model_ner_master / README.md
luisgasco's picture
luisgasco/model_master_test
8771704 verified
---
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: output-model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# output-model
This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1590
- F1: 0.3833
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 52
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.4165 | 0.1667 | 50 | 0.3038 | 0.0014 |
| 0.3627 | 0.3333 | 100 | 0.2643 | 0.0043 |
| 0.2776 | 0.5 | 150 | 0.2914 | 0.0146 |
| 0.229 | 0.6667 | 200 | 0.1869 | 0.1883 |
| 0.1945 | 0.8333 | 250 | 0.1671 | 0.2568 |
| 0.1574 | 1.0 | 300 | 0.1592 | 0.3238 |
| 0.1056 | 1.1667 | 350 | 0.1710 | 0.4048 |
| 0.1117 | 1.3333 | 400 | 0.1657 | 0.3649 |
| 0.117 | 1.5 | 450 | 0.1692 | 0.3792 |
| 0.1176 | 1.6667 | 500 | 0.1604 | 0.3802 |
| 0.0972 | 1.8333 | 550 | 0.1705 | 0.3515 |
| 0.1086 | 2.0 | 600 | 0.1590 | 0.3833 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.1