File size: 91,735 Bytes
5f212ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 |
# -*- coding: utf-8 -*-
"""Utility functions for Diffusion Models."""
import enum
import typing as tp
from abc import abstractmethod
from collections import OrderedDict, defaultdict
from dataclasses import dataclass, field
# region imports
import torch.nn as nn
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU, SwiGLU
from diffusers.models.attention import BasicTransformerBlock, FeedForward, JointTransformerBlock
from diffusers.models.attention_processor import Attention, SanaLinearAttnProcessor2_0
from diffusers.models.embeddings import (
CombinedTimestepGuidanceTextProjEmbeddings,
CombinedTimestepTextProjEmbeddings,
ImageHintTimeEmbedding,
ImageProjection,
ImageTimeEmbedding,
PatchEmbed,
PixArtAlphaTextProjection,
TextImageProjection,
TextImageTimeEmbedding,
TextTimeEmbedding,
TimestepEmbedding,
)
from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormSingle, AdaLayerNormZero
from diffusers.models.resnet import Downsample2D, ResnetBlock2D, Upsample2D
from diffusers.models.transformers.pixart_transformer_2d import PixArtTransformer2DModel
from diffusers.models.transformers.sana_transformer import GLUMBConv, SanaTransformer2DModel, SanaTransformerBlock
from diffusers.models.transformers.transformer_2d import Transformer2DModel
from diffusers.models.transformers.transformer_flux import (
FluxSingleTransformerBlock,
FluxTransformer2DModel,
FluxTransformerBlock,
FluxAttention
)
from diffusers.models.transformers.transformer_sd3 import SD3Transformer2DModel
from diffusers.models.unets.unet_2d import UNet2DModel
from diffusers.models.unets.unet_2d_blocks import (
CrossAttnDownBlock2D,
CrossAttnUpBlock2D,
DownBlock2D,
UNetMidBlock2D,
UNetMidBlock2DCrossAttn,
UpBlock2D,
)
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.pipelines import (
FluxControlPipeline,
FluxFillPipeline,
FluxPipeline,
FluxKontextPipeline,
PixArtAlphaPipeline,
PixArtSigmaPipeline,
SanaPipeline,
StableDiffusion3Pipeline,
StableDiffusionPipeline,
StableDiffusionXLPipeline,
)
from deepcompressor.nn.patch.conv import ConcatConv2d, ShiftedConv2d
from deepcompressor.nn.patch.linear import ConcatLinear, ShiftedLinear
from deepcompressor.nn.struct.attn import (
AttentionConfigStruct,
AttentionStruct,
BaseTransformerStruct,
FeedForwardConfigStruct,
FeedForwardStruct,
TransformerBlockStruct,
)
from deepcompressor.nn.struct.base import BaseModuleStruct
from deepcompressor.utils.common import join_name
from .attention import DiffusionAttentionProcessor
# endregion
__all__ = ["DiffusionModelStruct", "DiffusionBlockStruct", "DiffusionModelStruct"]
DIT_BLOCK_CLS = tp.Union[
BasicTransformerBlock,
JointTransformerBlock,
FluxSingleTransformerBlock,
FluxTransformerBlock,
SanaTransformerBlock,
]
UNET_BLOCK_CLS = tp.Union[
DownBlock2D,
CrossAttnDownBlock2D,
UNetMidBlock2D,
UNetMidBlock2DCrossAttn,
UpBlock2D,
CrossAttnUpBlock2D,
]
DIT_CLS = tp.Union[
Transformer2DModel,
PixArtTransformer2DModel,
SD3Transformer2DModel,
FluxTransformer2DModel,
SanaTransformer2DModel,
]
UNET_CLS = tp.Union[UNet2DModel, UNet2DConditionModel]
MODEL_CLS = tp.Union[DIT_CLS, UNET_CLS]
UNET_PIPELINE_CLS = tp.Union[StableDiffusionPipeline, StableDiffusionXLPipeline]
DIT_PIPELINE_CLS = tp.Union[
StableDiffusion3Pipeline,
PixArtAlphaPipeline,
PixArtSigmaPipeline,
FluxPipeline,
FluxKontextPipeline,
FluxControlPipeline,
FluxFillPipeline,
SanaPipeline,
]
PIPELINE_CLS = tp.Union[UNET_PIPELINE_CLS, DIT_PIPELINE_CLS]
ATTENTION_CLS = tp.Union[
# existing types...
FluxAttention,
]
@dataclass(kw_only=True)
class DiffusionModuleStruct(BaseModuleStruct):
def named_key_modules(self) -> tp.Generator[tuple[str, str, nn.Module, BaseModuleStruct, str], None, None]:
if isinstance(self.module, (nn.Linear, nn.Conv2d)):
yield self.key, self.name, self.module, self.parent, self.fname
else:
for name, module in self.module.named_modules():
if name and isinstance(module, (nn.Linear, nn.Conv2d)):
module_name = join_name(self.name, name)
field_name = join_name(self.fname, name)
yield self.key, module_name, module, self.parent, field_name
@dataclass(kw_only=True)
class DiffusionBlockStruct(BaseModuleStruct):
@abstractmethod
def iter_attention_structs(self) -> tp.Generator["DiffusionAttentionStruct", None, None]: ...
@abstractmethod
def iter_transformer_block_structs(self) -> tp.Generator["DiffusionTransformerBlockStruct", None, None]: ...
@dataclass(kw_only=True)
class DiffusionModelStruct(DiffusionBlockStruct):
pre_module_structs: OrderedDict[str, DiffusionModuleStruct] = field(init=False, repr=False)
post_module_structs: OrderedDict[str, DiffusionModuleStruct] = field(init=False, repr=False)
@property
@abstractmethod
def num_blocks(self) -> int: ...
@property
@abstractmethod
def block_structs(self) -> list[DiffusionBlockStruct]: ...
@abstractmethod
def get_prev_module_keys(self) -> tuple[str, ...]: ...
@abstractmethod
def get_post_module_keys(self) -> tuple[str, ...]: ...
@abstractmethod
def _get_iter_block_activations_args(
self, **input_kwargs
) -> tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]: ...
def _get_iter_pre_module_activations_args(
self,
) -> tuple[list[nn.Module], list[DiffusionModuleStruct], list[bool], list[bool]]:
layers, layer_structs, recomputes, use_prev_layer_outputs = [], [], [], []
for layer_struct in self.pre_module_structs.values():
layers.append(layer_struct.module)
layer_structs.append(layer_struct)
recomputes.append(False)
use_prev_layer_outputs.append(False)
return layers, layer_structs, recomputes, use_prev_layer_outputs
def _get_iter_post_module_activations_args(
self,
) -> tuple[list[nn.Module], list[DiffusionModuleStruct], list[bool], list[bool]]:
layers, layer_structs, recomputes, use_prev_layer_outputs = [], [], [], []
for layer_struct in self.post_module_structs.values():
layers.append(layer_struct.module)
layer_structs.append(layer_struct)
recomputes.append(False)
use_prev_layer_outputs.append(False)
return layers, layer_structs, recomputes, use_prev_layer_outputs
def get_iter_layer_activations_args(
self, skip_pre_modules: bool, skip_post_modules: bool, **input_kwargs
) -> tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]:
"""
Get the arguments for iterating over the layers and their activations.
Args:
skip_pre_modules (`bool`):
Whether to skip the pre-modules
skip_post_modules (`bool`):
Whether to skip the post-modules
Returns:
`tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]`:
the layers, the layer structs, the recomputes, and the use_prev_layer_outputs
"""
layers, structs, recomputes, uses = [], [], [], []
if not skip_pre_modules:
layers, structs, recomputes, uses = self._get_iter_pre_module_activations_args()
_layers, _structs, _recomputes, _uses = self._get_iter_block_activations_args(**input_kwargs)
layers.extend(_layers)
structs.extend(_structs)
recomputes.extend(_recomputes)
uses.extend(_uses)
if not skip_post_modules:
_layers, _structs, _recomputes, _uses = self._get_iter_post_module_activations_args()
layers.extend(_layers)
structs.extend(_structs)
recomputes.extend(_recomputes)
uses.extend(_uses)
return layers, structs, recomputes, uses
def named_key_modules(self) -> tp.Generator[tp.Tuple[str, str, nn.Module, BaseModuleStruct, str], None, None]:
for module in self.pre_module_structs.values():
yield from module.named_key_modules()
for block in self.block_structs:
yield from block.named_key_modules()
for module in self.post_module_structs.values():
yield from module.named_key_modules()
def iter_attention_structs(self) -> tp.Generator["AttentionStruct", None, None]:
for block in self.block_structs:
yield from block.iter_attention_structs()
def iter_transformer_block_structs(self) -> tp.Generator["DiffusionTransformerBlockStruct", None, None]:
for block in self.block_structs:
yield from block.iter_transformer_block_structs()
def get_named_layers(
self, skip_pre_modules: bool, skip_post_modules: bool, skip_blocks: bool = False
) -> OrderedDict[str, DiffusionBlockStruct | DiffusionModuleStruct]:
named_layers = OrderedDict()
if not skip_pre_modules:
named_layers.update(self.pre_module_structs)
if not skip_blocks:
for block in self.block_structs:
named_layers[block.name] = block
if not skip_post_modules:
named_layers.update(self.post_module_structs)
return named_layers
@staticmethod
def _default_construct(
module: tp.Union[PIPELINE_CLS, MODEL_CLS],
/,
parent: tp.Optional[BaseModuleStruct] = None,
fname: str = "",
rname: str = "",
rkey: str = "",
idx: int = 0,
**kwargs,
) -> "DiffusionModelStruct":
if isinstance(module, UNET_PIPELINE_CLS):
module = module.unet
elif isinstance(module, DIT_PIPELINE_CLS):
module = module.transformer
if isinstance(module, UNET_CLS):
return UNetStruct.construct(module, parent=parent, fname=fname, rname=rname, rkey=rkey, idx=idx, **kwargs)
elif isinstance(module, DIT_CLS):
return DiTStruct.construct(module, parent=parent, fname=fname, rname=rname, rkey=rkey, idx=idx, **kwargs)
raise NotImplementedError(f"Unsupported module type: {type(module)}")
@classmethod
def _get_default_key_map(cls) -> dict[str, set[str]]:
unet_key_map = UNetStruct._get_default_key_map()
dit_key_map = DiTStruct._get_default_key_map()
flux_key_map = FluxStruct._get_default_key_map()
key_map: dict[str, set[str]] = defaultdict(set)
for rkey, keys in unet_key_map.items():
key_map[rkey].update(keys)
for rkey, keys in dit_key_map.items():
key_map[rkey].update(keys)
for rkey, keys in flux_key_map.items():
key_map[rkey].update(keys)
return {k: v for k, v in key_map.items() if v}
@staticmethod
def _simplify_keys(keys: tp.Iterable[str], *, key_map: dict[str, set[str]]) -> list[str]:
"""Simplify the keys based on the key map.
Args:
keys (`Iterable[str]`):
The keys to simplify.
key_map (`dict[str, set[str]]`):
The key map.
Returns:
`list[str]`:
The simplified keys.
"""
# we first sort key_map by length of values in descending order
key_map = dict(sorted(key_map.items(), key=lambda item: len(item[1]), reverse=True))
ukeys, skeys = set(keys), set()
for k, v in key_map.items():
if k in ukeys:
skeys.add(k)
ukeys.discard(k)
ukeys.difference_update(v)
continue
if ukeys.issuperset(v):
skeys.add(k)
ukeys.difference_update(v)
assert not ukeys, f"Unrecognized keys: {ukeys}"
return sorted(skeys)
@dataclass(kw_only=True)
class DiffusionAttentionStruct(AttentionStruct):
module: Attention = field(repr=False, kw_only=False)
"""the module of AttentionBlock"""
parent: tp.Optional["DiffusionTransformerBlockStruct"] = field(repr=False)
def filter_kwargs(self, kwargs: dict) -> dict:
"""Filter layer kwargs to attn kwargs."""
if isinstance(self.parent.module, BasicTransformerBlock):
if kwargs.get("cross_attention_kwargs", None) is None:
attn_kwargs = {}
else:
attn_kwargs = dict(kwargs["cross_attention_kwargs"].items())
attn_kwargs.pop("gligen", None)
if self.idx == 0:
attn_kwargs["attention_mask"] = kwargs.get("attention_mask", None)
else:
attn_kwargs["attention_mask"] = kwargs.get("encoder_attention_mask", None)
else:
attn_kwargs = {}
return attn_kwargs
@staticmethod
def _default_construct(
module: Attention,
/,
parent: tp.Optional["DiffusionTransformerBlockStruct"] = None,
fname: str = "",
rname: str = "",
rkey: str = "",
idx: int = 0,
**kwargs,
) -> "DiffusionAttentionStruct":
if isinstance(module, FluxAttention):
# FluxAttention has different attribute names than standard attention
with_rope = True
num_query_heads = module.heads # FluxAttention uses 'heads', not 'num_heads'
num_key_value_heads = module.heads # FLUX typically uses same for q/k/v
# FluxAttention doesn't have 'to_out', but may have other output projections
# Check what output projection attributes actually exist
o_proj = None
o_proj_rname = ""
# Try to find the correct output projection
if hasattr(module, 'to_out') and module.to_out is not None:
o_proj = module.to_out[0] if isinstance(module.to_out, (list, tuple)) else module.to_out
o_proj_rname = "to_out.0" if isinstance(module.to_out, (list, tuple)) else "to_out"
elif hasattr(module, 'to_add_out'):
o_proj = module.to_add_out
o_proj_rname = "to_add_out"
q_proj, k_proj, v_proj = module.to_q, module.to_k, module.to_v
q_proj_rname, k_proj_rname, v_proj_rname = "to_q", "to_k", "to_v"
q, k, v = module.to_q, module.to_k, module.to_v
q_rname, k_rname, v_rname = "to_q", "to_k", "to_v"
# Handle the add_* projections that FluxAttention has
add_q_proj = getattr(module, "add_q_proj", None)
add_k_proj = getattr(module, "add_k_proj", None)
add_v_proj = getattr(module, "add_v_proj", None)
add_o_proj = getattr(module, "to_add_out", None)
add_q_proj_rname = "add_q_proj" if add_q_proj else ""
add_k_proj_rname = "add_k_proj" if add_k_proj else ""
add_v_proj_rname = "add_v_proj" if add_v_proj else ""
add_o_proj_rname = "to_add_out" if add_o_proj else ""
kwargs = (
"encoder_hidden_states",
"attention_mask",
"image_rotary_emb",
)
cross_attention = add_k_proj is not None
elif module.is_cross_attention:
q_proj, k_proj, v_proj = module.to_q, None, None
add_q_proj, add_k_proj, add_v_proj, add_o_proj = None, module.to_k, module.to_v, None
q_proj_rname, k_proj_rname, v_proj_rname = "to_q", "", ""
add_q_proj_rname, add_k_proj_rname, add_v_proj_rname, add_o_proj_rname = "", "to_k", "to_v", ""
else:
q_proj, k_proj, v_proj = module.to_q, module.to_k, module.to_v
add_q_proj = getattr(module, "add_q_proj", None)
add_k_proj = getattr(module, "add_k_proj", None)
add_v_proj = getattr(module, "add_v_proj", None)
add_o_proj = getattr(module, "to_add_out", None)
q_proj_rname, k_proj_rname, v_proj_rname = "to_q", "to_k", "to_v"
add_q_proj_rname, add_k_proj_rname, add_v_proj_rname = "add_q_proj", "add_k_proj", "add_v_proj"
add_o_proj_rname = "to_add_out"
if getattr(module, "to_out", None) is not None:
o_proj = module.to_out[0]
o_proj_rname = "to_out.0"
assert isinstance(o_proj, nn.Linear)
elif parent is not None:
assert isinstance(parent.module, FluxSingleTransformerBlock)
assert isinstance(parent.module.proj_out, ConcatLinear)
assert len(parent.module.proj_out.linears) == 2
o_proj = parent.module.proj_out.linears[0]
o_proj_rname = ".proj_out.linears.0"
else:
raise RuntimeError("Cannot find the output projection.")
if isinstance(module.processor, DiffusionAttentionProcessor):
with_rope = module.processor.rope is not None
elif module.processor.__class__.__name__.startswith("Flux"):
with_rope = True
else:
with_rope = False # TODO: fix for other processors
config = AttentionConfigStruct(
hidden_size=q_proj.weight.shape[1],
add_hidden_size=add_k_proj.weight.shape[1] if add_k_proj is not None else 0,
inner_size=q_proj.weight.shape[0],
num_query_heads=module.heads,
num_key_value_heads=module.to_k.weight.shape[0] // (module.to_q.weight.shape[0] // module.heads),
with_qk_norm=module.norm_q is not None,
with_rope=with_rope,
linear_attn=isinstance(module.processor, SanaLinearAttnProcessor2_0),
)
return DiffusionAttentionStruct(
module=module,
parent=parent,
fname=fname,
idx=idx,
rname=rname,
rkey=rkey,
config=config,
q_proj=q_proj,
k_proj=k_proj,
v_proj=v_proj,
o_proj=o_proj,
add_q_proj=add_q_proj,
add_k_proj=add_k_proj,
add_v_proj=add_v_proj,
add_o_proj=add_o_proj,
q=None, # TODO: add q, k, v
k=None,
v=None,
q_proj_rname=q_proj_rname,
k_proj_rname=k_proj_rname,
v_proj_rname=v_proj_rname,
o_proj_rname=o_proj_rname,
add_q_proj_rname=add_q_proj_rname,
add_k_proj_rname=add_k_proj_rname,
add_v_proj_rname=add_v_proj_rname,
add_o_proj_rname=add_o_proj_rname,
q_rname="",
k_rname="",
v_rname="",
)
@dataclass(kw_only=True)
class DiffusionFeedForwardStruct(FeedForwardStruct):
module: FeedForward = field(repr=False, kw_only=False)
"""the module of FeedForward"""
parent: tp.Optional["DiffusionTransformerBlockStruct"] = field(repr=False)
# region modules
moe_gate: None = field(init=False, repr=False, default=None)
experts: list[nn.Module] = field(init=False, repr=False)
# endregion
# region names
moe_gate_rname: str = field(init=False, repr=False, default="")
experts_rname: str = field(init=False, repr=False, default="")
# endregion
# region aliases
@property
def up_proj(self) -> nn.Linear:
return self.up_projs[0]
@property
def down_proj(self) -> nn.Linear:
return self.down_projs[0]
@property
def up_proj_rname(self) -> str:
return self.up_proj_rnames[0]
@property
def down_proj_rname(self) -> str:
return self.down_proj_rnames[0]
@property
def up_proj_name(self) -> str:
return self.up_proj_names[0]
@property
def down_proj_name(self) -> str:
return self.down_proj_names[0]
# endregion
def __post_init__(self) -> None:
assert len(self.up_projs) == len(self.down_projs) == 1
assert len(self.up_proj_rnames) == len(self.down_proj_rnames) == 1
self.experts = [self.module]
super().__post_init__()
@staticmethod
def _default_construct(
module: FeedForward | FluxSingleTransformerBlock | GLUMBConv,
/,
parent: tp.Optional["DiffusionTransformerBlockStruct"] = None,
fname: str = "",
rname: str = "",
rkey: str = "",
idx: int = 0,
**kwargs,
) -> "DiffusionFeedForwardStruct":
if isinstance(module, FeedForward):
layer_1, layer_2 = module.net[0], module.net[2]
assert isinstance(layer_1, (GEGLU, GELU, ApproximateGELU, SwiGLU))
up_proj, up_proj_rname = layer_1.proj, "net.0.proj"
assert isinstance(up_proj, nn.Linear)
down_proj, down_proj_rname = layer_2, "net.2"
if isinstance(layer_1, GEGLU):
act_type = "gelu_glu"
elif isinstance(layer_1, SwiGLU):
act_type = "swish_glu"
else:
assert layer_1.__class__.__name__.lower().endswith("gelu")
act_type = "gelu"
if isinstance(layer_2, ShiftedLinear):
down_proj, down_proj_rname = layer_2.linear, "net.2.linear"
act_type = "gelu_shifted"
assert isinstance(down_proj, nn.Linear)
ffn = module
elif isinstance(module, FluxSingleTransformerBlock):
up_proj, up_proj_rname = module.proj_mlp, "proj_mlp"
act_type = "gelu"
assert isinstance(module.proj_out, ConcatLinear)
assert len(module.proj_out.linears) == 2
layer_2 = module.proj_out.linears[1]
if isinstance(layer_2, ShiftedLinear):
down_proj, down_proj_rname = layer_2.linear, "proj_out.linears.1.linear"
act_type = "gelu_shifted"
else:
down_proj, down_proj_rname = layer_2, "proj_out.linears.1"
ffn = nn.Sequential(up_proj, module.act_mlp, layer_2)
assert not rname, f"Unsupported rname: {rname}"
elif isinstance(module, GLUMBConv):
ffn = module
up_proj, up_proj_rname = module.conv_inverted, "conv_inverted"
down_proj, down_proj_rname = module.conv_point, "conv_point"
act_type = "silu_conv_silu_glu"
else:
raise NotImplementedError(f"Unsupported module type: {type(module)}")
config = FeedForwardConfigStruct(
hidden_size=up_proj.weight.shape[1],
intermediate_size=down_proj.weight.shape[1],
intermediate_act_type=act_type,
num_experts=1,
)
return DiffusionFeedForwardStruct(
module=ffn, # this may be a virtual module
parent=parent,
fname=fname,
idx=idx,
rname=rname,
rkey=rkey,
config=config,
up_projs=[up_proj],
down_projs=[down_proj],
up_proj_rnames=[up_proj_rname],
down_proj_rnames=[down_proj_rname],
)
@dataclass(kw_only=True)
class DiffusionTransformerBlockStruct(TransformerBlockStruct, DiffusionBlockStruct):
# region relative keys
norm_rkey: tp.ClassVar[str] = "transformer_norm"
add_norm_rkey: tp.ClassVar[str] = "transformer_add_norm"
attn_struct_cls: tp.ClassVar[type[DiffusionAttentionStruct]] = DiffusionAttentionStruct
ffn_struct_cls: tp.ClassVar[type[DiffusionFeedForwardStruct]] = DiffusionFeedForwardStruct
# endregion
parent: tp.Optional["DiffusionTransformerStruct"] = field(repr=False)
# region child modules
post_attn_norms: list[nn.LayerNorm] = field(init=False, repr=False, default_factory=list)
post_attn_add_norms: list[nn.LayerNorm] = field(init=False, repr=False, default_factory=list)
post_ffn_norm: None = field(init=False, repr=False, default=None)
post_add_ffn_norm: None = field(init=False, repr=False, default=None)
# endregion
# region relative names
post_attn_norm_rnames: list[str] = field(init=False, repr=False, default_factory=list)
post_attn_add_norm_rnames: list[str] = field(init=False, repr=False, default_factory=list)
post_ffn_norm_rname: str = field(init=False, repr=False, default="")
post_add_ffn_norm_rname: str = field(init=False, repr=False, default="")
# endregion
# region attributes
norm_type: str
add_norm_type: str
# endregion
# region absolute keys
norm_key: str = field(init=False, repr=False)
add_norm_key: str = field(init=False, repr=False)
# endregion
# region child structs
pre_attn_norm_structs: list[DiffusionModuleStruct | None] = field(init=False, repr=False)
pre_attn_add_norm_structs: list[DiffusionModuleStruct | None] = field(init=False, repr=False)
pre_ffn_norm_struct: DiffusionModuleStruct = field(init=False, repr=False, default=None)
pre_add_ffn_norm_struct: DiffusionModuleStruct | None = field(init=False, repr=False, default=None)
attn_structs: list[DiffusionAttentionStruct] = field(init=False, repr=False)
ffn_struct: DiffusionFeedForwardStruct | None = field(init=False, repr=False)
add_ffn_struct: DiffusionFeedForwardStruct | None = field(init=False, repr=False)
# endregion
def __post_init__(self) -> None:
super().__post_init__()
self.norm_key = join_name(self.key, self.norm_rkey, sep="_")
self.add_norm_key = join_name(self.key, self.add_norm_rkey, sep="_")
self.attn_norm_structs = [
DiffusionModuleStruct(norm, parent=self, fname="pre_attn_norm", rname=rname, rkey=self.norm_rkey, idx=idx)
for idx, (norm, rname) in enumerate(zip(self.pre_attn_norms, self.pre_attn_norm_rnames, strict=True))
]
self.add_attn_norm_structs = [
DiffusionModuleStruct(
norm, parent=self, fname="pre_attn_add_norm", rname=rname, rkey=self.add_norm_rkey, idx=idx
)
for idx, (norm, rname) in enumerate(
zip(self.pre_attn_add_norms, self.pre_attn_add_norm_rnames, strict=True)
)
]
if self.pre_ffn_norm is not None:
self.pre_ffn_norm_struct = DiffusionModuleStruct(
self.pre_ffn_norm, parent=self, fname="pre_ffn_norm", rname=self.pre_ffn_norm_rname, rkey=self.norm_rkey
)
if self.pre_add_ffn_norm is not None:
self.pre_add_ffn_norm_struct = DiffusionModuleStruct(
self.pre_add_ffn_norm,
parent=self,
fname="pre_add_ffn_norm",
rname=self.pre_add_ffn_norm_rname,
rkey=self.add_norm_rkey,
)
def named_key_modules(self) -> tp.Generator[tp.Tuple[str, str, nn.Module, BaseModuleStruct, str], None, None]:
for attn_norm in self.attn_norm_structs:
if attn_norm.module is not None:
yield from attn_norm.named_key_modules()
for add_attn_norm in self.add_attn_norm_structs:
if add_attn_norm.module is not None:
yield from add_attn_norm.named_key_modules()
for attn_struct in self.attn_structs:
yield from attn_struct.named_key_modules()
if self.pre_ffn_norm_struct is not None:
if self.pre_attn_norms and self.pre_attn_norms[0] is not self.pre_ffn_norm:
yield from self.pre_ffn_norm_struct.named_key_modules()
if self.ffn_struct is not None:
yield from self.ffn_struct.named_key_modules()
if self.pre_add_ffn_norm_struct is not None:
if self.pre_attn_add_norms and self.pre_attn_add_norms[0] is not self.pre_add_ffn_norm:
yield from self.pre_add_ffn_norm_struct.named_key_modules()
if self.add_ffn_struct is not None:
yield from self.add_ffn_struct.named_key_modules()
@staticmethod
def _default_construct(
module: DIT_BLOCK_CLS,
/,
parent: tp.Optional["DiffusionTransformerStruct"] = None,
fname: str = "",
rname: str = "",
rkey: str = "",
idx: int = 0,
**kwargs,
) -> "DiffusionTransformerBlockStruct":
if isinstance(module, (BasicTransformerBlock, SanaTransformerBlock)):
parallel = False
if isinstance(module, SanaTransformerBlock):
norm_type = add_norm_type = "ada_norm_single"
else:
norm_type = add_norm_type = module.norm_type
pre_attn_norms, pre_attn_norm_rnames = [], []
attns, attn_rnames = [], []
pre_attn_add_norms, pre_attn_add_norm_rnames = [], []
assert module.norm1 is not None
assert module.attn1 is not None
pre_attn_norms.append(module.norm1)
pre_attn_norm_rnames.append("norm1")
attns.append(module.attn1)
attn_rnames.append("attn1")
pre_attn_add_norms.append(module.attn1.norm_cross)
pre_attn_add_norm_rnames.append("attn1.norm_cross")
if module.attn2 is not None:
if norm_type == "ada_norm_single":
pre_attn_norms.append(None)
pre_attn_norm_rnames.append("")
else:
assert module.norm2 is not None
pre_attn_norms.append(module.norm2)
pre_attn_norm_rnames.append("norm2")
attns.append(module.attn2)
attn_rnames.append("attn2")
pre_attn_add_norms.append(module.attn2.norm_cross)
pre_attn_add_norm_rnames.append("attn2.norm_cross")
if norm_type == "ada_norm_single":
assert module.norm2 is not None
pre_ffn_norm, pre_ffn_norm_rname = module.norm2, "norm2"
else:
pre_ffn_norm, pre_ffn_norm_rname = module.norm3, "" if module.norm3 is None else "norm3"
ffn, ffn_rname = module.ff, "" if module.ff is None else "ff"
pre_add_ffn_norm, pre_add_ffn_norm_rname, add_ffn, add_ffn_rname = None, "", None, ""
elif isinstance(module, JointTransformerBlock):
parallel = False
norm_type = "ada_norm_zero"
pre_attn_norms, pre_attn_norm_rnames = [module.norm1], ["norm1"]
if isinstance(module.norm1_context, AdaLayerNormZero):
add_norm_type = "ada_norm_zero"
else:
add_norm_type = "ada_norm_continous"
pre_attn_add_norms, pre_attn_add_norm_rnames = [module.norm1_context], ["norm1_context"]
attns, attn_rnames = [module.attn], ["attn"]
pre_ffn_norm, pre_ffn_norm_rname = module.norm2, "norm2"
ffn, ffn_rname = module.ff, "ff"
pre_add_ffn_norm, pre_add_ffn_norm_rname = module.norm2_context, "norm2_context"
add_ffn, add_ffn_rname = module.ff_context, "ff_context"
elif isinstance(module, FluxSingleTransformerBlock):
parallel = True
norm_type = add_norm_type = "ada_norm_zero_single"
pre_attn_norms, pre_attn_norm_rnames = [module.norm], ["norm"]
attns, attn_rnames = [module.attn], ["attn"]
pre_attn_add_norms, pre_attn_add_norm_rnames = [], []
pre_ffn_norm, pre_ffn_norm_rname = module.norm, "norm"
ffn, ffn_rname = module, ""
pre_add_ffn_norm, pre_add_ffn_norm_rname, add_ffn, add_ffn_rname = None, "", None, ""
elif isinstance(module, FluxTransformerBlock):
parallel = False
norm_type = add_norm_type = "ada_norm_zero"
pre_attn_norms, pre_attn_norm_rnames = [module.norm1], ["norm1"]
attns, attn_rnames = [module.attn], ["attn"]
pre_attn_add_norms, pre_attn_add_norm_rnames = [module.norm1_context], ["norm1_context"]
pre_ffn_norm, pre_ffn_norm_rname = module.norm2, "norm2"
ffn, ffn_rname = module.ff, "ff"
pre_add_ffn_norm, pre_add_ffn_norm_rname = module.norm2_context, "norm2_context"
add_ffn, add_ffn_rname = module.ff_context, "ff_context"
else:
raise NotImplementedError(f"Unsupported module type: {type(module)}")
return DiffusionTransformerBlockStruct(
module=module,
parent=parent,
fname=fname,
idx=idx,
rname=rname,
rkey=rkey,
parallel=parallel,
pre_attn_norms=pre_attn_norms,
pre_attn_add_norms=pre_attn_add_norms,
attns=attns,
pre_ffn_norm=pre_ffn_norm,
ffn=ffn,
pre_add_ffn_norm=pre_add_ffn_norm,
add_ffn=add_ffn,
pre_attn_norm_rnames=pre_attn_norm_rnames,
pre_attn_add_norm_rnames=pre_attn_add_norm_rnames,
attn_rnames=attn_rnames,
pre_ffn_norm_rname=pre_ffn_norm_rname,
ffn_rname=ffn_rname,
pre_add_ffn_norm_rname=pre_add_ffn_norm_rname,
add_ffn_rname=add_ffn_rname,
norm_type=norm_type,
add_norm_type=add_norm_type,
)
@classmethod
def _get_default_key_map(cls) -> dict[str, set[str]]:
"""Get the default allowed keys."""
key_map: dict[str, set[str]] = defaultdict(set)
norm_rkey = norm_key = cls.norm_rkey
add_norm_rkey = add_norm_key = cls.add_norm_rkey
key_map[norm_rkey].add(norm_key)
key_map[add_norm_rkey].add(add_norm_key)
attn_cls = cls.attn_struct_cls
attn_key = attn_rkey = cls.attn_rkey
qkv_proj_key = qkv_proj_rkey = join_name(attn_key, attn_cls.qkv_proj_rkey, sep="_")
out_proj_key = out_proj_rkey = join_name(attn_key, attn_cls.out_proj_rkey, sep="_")
add_qkv_proj_key = add_qkv_proj_rkey = join_name(attn_key, attn_cls.add_qkv_proj_rkey, sep="_")
add_out_proj_key = add_out_proj_rkey = join_name(attn_key, attn_cls.add_out_proj_rkey, sep="_")
key_map[attn_rkey].add(qkv_proj_key)
key_map[attn_rkey].add(out_proj_key)
if attn_cls.add_qkv_proj_rkey.startswith("add_") and attn_cls.add_out_proj_rkey.startswith("add_"):
add_attn_rkey = join_name(attn_rkey, "add", sep="_")
key_map[add_attn_rkey].add(add_qkv_proj_key)
key_map[add_attn_rkey].add(add_out_proj_key)
key_map[qkv_proj_rkey].add(qkv_proj_key)
key_map[out_proj_rkey].add(out_proj_key)
key_map[add_qkv_proj_rkey].add(add_qkv_proj_key)
key_map[add_out_proj_rkey].add(add_out_proj_key)
ffn_cls = cls.ffn_struct_cls
ffn_key = ffn_rkey = cls.ffn_rkey
add_ffn_key = add_ffn_rkey = cls.add_ffn_rkey
up_proj_key = up_proj_rkey = join_name(ffn_key, ffn_cls.up_proj_rkey, sep="_")
down_proj_key = down_proj_rkey = join_name(ffn_key, ffn_cls.down_proj_rkey, sep="_")
add_up_proj_key = add_up_proj_rkey = join_name(add_ffn_key, ffn_cls.up_proj_rkey, sep="_")
add_down_proj_key = add_down_proj_rkey = join_name(add_ffn_key, ffn_cls.down_proj_rkey, sep="_")
key_map[ffn_rkey].add(up_proj_key)
key_map[ffn_rkey].add(down_proj_key)
key_map[add_ffn_rkey].add(add_up_proj_key)
key_map[add_ffn_rkey].add(add_down_proj_key)
key_map[up_proj_rkey].add(up_proj_key)
key_map[down_proj_rkey].add(down_proj_key)
key_map[add_up_proj_rkey].add(add_up_proj_key)
key_map[add_down_proj_rkey].add(add_down_proj_key)
return {k: v for k, v in key_map.items() if v}
@dataclass(kw_only=True)
class DiffusionTransformerStruct(BaseTransformerStruct, DiffusionBlockStruct):
# region relative keys
proj_in_rkey: tp.ClassVar[str] = "transformer_proj_in"
proj_out_rkey: tp.ClassVar[str] = "transformer_proj_out"
transformer_block_rkey: tp.ClassVar[str] = ""
transformer_block_struct_cls: tp.ClassVar[type[DiffusionTransformerBlockStruct]] = DiffusionTransformerBlockStruct
# endregion
module: Transformer2DModel = field(repr=False, kw_only=False)
# region modules
norm_in: nn.GroupNorm | None
"""Input normalization"""
proj_in: nn.Linear | nn.Conv2d
"""Input projection"""
norm_out: nn.GroupNorm | None
"""Output normalization"""
proj_out: nn.Linear | nn.Conv2d
"""Output projection"""
transformer_blocks: nn.ModuleList = field(repr=False)
"""Transformer blocks"""
# endregion
# region relative names
transformer_blocks_rname: str
# endregion
# region absolute names
transformer_blocks_name: str = field(init=False, repr=False)
transformer_block_names: list[str] = field(init=False, repr=False)
# endregion
# region child structs
transformer_block_structs: list[DiffusionTransformerBlockStruct] = field(init=False, repr=False)
# endregion
# region aliases
@property
def num_blocks(self) -> int:
return len(self.transformer_blocks)
@property
def block_structs(self) -> list[DiffusionBlockStruct]:
return self.transformer_block_structs
@property
def block_names(self) -> list[str]:
return self.transformer_block_names
# endregion
def __post_init__(self):
super().__post_init__()
transformer_block_rnames = [
f"{self.transformer_blocks_rname}.{idx}" for idx in range(len(self.transformer_blocks))
]
self.transformer_blocks_name = join_name(self.name, self.transformer_blocks_rname)
self.transformer_block_names = [join_name(self.name, rname) for rname in transformer_block_rnames]
self.transformer_block_structs = [
self.transformer_block_struct_cls.construct(
layer,
parent=self,
fname="transformer_block",
rname=rname,
rkey=self.transformer_block_rkey,
idx=idx,
)
for idx, (layer, rname) in enumerate(zip(self.transformer_blocks, transformer_block_rnames, strict=True))
]
@staticmethod
def _default_construct(
module: Transformer2DModel,
/,
parent: BaseModuleStruct = None,
fname: str = "",
rname: str = "",
rkey: str = "",
idx: int = 0,
**kwargs,
) -> "DiffusionTransformerStruct":
if isinstance(module, Transformer2DModel):
assert module.is_input_continuous, "input must be continuous"
transformer_blocks, transformer_blocks_rname = module.transformer_blocks, "transformer_blocks"
norm_in, norm_in_rname = module.norm, "norm"
proj_in, proj_in_rname = module.proj_in, "proj_in"
proj_out, proj_out_rname = module.proj_out, "proj_out"
norm_out, norm_out_rname = None, ""
else:
raise NotImplementedError(f"Unsupported module type: {type(module)}")
return DiffusionTransformerStruct(
module=module,
parent=parent,
fname=fname,
idx=idx,
rname=rname,
rkey=rkey,
norm_in=norm_in,
proj_in=proj_in,
transformer_blocks=transformer_blocks,
proj_out=proj_out,
norm_out=norm_out,
norm_in_rname=norm_in_rname,
proj_in_rname=proj_in_rname,
transformer_blocks_rname=transformer_blocks_rname,
norm_out_rname=norm_out_rname,
proj_out_rname=proj_out_rname,
)
@classmethod
def _get_default_key_map(cls) -> dict[str, set[str]]:
"""Get the default allowed keys."""
key_map: dict[str, set[str]] = defaultdict(set)
proj_in_rkey = proj_in_key = cls.proj_in_rkey
proj_out_rkey = proj_out_key = cls.proj_out_rkey
key_map[proj_in_rkey].add(proj_in_key)
key_map[proj_out_rkey].add(proj_out_key)
block_cls = cls.transformer_block_struct_cls
block_key = block_rkey = cls.transformer_block_rkey
block_key_map = block_cls._get_default_key_map()
for rkey, keys in block_key_map.items():
rkey = join_name(block_rkey, rkey, sep="_")
for key in keys:
key = join_name(block_key, key, sep="_")
key_map[rkey].add(key)
return {k: v for k, v in key_map.items() if v}
@dataclass(kw_only=True)
class DiffusionResnetStruct(BaseModuleStruct):
# region relative keys
conv_rkey: tp.ClassVar[str] = "conv"
shortcut_rkey: tp.ClassVar[str] = "shortcut"
time_proj_rkey: tp.ClassVar[str] = "time_proj"
# endregion
module: ResnetBlock2D = field(repr=False, kw_only=False)
"""the module of Resnet"""
config: FeedForwardConfigStruct
# region child modules
norms: list[nn.GroupNorm]
convs: list[list[nn.Conv2d]]
shortcut: nn.Conv2d | None
time_proj: nn.Linear | None
# endregion
# region relative names
norm_rnames: list[str]
conv_rnames: list[list[str]]
shortcut_rname: str
time_proj_rname: str
# endregion
# region absolute names
norm_names: list[str] = field(init=False, repr=False)
conv_names: list[list[str]] = field(init=False, repr=False)
shortcut_name: str = field(init=False, repr=False)
time_proj_name: str = field(init=False, repr=False)
# endregion
# region absolute keys
conv_key: str = field(init=False, repr=False)
shortcut_key: str = field(init=False, repr=False)
time_proj_key: str = field(init=False, repr=False)
# endregion
def __post_init__(self):
super().__post_init__()
self.norm_names = [join_name(self.name, rname) for rname in self.norm_rnames]
self.conv_names = [[join_name(self.name, rname) for rname in rnames] for rnames in self.conv_rnames]
self.shortcut_name = join_name(self.name, self.shortcut_rname)
self.time_proj_name = join_name(self.name, self.time_proj_rname)
self.conv_key = join_name(self.key, self.conv_rkey, sep="_")
self.shortcut_key = join_name(self.key, self.shortcut_rkey, sep="_")
self.time_proj_key = join_name(self.key, self.time_proj_rkey, sep="_")
def named_key_modules(self) -> tp.Generator[tp.Tuple[str, str, nn.Module, BaseModuleStruct, str], None, None]:
for convs, names in zip(self.convs, self.conv_names, strict=True):
for conv, name in zip(convs, names, strict=True):
yield self.conv_key, name, conv, self, "conv"
if self.shortcut is not None:
yield self.shortcut_key, self.shortcut_name, self.shortcut, self, "shortcut"
if self.time_proj is not None:
yield self.time_proj_key, self.time_proj_name, self.time_proj, self, "time_proj"
@staticmethod
def construct(
module: ResnetBlock2D,
/,
parent: BaseModuleStruct = None,
fname: str = "",
rname: str = "",
rkey: str = "",
idx: int = 0,
**kwargs,
) -> "DiffusionResnetStruct":
if isinstance(module, ResnetBlock2D):
assert module.upsample is None, "upsample must be None"
assert module.downsample is None, "downsample must be None"
act_type = module.nonlinearity.__class__.__name__.lower()
shifted = False
if isinstance(module.conv1, ConcatConv2d):
conv1_convs, conv1_names = [], []
for conv_idx, conv in enumerate(module.conv1.convs):
if isinstance(conv, ShiftedConv2d):
shifted = True
conv1_convs.append(conv.conv)
conv1_names.append(f"conv1.convs.{conv_idx}.conv")
else:
assert isinstance(conv, nn.Conv2d)
conv1_convs.append(conv)
conv1_names.append(f"conv1.convs.{conv_idx}")
elif isinstance(module.conv1, ShiftedConv2d):
shifted = True
conv1_convs = [module.conv1.conv]
conv1_names = ["conv1.conv"]
else:
assert isinstance(module.conv1, nn.Conv2d)
conv1_convs, conv1_names = [module.conv1], ["conv1"]
if isinstance(module.conv2, ConcatConv2d):
conv2_convs, conv2_names = [], []
for conv_idx, conv in enumerate(module.conv2.convs):
if isinstance(conv, ShiftedConv2d):
shifted = True
conv2_convs.append(conv.conv)
conv2_names.append(f"conv2.convs.{conv_idx}.conv")
else:
assert isinstance(conv, nn.Conv2d)
conv2_convs.append(conv)
conv2_names.append(f"conv2.convs.{conv_idx}")
elif isinstance(module.conv2, ShiftedConv2d):
shifted = True
conv2_convs = [module.conv2.conv]
conv2_names = ["conv2.conv"]
else:
assert isinstance(module.conv2, nn.Conv2d)
conv2_convs, conv2_names = [module.conv2], ["conv2"]
convs, conv_rnames = [conv1_convs, conv2_convs], [conv1_names, conv2_names]
norms, norm_rnames = [module.norm1, module.norm2], ["norm1", "norm2"]
shortcut, shortcut_rname = module.conv_shortcut, "" if module.conv_shortcut is None else "conv_shortcut"
time_proj, time_proj_rname = module.time_emb_proj, "" if module.time_emb_proj is None else "time_emb_proj"
if shifted:
assert all(hasattr(conv, "shifted") and conv.shifted for level_convs in convs for conv in level_convs)
act_type += "_shifted"
else:
raise NotImplementedError(f"Unsupported module type: {type(module)}")
config = FeedForwardConfigStruct(
hidden_size=convs[0][0].weight.shape[1],
intermediate_size=convs[0][0].weight.shape[0],
intermediate_act_type=act_type,
num_experts=1,
)
return DiffusionResnetStruct(
module=module,
parent=parent,
fname=fname,
idx=idx,
rname=rname,
rkey=rkey,
config=config,
norms=norms,
convs=convs,
shortcut=shortcut,
time_proj=time_proj,
norm_rnames=norm_rnames,
conv_rnames=conv_rnames,
shortcut_rname=shortcut_rname,
time_proj_rname=time_proj_rname,
)
@classmethod
def _get_default_key_map(cls) -> dict[str, set[str]]:
"""Get the default allowed keys."""
key_map: dict[str, set[str]] = defaultdict(set)
conv_key = conv_rkey = cls.conv_rkey
shortcut_key = shortcut_rkey = cls.shortcut_rkey
time_proj_key = time_proj_rkey = cls.time_proj_rkey
key_map[conv_rkey].add(conv_key)
key_map[shortcut_rkey].add(shortcut_key)
key_map[time_proj_rkey].add(time_proj_key)
return {k: v for k, v in key_map.items() if v}
@dataclass(kw_only=True)
class UNetBlockStruct(DiffusionBlockStruct):
class BlockType(enum.StrEnum):
DOWN = "down"
MID = "mid"
UP = "up"
# region relative keys
resnet_rkey: tp.ClassVar[str] = "resblock"
sampler_rkey: tp.ClassVar[str] = "sample"
transformer_rkey: tp.ClassVar[str] = ""
resnet_struct_cls: tp.ClassVar[type[DiffusionResnetStruct]] = DiffusionResnetStruct
transformer_struct_cls: tp.ClassVar[type[DiffusionTransformerStruct]] = DiffusionTransformerStruct
# endregion
parent: tp.Optional["UNetStruct"] = field(repr=False)
# region attributes
block_type: BlockType
# endregion
# region modules
resnets: nn.ModuleList = field(repr=False)
transformers: nn.ModuleList = field(repr=False)
sampler: nn.Conv2d | None
# endregion
# region relative names
resnets_rname: str
transformers_rname: str
sampler_rname: str
# endregion
# region absolute names
resnets_name: str = field(init=False, repr=False)
transformers_name: str = field(init=False, repr=False)
sampler_name: str = field(init=False, repr=False)
resnet_names: list[str] = field(init=False, repr=False)
transformer_names: list[str] = field(init=False, repr=False)
# endregion
# region absolute keys
sampler_key: str = field(init=False, repr=False)
# endregion
# region child structs
resnet_structs: list[DiffusionResnetStruct] = field(init=False, repr=False)
transformer_structs: list[DiffusionTransformerStruct] = field(init=False, repr=False)
# endregion
@property
def downsample(self) -> nn.Conv2d | None:
return self.sampler if self.is_downsample_block() else None
@property
def upsample(self) -> nn.Conv2d | None:
return self.sampler if self.is_upsample_block() else None
def __post_init__(self) -> None:
super().__post_init__()
if self.is_downsample_block():
assert len(self.resnets) == len(self.transformers) or len(self.transformers) == 0
if self.parent is not None and isinstance(self.parent, UNetStruct):
assert self.rname == f"{self.parent.down_blocks_rname}.{self.idx}"
elif self.is_mid_block():
assert len(self.resnets) == len(self.transformers) + 1 or len(self.transformers) == 0
if self.parent is not None and isinstance(self.parent, UNetStruct):
assert self.rname == self.parent.mid_block_name
assert self.idx == 0
else:
assert self.is_upsample_block(), f"Unsupported block type: {self.block_type}"
assert len(self.resnets) == len(self.transformers) or len(self.transformers) == 0
if self.parent is not None and isinstance(self.parent, UNetStruct):
assert self.rname == f"{self.parent.up_blocks_rname}.{self.idx}"
resnet_rnames = [f"{self.resnets_rname}.{idx}" for idx in range(len(self.resnets))]
transformer_rnames = [f"{self.transformers_rname}.{idx}" for idx in range(len(self.transformers))]
self.resnets_name = join_name(self.name, self.resnets_rname)
self.transformers_name = join_name(self.name, self.transformers_rname)
self.resnet_names = [join_name(self.name, rname) for rname in resnet_rnames]
self.transformer_names = [join_name(self.name, rname) for rname in transformer_rnames]
self.sampler_name = join_name(self.name, self.sampler_rname)
self.sampler_key = join_name(self.key, self.sampler_rkey, sep="_")
self.resnet_structs = [
self.resnet_struct_cls.construct(
resnet, parent=self, fname="resnet", rname=rname, rkey=self.resnet_rkey, idx=idx
)
for idx, (resnet, rname) in enumerate(zip(self.resnets, resnet_rnames, strict=True))
]
self.transformer_structs = [
self.transformer_struct_cls.construct(
transformer, parent=self, fname="transformer", rname=rname, rkey=self.transformer_rkey, idx=idx
)
for idx, (transformer, rname) in enumerate(zip(self.transformers, transformer_rnames, strict=True))
]
def is_downsample_block(self) -> bool:
return self.block_type == self.BlockType.DOWN
def is_mid_block(self) -> bool:
return self.block_type == self.BlockType.MID
def is_upsample_block(self) -> bool:
return self.block_type == self.BlockType.UP
def has_downsample(self) -> bool:
return self.is_downsample_block() and self.sampler is not None
def has_upsample(self) -> bool:
return self.is_upsample_block() and self.sampler is not None
def named_key_modules(self) -> tp.Generator[tp.Tuple[str, str, nn.Module, BaseModuleStruct, str], None, None]:
for resnet in self.resnet_structs:
yield from resnet.named_key_modules()
for transformer in self.transformer_structs:
yield from transformer.named_key_modules()
if self.sampler is not None:
yield self.sampler_key, self.sampler_name, self.sampler, self, "sampler"
def iter_attention_structs(self) -> tp.Generator[DiffusionAttentionStruct, None, None]:
for transformer in self.transformer_structs:
yield from transformer.iter_attention_structs()
def iter_transformer_block_structs(self) -> tp.Generator[DiffusionTransformerBlockStruct, None, None]:
for transformer in self.transformer_structs:
yield from transformer.iter_transformer_block_structs()
@staticmethod
def _default_construct(
module: UNET_BLOCK_CLS,
/,
parent: tp.Optional["UNetStruct"] = None,
fname: str = "",
rname: str = "",
rkey: str = "",
idx: int = 0,
**kwargs,
) -> "UNetBlockStruct":
resnets, resnets_rname = module.resnets, "resnets"
if isinstance(module, (DownBlock2D, CrossAttnDownBlock2D)):
block_type = UNetBlockStruct.BlockType.DOWN
if isinstance(module, CrossAttnDownBlock2D) and module.attentions is not None:
transformers, transformers_rname = module.attentions, "attentions"
else:
transformers, transformers_rname = [], ""
if module.downsamplers is None:
sampler, sampler_rname = None, ""
else:
assert len(module.downsamplers) == 1
downsampler = module.downsamplers[0]
assert isinstance(downsampler, Downsample2D)
sampler, sampler_rname = downsampler.conv, "downsamplers.0.conv"
assert isinstance(sampler, nn.Conv2d)
elif isinstance(module, (UNetMidBlock2D, UNetMidBlock2DCrossAttn)):
block_type = UNetBlockStruct.BlockType.MID
if (isinstance(module, UNetMidBlock2DCrossAttn) or module.add_attention) and module.attentions is not None:
transformers, transformers_rname = module.attentions, "attentions"
else:
transformers, transformers_rname = [], ""
sampler, sampler_rname = None, ""
elif isinstance(module, (UpBlock2D, CrossAttnUpBlock2D)):
block_type = UNetBlockStruct.BlockType.UP
if isinstance(module, CrossAttnUpBlock2D) and module.attentions is not None:
transformers, transformers_rname = module.attentions, "attentions"
else:
transformers, transformers_rname = [], ""
if module.upsamplers is None:
sampler, sampler_rname = None, ""
else:
assert len(module.upsamplers) == 1
upsampler = module.upsamplers[0]
assert isinstance(upsampler, Upsample2D)
sampler, sampler_rname = upsampler.conv, "upsamplers.0.conv"
assert isinstance(sampler, nn.Conv2d)
else:
raise NotImplementedError(f"Unsupported module type: {type(module)}")
return UNetBlockStruct(
module=module,
parent=parent,
fname=fname,
idx=idx,
rname=rname,
rkey=rkey,
block_type=block_type,
resnets=resnets,
transformers=transformers,
sampler=sampler,
resnets_rname=resnets_rname,
transformers_rname=transformers_rname,
sampler_rname=sampler_rname,
)
@classmethod
def _get_default_key_map(cls) -> dict[str, set[str]]:
"""Get the default allowed keys."""
key_map: dict[str, set[str]] = defaultdict(set)
resnet_cls = cls.resnet_struct_cls
resnet_key = resnet_rkey = cls.resnet_rkey
resnet_key_map = resnet_cls._get_default_key_map()
for rkey, keys in resnet_key_map.items():
rkey = join_name(resnet_rkey, rkey, sep="_")
for key in keys:
key = join_name(resnet_key, key, sep="_")
key_map[rkey].add(key)
key_map[resnet_rkey].add(key)
transformer_cls = cls.transformer_struct_cls
transformer_key = transformer_rkey = cls.transformer_rkey
transformer_key_map = transformer_cls._get_default_key_map()
for rkey, keys in transformer_key_map.items():
trkey = join_name(transformer_rkey, rkey, sep="_")
for key in keys:
key = join_name(transformer_key, key, sep="_")
key_map[rkey].add(key)
key_map[trkey].add(key)
return {k: v for k, v in key_map.items() if v}
@dataclass(kw_only=True)
class UNetStruct(DiffusionModelStruct):
# region relative keys
input_embed_rkey: tp.ClassVar[str] = "input_embed"
"""hidden_states = input_embed(hidden_states), e.g., conv_in"""
time_embed_rkey: tp.ClassVar[str] = "time_embed"
"""temb = time_embed(timesteps, hidden_states)"""
add_time_embed_rkey: tp.ClassVar[str] = "time_embed"
"""add_temb = add_time_embed(timesteps, encoder_hidden_states)"""
text_embed_rkey: tp.ClassVar[str] = "text_embed"
"""encoder_hidden_states = text_embed(encoder_hidden_states)"""
norm_out_rkey: tp.ClassVar[str] = "output_embed"
"""hidden_states = norm_out(hidden_states), e.g., conv_norm_out"""
proj_out_rkey: tp.ClassVar[str] = "output_embed"
"""hidden_states = output_embed(hidden_states), e.g., conv_out"""
down_block_rkey: tp.ClassVar[str] = "down"
mid_block_rkey: tp.ClassVar[str] = "mid"
up_block_rkey: tp.ClassVar[str] = "up"
down_block_struct_cls: tp.ClassVar[type[UNetBlockStruct]] = UNetBlockStruct
mid_block_struct_cls: tp.ClassVar[type[UNetBlockStruct]] = UNetBlockStruct
up_block_struct_cls: tp.ClassVar[type[UNetBlockStruct]] = UNetBlockStruct
# endregion
# region child modules
# region pre-block modules
input_embed: nn.Conv2d
time_embed: TimestepEmbedding
"""Time embedding"""
add_time_embed: (
TextTimeEmbedding
| TextImageTimeEmbedding
| TimestepEmbedding
| ImageTimeEmbedding
| ImageHintTimeEmbedding
| None
)
"""Additional time embedding"""
text_embed: nn.Linear | ImageProjection | TextImageProjection | None
"""Text embedding"""
# region post-block modules
norm_out: nn.GroupNorm | None
proj_out: nn.Conv2d
# endregion
# endregion
down_blocks: nn.ModuleList = field(repr=False)
mid_block: nn.Module = field(repr=False)
up_blocks: nn.ModuleList = field(repr=False)
# endregion
# region relative names
input_embed_rname: str
time_embed_rname: str
add_time_embed_rname: str
text_embed_rname: str
norm_out_rname: str
proj_out_rname: str
down_blocks_rname: str
mid_block_rname: str
up_blocks_rname: str
# endregion
# region absolute names
input_embed_name: str = field(init=False, repr=False)
time_embed_name: str = field(init=False, repr=False)
add_time_embed_name: str = field(init=False, repr=False)
text_embed_name: str = field(init=False, repr=False)
norm_out_name: str = field(init=False, repr=False)
proj_out_name: str = field(init=False, repr=False)
down_blocks_name: str = field(init=False, repr=False)
mid_block_name: str = field(init=False, repr=False)
up_blocks_name: str = field(init=False, repr=False)
down_block_names: list[str] = field(init=False, repr=False)
up_block_names: list[str] = field(init=False, repr=False)
# endregion
# region absolute keys
input_embed_key: str = field(init=False, repr=False)
time_embed_key: str = field(init=False, repr=False)
add_time_embed_key: str = field(init=False, repr=False)
text_embed_key: str = field(init=False, repr=False)
norm_out_key: str = field(init=False, repr=False)
proj_out_key: str = field(init=False, repr=False)
# endregion
# region child structs
down_block_structs: list[UNetBlockStruct] = field(init=False, repr=False)
mid_block_struct: UNetBlockStruct = field(init=False, repr=False)
up_block_structs: list[UNetBlockStruct] = field(init=False, repr=False)
# endregion
@property
def num_down_blocks(self) -> int:
return len(self.down_blocks)
@property
def num_up_blocks(self) -> int:
return len(self.up_blocks)
@property
def num_blocks(self) -> int:
return self.num_down_blocks + 1 + self.num_up_blocks
@property
def block_structs(self) -> list[UNetBlockStruct]:
return [*self.down_block_structs, self.mid_block_struct, *self.up_block_structs]
def __post_init__(self) -> None:
super().__post_init__()
down_block_rnames = [f"{self.down_blocks_rname}.{idx}" for idx in range(len(self.down_blocks))]
up_block_rnames = [f"{self.up_blocks_rname}.{idx}" for idx in range(len(self.up_blocks))]
self.down_blocks_name = join_name(self.name, self.down_blocks_rname)
self.mid_block_name = join_name(self.name, self.mid_block_rname)
self.up_blocks_name = join_name(self.name, self.up_blocks_rname)
self.down_block_names = [join_name(self.name, rname) for rname in down_block_rnames]
self.up_block_names = [join_name(self.name, rname) for rname in up_block_rnames]
self.pre_module_structs = {}
for fname in ("time_embed", "add_time_embed", "text_embed", "input_embed"):
module, rname, rkey = getattr(self, fname), getattr(self, f"{fname}_rname"), getattr(self, f"{fname}_rkey")
setattr(self, f"{fname}_key", join_name(self.key, rkey, sep="_"))
if module is not None or rname:
setattr(self, f"{fname}_name", join_name(self.name, rname))
else:
setattr(self, f"{fname}_name", "")
if module is not None:
assert rname, f"rname of {fname} must not be empty"
self.pre_module_structs[getattr(self, f"{fname}_name")] = DiffusionModuleStruct(
module=module, parent=self, fname=fname, rname=rname, rkey=rkey
)
self.post_module_structs = {}
for fname in ("norm_out", "proj_out"):
module, rname, rkey = getattr(self, fname), getattr(self, f"{fname}_rname"), getattr(self, f"{fname}_rkey")
setattr(self, f"{fname}_key", join_name(self.key, rkey, sep="_"))
if module is not None or rname:
setattr(self, f"{fname}_name", join_name(self.name, rname))
else:
setattr(self, f"{fname}_name", "")
if module is not None:
self.post_module_structs[getattr(self, f"{fname}_name")] = DiffusionModuleStruct(
module=module, parent=self, fname=fname, rname=rname, rkey=rkey
)
self.down_block_structs = [
self.down_block_struct_cls.construct(
block, parent=self, fname="down_block", rname=rname, rkey=self.down_block_rkey, idx=idx
)
for idx, (block, rname) in enumerate(zip(self.down_blocks, down_block_rnames, strict=True))
]
self.mid_block_struct = self.mid_block_struct_cls.construct(
self.mid_block, parent=self, fname="mid_block", rname=self.mid_block_name, rkey=self.mid_block_rkey
)
self.up_block_structs = [
self.up_block_struct_cls.construct(
block, parent=self, fname="up_block", rname=rname, rkey=self.up_block_rkey, idx=idx
)
for idx, (block, rname) in enumerate(zip(self.up_blocks, up_block_rnames, strict=True))
]
def get_prev_module_keys(self) -> tuple[str, ...]:
return tuple({self.input_embed_key, self.time_embed_key, self.add_time_embed_key, self.text_embed_key})
def get_post_module_keys(self) -> tuple[str, ...]:
return tuple({self.norm_out_key, self.proj_out_key})
def _get_iter_block_activations_args(
self, **input_kwargs
) -> tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]:
layers, layer_structs, recomputes, use_prev_layer_outputs = [], [], [], []
num_down_blocks = len(self.down_blocks)
num_up_blocks = len(self.up_blocks)
layers.extend(self.down_blocks)
layer_structs.extend(self.down_block_structs)
use_prev_layer_outputs.append(False)
use_prev_layer_outputs.extend([True] * (num_down_blocks - 1))
recomputes.append(False)
# region check whether down block's outputs are changed
_mid_block_additional_residual = input_kwargs.get("mid_block_additional_residual", None)
_down_block_additional_residuals = input_kwargs.get("down_block_additional_residuals", None)
_is_adapter = input_kwargs.get("down_intrablock_additional_residuals", None) is not None
if not _is_adapter and _mid_block_additional_residual is None and _down_block_additional_residuals is not None:
_is_adapter = True
for down_block in self.down_blocks:
if hasattr(down_block, "has_cross_attention") and down_block.has_cross_attention:
# outputs unchanged
recomputes.append(False)
elif _is_adapter:
# outputs changed
recomputes.append(True)
else:
# outputs unchanged
recomputes.append(False)
# endregion
layers.append(self.mid_block)
layer_structs.append(self.mid_block_struct)
use_prev_layer_outputs.append(False)
# recomputes is already appened in the previous down blocks
layers.extend(self.up_blocks)
layer_structs.extend(self.up_block_structs)
use_prev_layer_outputs.append(False)
use_prev_layer_outputs.extend([True] * (num_up_blocks - 1))
recomputes += [True] * num_up_blocks
return layers, layer_structs, recomputes, use_prev_layer_outputs
@staticmethod
def _default_construct(
module: tp.Union[UNET_PIPELINE_CLS, UNET_CLS],
/,
parent: tp.Optional[BaseModuleStruct] = None,
fname: str = "",
rname: str = "",
rkey: str = "",
idx: int = 0,
**kwargs,
) -> "UNetStruct":
if isinstance(module, UNET_PIPELINE_CLS):
module = module.unet
if isinstance(module, (UNet2DConditionModel, UNet2DModel)):
input_embed, time_embed = module.conv_in, module.time_embedding
input_embed_rname, time_embed_rname = "conv_in", "time_embedding"
text_embed, text_embed_rname = None, ""
add_time_embed, add_time_embed_rname = None, ""
if hasattr(module, "encoder_hid_proj"):
text_embed, text_embed_rname = module.encoder_hid_proj, "encoder_hid_proj"
if hasattr(module, "add_embedding"):
add_time_embed, add_time_embed_rname = module.add_embedding, "add_embedding"
norm_out, norm_out_rname = module.conv_norm_out, "conv_norm_out"
proj_out, proj_out_rname = module.conv_out, "conv_out"
down_blocks, down_blocks_rname = module.down_blocks, "down_blocks"
mid_block, mid_block_rname = module.mid_block, "mid_block"
up_blocks, up_blocks_rname = module.up_blocks, "up_blocks"
return UNetStruct(
module=module,
parent=parent,
fname=fname,
idx=idx,
rname=rname,
rkey=rkey,
input_embed=input_embed,
time_embed=time_embed,
add_time_embed=add_time_embed,
text_embed=text_embed,
norm_out=norm_out,
proj_out=proj_out,
down_blocks=down_blocks,
mid_block=mid_block,
up_blocks=up_blocks,
input_embed_rname=input_embed_rname,
time_embed_rname=time_embed_rname,
add_time_embed_rname=add_time_embed_rname,
text_embed_rname=text_embed_rname,
norm_out_rname=norm_out_rname,
proj_out_rname=proj_out_rname,
down_blocks_rname=down_blocks_rname,
mid_block_rname=mid_block_rname,
up_blocks_rname=up_blocks_rname,
)
raise NotImplementedError(f"Unsupported module type: {type(module)}")
@classmethod
def _get_default_key_map(cls) -> dict[str, set[str]]:
"""Get the default allowed keys."""
key_map: dict[str, set[str]] = defaultdict(set)
for idx, (block_key, block_cls) in enumerate(
(
(cls.down_block_rkey, cls.down_block_struct_cls),
(cls.mid_block_rkey, cls.mid_block_struct_cls),
(cls.up_block_rkey, cls.up_block_struct_cls),
)
):
block_key_map: dict[str, set[str]] = defaultdict(set)
if idx != 1:
sampler_key = join_name(block_key, block_cls.sampler_rkey, sep="_")
sampler_rkey = block_cls.sampler_rkey
block_key_map[sampler_rkey].add(sampler_key)
_block_key_map = block_cls._get_default_key_map()
for rkey, keys in _block_key_map.items():
for key in keys:
key = join_name(block_key, key, sep="_")
block_key_map[rkey].add(key)
for rkey, keys in block_key_map.items():
key_map[rkey].update(keys)
if block_key:
key_map[block_key].update(keys)
keys: set[str] = set()
keys.add(cls.input_embed_rkey)
keys.add(cls.time_embed_rkey)
keys.add(cls.add_time_embed_rkey)
keys.add(cls.text_embed_rkey)
keys.add(cls.norm_out_rkey)
keys.add(cls.proj_out_rkey)
for mapped_keys in key_map.values():
for key in mapped_keys:
keys.add(key)
if "embed" not in keys and "embed" not in key_map:
key_map["embed"].add(cls.input_embed_rkey)
key_map["embed"].add(cls.time_embed_rkey)
key_map["embed"].add(cls.add_time_embed_rkey)
key_map["embed"].add(cls.text_embed_rkey)
key_map["embed"].add(cls.norm_out_rkey)
key_map["embed"].add(cls.proj_out_rkey)
for key in keys:
if key in key_map:
key_map[key].clear()
key_map[key].add(key)
return {k: v for k, v in key_map.items() if v}
@dataclass(kw_only=True)
class DiTStruct(DiffusionModelStruct, DiffusionTransformerStruct):
# region relative keys
input_embed_rkey: tp.ClassVar[str] = "input_embed"
"""hidden_states = input_embed(hidden_states), e.g., conv_in"""
time_embed_rkey: tp.ClassVar[str] = "time_embed"
"""temb = time_embed(timesteps)"""
text_embed_rkey: tp.ClassVar[str] = "text_embed"
"""encoder_hidden_states = text_embed(encoder_hidden_states)"""
norm_in_rkey: tp.ClassVar[str] = "input_embed"
"""hidden_states = norm_in(hidden_states)"""
proj_in_rkey: tp.ClassVar[str] = "input_embed"
"""hidden_states = proj_in(hidden_states)"""
norm_out_rkey: tp.ClassVar[str] = "output_embed"
"""hidden_states = norm_out(hidden_states)"""
proj_out_rkey: tp.ClassVar[str] = "output_embed"
"""hidden_states = proj_out(hidden_states)"""
transformer_block_rkey: tp.ClassVar[str] = ""
# endregion
# region child modules
input_embed: PatchEmbed
time_embed: AdaLayerNormSingle | CombinedTimestepTextProjEmbeddings | TimestepEmbedding
text_embed: PixArtAlphaTextProjection | nn.Linear
norm_in: None = field(init=False, repr=False, default=None)
proj_in: None = field(init=False, repr=False, default=None)
norm_out: nn.LayerNorm | AdaLayerNormContinuous | None
proj_out: nn.Linear
# endregion
# region relative names
input_embed_rname: str
time_embed_rname: str
text_embed_rname: str
norm_in_rname: str = field(init=False, repr=False, default="")
proj_in_rname: str = field(init=False, repr=False, default="")
norm_out_rname: str
proj_out_rname: str
# endregion
# region absolute names
input_embed_name: str = field(init=False, repr=False)
time_embed_name: str = field(init=False, repr=False)
text_embed_name: str = field(init=False, repr=False)
# endregion
# region absolute keys
input_embed_key: str = field(init=False, repr=False)
time_embed_key: str = field(init=False, repr=False)
text_embed_key: str = field(init=False, repr=False)
norm_out_key: str = field(init=False, repr=False)
# endregion
@property
def num_blocks(self) -> int:
return len(self.transformer_blocks)
@property
def block_structs(self) -> list[DiffusionTransformerBlockStruct]:
return self.transformer_block_structs
@property
def block_names(self) -> list[str]:
return self.transformer_block_names
def __post_init__(self) -> None:
super().__post_init__()
self.pre_module_structs = {}
for fname in ("input_embed", "time_embed", "text_embed"):
module, rname, rkey = getattr(self, fname), getattr(self, f"{fname}_rname"), getattr(self, f"{fname}_rkey")
setattr(self, f"{fname}_key", join_name(self.key, rkey, sep="_"))
if module is not None or rname:
setattr(self, f"{fname}_name", join_name(self.name, rname))
else:
setattr(self, f"{fname}_name", "")
if module is not None:
self.pre_module_structs.setdefault(
getattr(self, f"{fname}_name"),
DiffusionModuleStruct(module=module, parent=self, fname=fname, rname=rname, rkey=rkey),
)
self.post_module_structs = {}
self.norm_out_key = join_name(self.key, self.norm_out_rkey, sep="_")
for fname in ("norm_out", "proj_out"):
module, rname, rkey = getattr(self, fname), getattr(self, f"{fname}_rname"), getattr(self, f"{fname}_rkey")
if module is not None:
self.post_module_structs.setdefault(
getattr(self, f"{fname}_name"),
DiffusionModuleStruct(module=module, parent=self, fname=fname, rname=rname, rkey=rkey),
)
def get_prev_module_keys(self) -> tuple[str, ...]:
return tuple({self.input_embed_key, self.time_embed_key, self.text_embed_key})
def get_post_module_keys(self) -> tuple[str, ...]:
return tuple({self.norm_out_key, self.proj_out_key})
def _get_iter_block_activations_args(
self, **input_kwargs
) -> tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]:
"""
Get the arguments for iterating over the layers and their activations.
Args:
skip_pre_modules (`bool`):
Whether to skip the pre-modules
skip_post_modules (`bool`):
Whether to skip the post-modules
Returns:
`tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]`:
the layers, the layer structs, the recomputes, and the use_prev_layer_outputs
"""
layers, layer_structs, recomputes, use_prev_layer_outputs = [], [], [], []
layers.extend(self.transformer_blocks)
layer_structs.extend(self.transformer_block_structs)
use_prev_layer_outputs.append(False)
use_prev_layer_outputs.extend([True] * (len(self.transformer_blocks) - 1))
recomputes.extend([False] * len(self.transformer_blocks))
return layers, layer_structs, recomputes, use_prev_layer_outputs
@staticmethod
def _default_construct(
module: tp.Union[DIT_PIPELINE_CLS, DIT_CLS],
/,
parent: tp.Optional[BaseModuleStruct] = None,
fname: str = "",
rname: str = "",
rkey: str = "",
idx: int = 0,
**kwargs,
) -> "DiTStruct":
if isinstance(module, DIT_PIPELINE_CLS):
module = module.transformer
if isinstance(module, FluxTransformer2DModel):
return FluxStruct.construct(module, parent=parent, fname=fname, rname=rname, rkey=rkey, idx=idx, **kwargs)
else:
if isinstance(module, PixArtTransformer2DModel):
input_embed, input_embed_rname = module.pos_embed, "pos_embed"
time_embed, time_embed_rname = module.adaln_single, "adaln_single"
text_embed, text_embed_rname = module.caption_projection, "caption_projection"
norm_out, norm_out_rname = module.norm_out, "norm_out"
proj_out, proj_out_rname = module.proj_out, "proj_out"
transformer_blocks, transformer_blocks_rname = module.transformer_blocks, "transformer_blocks"
# ! in fact, `module.adaln_single.emb` is `time_embed`,
# ! `module.adaln_single.linear` is `transformer_norm`
# ! but since PixArt shares the `transformer_norm`, we categorize it as `time_embed`
elif isinstance(module, SanaTransformer2DModel):
input_embed, input_embed_rname = module.patch_embed, "patch_embed"
time_embed, time_embed_rname = module.time_embed, "time_embed"
text_embed, text_embed_rname = module.caption_projection, "caption_projection"
norm_out, norm_out_rname = module.norm_out, "norm_out"
proj_out, proj_out_rname = module.proj_out, "proj_out"
transformer_blocks, transformer_blocks_rname = module.transformer_blocks, "transformer_blocks"
elif isinstance(module, SD3Transformer2DModel):
input_embed, input_embed_rname = module.pos_embed, "pos_embed"
time_embed, time_embed_rname = module.time_text_embed, "time_text_embed"
text_embed, text_embed_rname = module.context_embedder, "context_embedder"
norm_out, norm_out_rname = module.norm_out, "norm_out"
proj_out, proj_out_rname = module.proj_out, "proj_out"
transformer_blocks, transformer_blocks_rname = module.transformer_blocks, "transformer_blocks"
else:
raise NotImplementedError(f"Unsupported module type: {type(module)}")
return DiTStruct(
module=module,
parent=parent,
fname=fname,
idx=idx,
rname=rname,
rkey=rkey,
input_embed=input_embed,
time_embed=time_embed,
text_embed=text_embed,
transformer_blocks=transformer_blocks,
norm_out=norm_out,
proj_out=proj_out,
input_embed_rname=input_embed_rname,
time_embed_rname=time_embed_rname,
text_embed_rname=text_embed_rname,
norm_out_rname=norm_out_rname,
proj_out_rname=proj_out_rname,
transformer_blocks_rname=transformer_blocks_rname,
)
@classmethod
def _get_default_key_map(cls) -> dict[str, set[str]]:
"""Get the default allowed keys."""
key_map: dict[str, set[str]] = defaultdict(set)
block_cls = cls.transformer_block_struct_cls
block_key = block_rkey = cls.transformer_block_rkey
block_key_map = block_cls._get_default_key_map()
for rkey, keys in block_key_map.items():
brkey = join_name(block_rkey, rkey, sep="_")
for key in keys:
key = join_name(block_key, key, sep="_")
key_map[rkey].add(key)
key_map[brkey].add(key)
if block_rkey:
key_map[block_rkey].add(key)
keys: set[str] = set()
keys.add(cls.input_embed_rkey)
keys.add(cls.time_embed_rkey)
keys.add(cls.text_embed_rkey)
keys.add(cls.norm_in_rkey)
keys.add(cls.proj_in_rkey)
keys.add(cls.norm_out_rkey)
keys.add(cls.proj_out_rkey)
for mapped_keys in key_map.values():
for key in mapped_keys:
keys.add(key)
if "embed" not in keys and "embed" not in key_map:
key_map["embed"].add(cls.input_embed_rkey)
key_map["embed"].add(cls.time_embed_rkey)
key_map["embed"].add(cls.text_embed_rkey)
key_map["embed"].add(cls.norm_in_rkey)
key_map["embed"].add(cls.proj_in_rkey)
key_map["embed"].add(cls.norm_out_rkey)
key_map["embed"].add(cls.proj_out_rkey)
for key in keys:
if key in key_map:
key_map[key].clear()
key_map[key].add(key)
return {k: v for k, v in key_map.items() if v}
@dataclass(kw_only=True)
class FluxStruct(DiTStruct):
# region relative keys
single_transformer_block_rkey: tp.ClassVar[str] = ""
single_transformer_block_struct_cls: tp.ClassVar[type[DiffusionTransformerBlockStruct]] = (
DiffusionTransformerBlockStruct
)
# endregion
module: FluxTransformer2DModel = field(repr=False, kw_only=False)
"""the module of FluxTransformer2DModel"""
# region child modules
input_embed: nn.Linear
time_embed: CombinedTimestepGuidanceTextProjEmbeddings | CombinedTimestepTextProjEmbeddings
text_embed: nn.Linear
single_transformer_blocks: nn.ModuleList = field(repr=False)
# endregion
# region relative names
single_transformer_blocks_rname: str
# endregion
# region absolute names
single_transformer_blocks_name: str = field(init=False, repr=False)
single_transformer_block_names: list[str] = field(init=False, repr=False)
# endregion
# region child structs
single_transformer_block_structs: list[DiffusionTransformerBlockStruct] = field(init=False)
# endregion
@property
def num_blocks(self) -> int:
return len(self.transformer_block_structs) + len(self.single_transformer_block_structs)
@property
def block_structs(self) -> list[DiffusionTransformerBlockStruct]:
return [*self.transformer_block_structs, *self.single_transformer_block_structs]
@property
def block_names(self) -> list[str]:
return [*self.transformer_block_names, *self.single_transformer_block_names]
def __post_init__(self) -> None:
super().__post_init__()
single_transformer_block_rnames = [
f"{self.single_transformer_blocks_rname}.{idx}" for idx in range(len(self.single_transformer_blocks))
]
self.single_transformer_blocks_name = join_name(self.name, self.single_transformer_blocks_rname)
self.single_transformer_block_names = [join_name(self.name, rname) for rname in single_transformer_block_rnames]
self.single_transformer_block_structs = [
self.single_transformer_block_struct_cls.construct(
block,
parent=self,
fname="single_transformer_block",
rname=rname,
rkey=self.single_transformer_block_rkey,
idx=idx,
)
for idx, (block, rname) in enumerate(
zip(self.single_transformer_blocks, single_transformer_block_rnames, strict=True)
)
]
def _get_iter_block_activations_args(
self, **input_kwargs
) -> tuple[list[nn.Module], list[DiffusionModuleStruct | DiffusionBlockStruct], list[bool], list[bool]]:
layers, layer_structs, recomputes, use_prev_layer_outputs = super()._get_iter_block_activations_args()
layers.extend(self.single_transformer_blocks)
layer_structs.extend(self.single_transformer_block_structs)
use_prev_layer_outputs.append(False)
use_prev_layer_outputs.extend([True] * (len(self.single_transformer_blocks) - 1))
recomputes.extend([False] * len(self.single_transformer_blocks))
return layers, layer_structs, recomputes, use_prev_layer_outputs
@staticmethod
def _default_construct(
module: tp.Union[FluxPipeline, FluxKontextPipeline, FluxControlPipeline, FluxTransformer2DModel],
/,
parent: tp.Optional[BaseModuleStruct] = None,
fname: str = "",
rname: str = "",
rkey: str = "",
idx: int = 0,
**kwargs,
) -> "FluxStruct":
if isinstance(module, (FluxPipeline, FluxKontextPipeline, FluxControlPipeline)):
module = module.transformer
if isinstance(module, FluxTransformer2DModel):
input_embed, time_embed, text_embed = module.x_embedder, module.time_text_embed, module.context_embedder
input_embed_rname, time_embed_rname, text_embed_rname = "x_embedder", "time_text_embed", "context_embedder"
norm_out, norm_out_rname = module.norm_out, "norm_out"
proj_out, proj_out_rname = module.proj_out, "proj_out"
transformer_blocks, transformer_blocks_rname = module.transformer_blocks, "transformer_blocks"
single_transformer_blocks = module.single_transformer_blocks
single_transformer_blocks_rname = "single_transformer_blocks"
return FluxStruct(
module=module,
parent=parent,
fname=fname,
idx=idx,
rname=rname,
rkey=rkey,
input_embed=input_embed,
time_embed=time_embed,
text_embed=text_embed,
transformer_blocks=transformer_blocks,
single_transformer_blocks=single_transformer_blocks,
norm_out=norm_out,
proj_out=proj_out,
input_embed_rname=input_embed_rname,
time_embed_rname=time_embed_rname,
text_embed_rname=text_embed_rname,
norm_out_rname=norm_out_rname,
proj_out_rname=proj_out_rname,
transformer_blocks_rname=transformer_blocks_rname,
single_transformer_blocks_rname=single_transformer_blocks_rname,
)
raise NotImplementedError(f"Unsupported module type: {type(module)}")
@classmethod
def _get_default_key_map(cls) -> dict[str, set[str]]:
"""Get the default allowed keys."""
key_map: dict[str, set[str]] = defaultdict(set)
for block_rkey, block_cls in (
(cls.transformer_block_rkey, cls.transformer_block_struct_cls),
(cls.single_transformer_block_rkey, cls.single_transformer_block_struct_cls),
):
block_key = block_rkey
block_key_map = block_cls._get_default_key_map()
for rkey, keys in block_key_map.items():
brkey = join_name(block_rkey, rkey, sep="_")
for key in keys:
key = join_name(block_key, key, sep="_")
key_map[rkey].add(key)
key_map[brkey].add(key)
if block_rkey:
key_map[block_rkey].add(key)
keys: set[str] = set()
keys.add(cls.input_embed_rkey)
keys.add(cls.time_embed_rkey)
keys.add(cls.text_embed_rkey)
keys.add(cls.norm_in_rkey)
keys.add(cls.proj_in_rkey)
keys.add(cls.norm_out_rkey)
keys.add(cls.proj_out_rkey)
for mapped_keys in key_map.values():
for key in mapped_keys:
keys.add(key)
if "embed" not in keys and "embed" not in key_map:
key_map["embed"].add(cls.input_embed_rkey)
key_map["embed"].add(cls.time_embed_rkey)
key_map["embed"].add(cls.text_embed_rkey)
key_map["embed"].add(cls.norm_in_rkey)
key_map["embed"].add(cls.proj_in_rkey)
key_map["embed"].add(cls.norm_out_rkey)
key_map["embed"].add(cls.proj_out_rkey)
for key in keys:
if key in key_map:
key_map[key].clear()
key_map[key].add(key)
return {k: v for k, v in key_map.items() if v}
DiffusionAttentionStruct.register_factory(Attention, DiffusionAttentionStruct._default_construct)
DiffusionFeedForwardStruct.register_factory(
(FeedForward, FluxSingleTransformerBlock, GLUMBConv), DiffusionFeedForwardStruct._default_construct
)
DiffusionTransformerBlockStruct.register_factory(DIT_BLOCK_CLS, DiffusionTransformerBlockStruct._default_construct)
UNetBlockStruct.register_factory(UNET_BLOCK_CLS, UNetBlockStruct._default_construct)
UNetStruct.register_factory(tp.Union[UNET_PIPELINE_CLS, UNET_CLS], UNetStruct._default_construct)
FluxStruct.register_factory(
tp.Union[FluxPipeline, FluxKontextPipeline, FluxControlPipeline, FluxTransformer2DModel], FluxStruct._default_construct
)
DiTStruct.register_factory(tp.Union[DIT_PIPELINE_CLS, DIT_CLS], DiTStruct._default_construct)
DiffusionTransformerStruct.register_factory(Transformer2DModel, DiffusionTransformerStruct._default_construct)
DiffusionModelStruct.register_factory(tp.Union[PIPELINE_CLS, MODEL_CLS], DiffusionModelStruct._default_construct)
# Register the factory (usually at the bottom of the file)
DiffusionAttentionStruct.register_factory(ATTENTION_CLS, DiffusionAttentionStruct._default_construct) |