IQ2_KS quant of DeepSeek-V3.1-Base I made for my 192GB DDR5 + 3090/4090. Done according to:
IQ2_KS
181.239 GiB (2.317 BPW)
👈 Secret Recipe
#!/usr/bin/env bash
custom="
# First 3 dense layers (0-3) (GPU)
# Except blk.*.attn_k_b.weight is not divisible by 256 so only supports qN_0
blk\.[0-2]\.attn_k_b.*=q4_0
blk\.[0-2]\.attn_.*=iq4_ks
blk\.[0-2]\.ffn_down.*=iq4_ks
blk\.[0-2]\.ffn_(gate|up).*=iq4_ks
blk\.[0-2]\..*=iq4_ks
# All attention, norm weights, and bias tensors for MoE layers (3-60) (GPU)
# Except blk.*.attn_k_b.weight is not divisible by 256 so only supports qN_0
blk\.[3-9]\.attn_k_b.*=q4_0
blk\.[1-5][0-9]\.attn_k_b.*=q4_0
blk\.60\.attn_k_b.*=q4_0
blk\.[3-9]\.attn_.*=iq4_ks
blk\.[1-5][0-9]\.attn_.*=iq4_ks
blk\.60\.attn_.*=iq4_ks
# Shared Expert (3-60) (GPU)
blk\.[3-9]\.ffn_down_shexp\.weight=iq4_ks
blk\.[1-5][0-9]\.ffn_down_shexp\.weight=iq4_ks
blk\.60\.ffn_down_shexp\.weight=iq4_ks
blk\.[3-9]\.ffn_(gate|up)_shexp\.weight=iq4_ks
blk\.[1-5][0-9]\.ffn_(gate|up)_shexp\.weight=iq4_ks
blk\.60\.ffn_(gate|up)_shexp\.weight=iq4_ks
# Routed Experts (3-60) (CPU)
blk\.[3-9]\.ffn_down_exps\.weight=iq2_k
blk\.[1-5][0-9]\.ffn_down_exps\.weight=iq2_k
blk\.60\.ffn_down_exps\.weight=iq2_k
blk\.[3-9]\.ffn_(gate|up)_exps\.weight=iq2_ks
blk\.[1-5][0-9]\.ffn_(gate|up)_exps\.weight=iq2_ks
blk\.60\.ffn_(gate|up)_exps\.weight=iq2_ks
# Token embedding and output tensors (GPU)
token_embd\.weight=iq4_k
output\.weight=Q8_0
ik_llama.cpp
quantizations of DeepSeek-V3.1-Base
NOTE: These quants MUST be run using the llama.cpp
fork, ik_llama.cpp
Credits to @ubergarm for his DeepSeek quant recipes for which these quants were based on.
Credits to @ggfhez for his bf16 upload.
- Downloads last month
- 82
Hardware compatibility
Log In
to view the estimation
2-bit
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for lmganon123/DeepSeek-V3.1-Base_IK_GGUF_Q2
Base model
deepseek-ai/DeepSeek-V3.1-Base