers, the layer structs, the recomputes, and the use_prev_layer_outputs

        """
        layers, layer_structs, recomputes, use_prev_layer_outputs = [], [], [], []
        layers.extend(self.transformer_blocks)
        layer_structs.extend(self.transformer_block_structs)
        use_prev_layer_outputs.append(False)
        use_prev_layer_outputs.extend([True] * (len(self.transformer_blocks) - 1))
        recomputes.extend([False] * len(self.transformer_blocks))
        return layers, layer_structs, recomputes, use_prev_layer_outputs

    @staticmethod
    def _default_construct(

        module: tp.Union[DIT_PIPELINE_CLS, DIT_CLS],

        /,

        parent: tp.Optional[BaseModuleStruct] = None,

        fname: str = "",

        rname: str = "",

        rkey: str = "",

        idx: int = 0,

        **kwargs,

    ) -> "DiTStruct":
        if isinstance(module, DIT_PIPELINE_CLS):
            module = module.transformer
        if isinstance(module, FluxTransformer2DModel):
            return FluxStruct.construct(module, parent=parent, fname=fname, rname=rname, rkey=rkey, idx=idx, **kwargs)
        else:
            if isinstance(module, PixArtTransformer2DModel):
                input_embed, input_embed_rname = module.pos_embed, "pos_embed"
                time_embed, time_embed_rname = module.adaln_single, "adaln_single"
                text_embed, text_embed_rname = module.caption_projection, "caption_projection"
                norm_out, norm_out_rname = module.norm_out, "norm_out"
                proj_out, proj_out_rname = module.proj_out, "proj_out"
                transformer_blocks, transformer_blocks_rname = module.transformer_blocks, "transformer_blocks"
                # ! in fact, `module.adaln_single.emb` is `time_embed`,
                # ! `module.adaln_single.linear` is `transformer_norm`
                # ! but since PixArt shares the `transformer_norm`, we categorize it as `time_embed`
            elif isinstance(module, SanaTransformer2DModel):
                input_embed, input_embed_rname = module.patch_embed, "patch_embed"
                time_embed, time_embed_rname = module.time_embed, "time_embed"
                text_embed, text_embed_rname = module.caption_projection, "caption_projection"
                norm_out, norm_out_rname = module.norm_out, "norm_out"
                proj_out, proj_out_rname = module.proj_out, "proj_out"
                transformer_blocks, transformer_blocks_rname = module.transformer_blocks, "transformer_blocks"
            elif isinstance(module, SD3Transformer2DModel):
                input_embed, input_embed_rname = module.pos_embed, "pos_embed"
                time_embed, time_embed_rname = module.time_text_embed, "time_text_embed"
                text_embed, text_embed_rname = module.context_embedder, "context_embedder"
                norm_out, norm_out_rname = module.norm_out, "norm_out"
                proj_out, proj_out_rname = module.proj_out, "proj_out"
                transformer_blocks, transformer_blocks_rname = module.transformer_blocks, "transformer_blocks"
            else:
                raise NotImplementedError(f"Unsupported module type: {type(module)}")
            return DiTStruct(
                module=module,
                parent=parent,
                fname=fname,
                idx=idx,
                rname=rname,
                rkey=rkey,
                input_embed=input_embed,
                time_embed=time_embed,
                text_embed=text_embed,
                transformer_blocks=transformer_blocks,
                norm_out=norm_out,
                proj_out=proj_out,
                input_embed_rname=input_embed_rname,
                time_embed_rname=time_embed_rname,
                text_embed_rname=text_embed_rname,
                norm_out_rname=norm_out_rname,
                proj_out_rname=proj_out_rname,
                transformer_blocks_rname=transformer_blocks_rname,
            )

    @classmethod
    def _get_default_key_map(cls) -> dict[str, set[str]]:
        """Get the default allowed keys."""
        key_map: dict[str, set[str]] = defaultdict(set)
        block_cls = cls.transformer_block_struct_cls
        block_key = block_rkey = cls.transformer_block_rkey
        block_key_map = block_cls._get_default_key_map()
        for rkey, keys in block_key_map.items():
            brkey = join_name(block_rkey, rkey, sep="_")
            for key in keys:
                key = join_name(block_key, key, sep="_")
                key_map[rkey].add(key)
                key_map[brkey].add(key)
                if block_rkey:
                    key_map[block_rkey].add(key)
        keys: set[str] = set()
        keys.add(cls.input_embed_rkey)
        keys.add(cls.time_embed_rkey)
        keys.add(cls.text_embed_rkey)
        keys.add(cls.norm_in_rkey)
        keys.add(cls.proj_in_rkey)
        keys.add(cls.norm_out_rkey)
        keys.add(cls.proj_out_rkey)
        for mapped_keys in key_map.values():
            for key in mapped_keys:
                keys.add(key)
        if "embed" not in keys and "embed" not in key_map:
            key_map["embed"].add(cls.input_embed_rkey)
            key_map["embed"].add(cls.time_embed_rkey)
            key_map["embed"].add(cls.text_embed_rkey)
            key_map["embed"].add(cls.norm_in_rkey)
            key_map["embed"].add(cls.proj_in_rkey)
            key_map["embed"].add(cls.norm_out_rkey)
            key_map["embed"].add(cls.proj_out_rkey)
        for key in keys:
            if key in key_map:
                key_map[key].clear()
            key_map[key].add(key)
        return {k: v for k, v in key_map.items() if v}


@dataclass(kw_only=True)
class FluxStruct(DiTStruct):
    # region relative keys
    single_transformer_block_rkey: tp.ClassVar[str] = ""
    single_transformer_block_struct_cls: tp.ClassVar[type[DiffusionTransformerBlockStruct]] = (
        DiffusionTransformerBlockStruct
    )
    # endregion

    module: FluxTransformer2DModel = field(repr=False, kw_only=False)
    """the module of FluxTransformer2DModel"""
    # region child modules
    input_embed: nn.Linear
    time_embed: CombinedTimestepGuidanceTextProjEmbeddings | CombinedTimestepTextProjEmbeddings
    text_embed: nn.Linear
    single_transformer_blocks: nn.ModuleList = field(repr=False)
    # endregion
    # region relative names
    single_transformer_blocks_rname: str
    # endregion
    # region absolute names
    single_transformer_blocks_name: str = field(init=False, repr=False)
    single_transformer_block_names: list[str] = field(init=False, repr=False)
    # endregion
    # region child structs
    single_transformer_block_structs: list[DiffusionTransformerBlockStruct] = field(init=False)
    # endregion

    @property
    def num_blocks(self) -> int:
        return len(self.transformer_block_structs) + len(self.single_transformer_block_structs)

    @property
    def block_structs(self) -> list[DiffusionTransformerBlockStruct]:
        return [*self.transformer_block_structs, *self.single_transformer_block_structs]

    @property
    def block_names(self) -> list[str]:
        return [*self.transformer_block_names, *self.single_transformer_block_names]

    def __post_init__(self) -> None:
        super().__post_init__()
        single_transformer_block_rnames = [
            f"{self.single_transformer_blocks_rname}.{idx}" for idx in range(len(self.single_transformer_blocks))
        ]
        self.single_transformer_blocks_name = join_name(self.name, self.single_transformer_blocks_rname)
        self.single_transformer_block_names = [join_name(self.name, rname) for rname in single_transformer_block_rnames]
        self.single_transformer_block_structs = [
            self.single_transformer_block_struct_cls.construct(
                block,
                parent=self,
                fname="single_transformer_block",
                rname=rname,
                rkey=self.single_transformer_block_rkey,
                idx=idx,
            )
            for idx, (block, rname) in enumerate(
                zip(self.single_transformer_blocks, single_transformer_block_rnames, strict=True)
            )
        ]

    def _get_iter_block_activations_args(

        self, **input_kwargs

    ) -> tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]:
        layers, layer_structs, recomputes, use_prev_layer_outputs = super()._get_iter_block_activations_args()
        layers.extend(self.single_transformer_blocks)
        layer_structs.extend(self.single_transformer_block_structs)
        use_prev_layer_outputs.append(False)
        use_prev_layer_outputs.extend([True] * (len(self.single_transformer_blocks) - 1))
        recomputes.extend([False] * len(self.single_transformer_blocks))
        return layers, layer_structs, recomputes, use_prev_layer_outputs

    @staticmethod
    def _default_construct(

        module: tp.Union[FluxPipeline, FluxKontextPipeline, FluxControlPipeline, FluxTransformer2DModel],

        /,

        parent: tp.Optional[BaseModuleStruct] = None,

        fname: str = "",

        rname: str = "",

        rkey: str = "",

        idx: int = 0,

        **kwargs,

    ) -> "FluxStruct":
        if isinstance(module, (FluxPipeline, FluxKontextPipeline, FluxControlPipeline)):
            module = module.transformer
        if isinstance(module, FluxTransformer2DModel):
            input_embed, time_embed, text_embed = module.x_embedder, module.time_text_embed, module.context_embedder
            input_embed_rname, time_embed_rname, text_embed_rname = "x_embedder", "time_text_embed", "context_embedder"
            norm_out, norm_out_rname = module.norm_out, "norm_out"
            proj_out, proj_out_rname = module.proj_out, "proj_out"
            transformer_blocks, transformer_blocks_rname = module.transformer_blocks, "transformer_blocks"
            single_transformer_blocks = module.single_transformer_blocks
            single_transformer_blocks_rname = "single_transformer_blocks"
            return FluxStruct(
                module=module,
                parent=parent,
                fname=fname,
                idx=idx,
                rname=rname,
                rkey=rkey,
                input_embed=input_embed,
                time_embed=time_embed,
                text_embed=text_embed,
                transformer_blocks=transformer_blocks,
                single_transformer_blocks=single_transformer_blocks,
                norm_out=norm_out,
                proj_out=proj_out,
                input_embed_rname=input_embed_rname,
                time_embed_rname=time_embed_rname,
                text_embed_rname=text_embed_rname,
                norm_out_rname=norm_out_rname,
                proj_out_rname=proj_out_rname,
                transformer_blocks_rname=transformer_blocks_rname,
                single_transformer_blocks_rname=single_transformer_blocks_rname,
            )
        raise NotImplementedError(f"Unsupported module type: {type(module)}")

    @classmethod
    def _get_default_key_map(cls) -> dict[str, set[str]]:
        """Get the default allowed keys."""
        key_map: dict[str, set[str]] = defaultdict(set)
        for block_rkey, block_cls in (
            (cls.transformer_block_rkey, cls.transformer_block_struct_cls),
            (cls.single_transformer_block_rkey, cls.single_transformer_block_struct_cls),
        ):
            block_key = block_rkey
            block_key_map = block_cls._get_default_key_map()
            for rkey, keys in block_key_map.items():
                brkey = join_name(block_rkey, rkey, sep="_")
                for key in keys:
                    key = join_name(block_key, key, sep="_")
                    key_map[rkey].add(key)
                    key_map[brkey].add(key)
                    if block_rkey:
                        key_map[block_rkey].add(key)
        keys: set[str] = set()
        keys.add(cls.input_embed_rkey)
        keys.add(cls.time_embed_rkey)
        keys.add(cls.text_embed_rkey)
        keys.add(cls.norm_in_rkey)
        keys.add(cls.proj_in_rkey)
        keys.add(cls.norm_out_rkey)
        keys.add(cls.proj_out_rkey)
        for mapped_keys in key_map.values():
            for key in mapped_keys:
                keys.add(key)
        if "embed" not in keys and "embed" not in key_map:
            key_map["embed"].add(cls.input_embed_rkey)
            key_map["embed"].add(cls.time_embed_rkey)
            key_map["embed"].add(cls.text_embed_rkey)
            key_map["embed"].add(cls.norm_in_rkey)
            key_map["embed"].add(cls.proj_in_rkey)
            key_map["embed"].add(cls.norm_out_rkey)
            key_map["embed"].add(cls.proj_out_rkey)
        for key in keys:
            if key in key_map:
                key_map[key].clear()
            key_map[key].add(key)
        return {k: v for k, v in key_map.items() if v}


DiffusionAttentionStruct.register_factory(Attention, DiffusionAttentionStruct._default_construct)

DiffusionFeedForwardStruct.register_factory(
    (FeedForward, FluxSingleTransformerBlock, GLUMBConv), DiffusionFeedForwardStruct._default_construct
)

DiffusionTransformerBlockStruct.register_factory(DIT_BLOCK_CLS, DiffusionTransformerBlockStruct._default_construct)

UNetBlockStruct.register_factory(UNET_BLOCK_CLS, UNetBlockStruct._default_construct)

UNetStruct.register_factory(tp.Union[UNET_PIPELINE_CLS, UNET_CLS], UNetStruct._default_construct)

FluxStruct.register_factory(
    tp.Union[FluxPipeline, FluxKontextPipeline, FluxControlPipeline, FluxTransformer2DModel], FluxStruct._default_construct
)

DiTStruct.register_factory(tp.Union[DIT_PIPELINE_CLS, DIT_CLS], DiTStruct._default_construct)

DiffusionTransformerStruct.register_factory(Transformer2DModel, DiffusionTransformerStruct._default_construct)

DiffusionModelStruct.register_factory(tp.Union[PIPELINE_CLS, MODEL_CLS], DiffusionModelStruct._default_construct)

# Register the factory (usually at the bottom of the file)  
DiffusionAttentionStruct.register_factory(ATTENTION_CLS, DiffusionAttentionStruct._default_construct)