IQ2_XSS quant of DeepSeek-V3-0324 I made for my 192GB DDR5 + 3090/4090. Done according to:
* IQ2_XXS
169.590 GiB (2.168 BPW)
Not recommended, but should be faster and better quality than the IQ1_S and okay with full offload on multi-GPU. It should be okay for hybrid CPU+GPU inference as well if this size is good for your rig. Probably want to choose the IQ2_KT for full GPU offload.
Special mix IQ2_XXS
ffn_(gate|up)_exps
and IQ2_KS
ffn_down_exps
routed experts. Mostly iq4_ks/iq3_ks
for attn and shared expert. iq4_k
token_embd
and iq5_k
output
"head".
👈 Secret Recipe
#!/usr/bin/env bash
custom="
# First 3 dense layers (0-3) (GPU)
# Except blk.*.attn_k_b.weight is not divisible by 256 so only supports qN_0
blk\.[0-2]\.attn_k_b.*=q4_0
blk\.[0-2]\.attn_.*=iq4_ks
blk\.[0-2]\.ffn_down.*=iq4_ks
blk\.[0-2]\.ffn_(gate|up).*=iq3_ks
blk\.[0-2]\..*=iq4_ks
# All attention, norm weights, and bias tensors for MoE layers (3-60) (GPU)
# Except blk.*.attn_k_b.weight is not divisible by 256 so only supports qN_0
blk\.[3-9]\.attn_k_b.*=q4_0
blk\.[1-5][0-9]\.attn_k_b.*=q4_0
blk\.60\.attn_k_b.*=q4_0
blk\.[3-9]\.attn_.*=iq4_ks
blk\.[1-5][0-9]\.attn_.*=iq4_ks
blk\.60\.attn_.*=iq4_ks
# Shared Expert (3-60) (GPU)
blk\.[3-9]\.ffn_down_shexp\.weight=iq4_ks
blk\.[1-5][0-9]\.ffn_down_shexp\.weight=iq4_ks
blk\.60\.ffn_down_shexp\.weight=iq4_ks
blk\.[3-9]\.ffn_(gate|up)_shexp\.weight=iq3_ks
blk\.[1-5][0-9]\.ffn_(gate|up)_shexp\.weight=iq3_ks
blk\.60\.ffn_(gate|up)_shexp\.weight=iq3_ks
# Routed Experts (3-60) (CPU)
blk\.[3-9]\.ffn_down_exps\.weight=iq2_ks
blk\.[1-5][0-9]\.ffn_down_exps\.weight=iq2_ks
blk\.60\.ffn_down_exps\.weight=iq2_ks
blk\.[3-9]\.ffn_(gate|up)_exps\.weight=iq2_xxs
blk\.[1-5][0-9]\.ffn_(gate|up)_exps\.weight=iq2_xxs
blk\.60\.ffn_(gate|up)_exps\.weight=iq2_xxs
# Token embedding and output tensors (GPU)
token_embd\.weight=iq4_k
output\.weight=iq5_k
Prompt format
<|begin▁of▁sentence|>{system_prompt}<|User|>{prompt}<|Assistant|><|end▁of▁sentence|><|Assistant|>
ik_llama.cpp
quantizations of DeepSeek-V3-0324
NOTE: These quants MUST be run using the llama.cpp
fork, ik_llama.cpp
Credits to @ubergarm for his DeepSeek quant recipes for which these quants were based on.
- Downloads last month
- 87
Hardware compatibility
Log In
to view the estimation
2-bit
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for lmganon123/DeepSeek-V3-0324_IK_GGUF_Q2
Base model
deepseek-ai/DeepSeek-V3-0324