File size: 2,360 Bytes
			
			8f3b4d8  | 
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138  | 
								device: cuda
seed: 100000
dataset_repo_id: lerobot/pusht
training:
  offline_steps: 200000
  online_steps: 0
  online_steps_between_rollouts: 1
  online_sampling_ratio: 0.5
  online_env_seed: ???
  eval_freq: 10000
  save_freq: 20000
  log_freq: 250
  save_model: true
  batch_size: 64
  grad_clip_norm: 10
  lr: 0.0001
  lr_scheduler: cosine
  lr_warmup_steps: 500
  adam_betas:
  - 0.95
  - 0.999
  adam_eps: 1.0e-08
  adam_weight_decay: 1.0e-06
  delta_timestamps:
    observation.image:
    - -0.1
    - 0.0
    observation.state:
    - -0.1
    - 0.0
    action:
    - -0.1
    - 0.0
    - 0.1
    - 0.2
    - 0.3
    - 0.4
    - 0.5
    - 0.6
    - 0.7
    - 0.8
    - 0.9
    - 1.0
    - 1.1
    - 1.2
    - 1.3
    - 1.4
  n_end_keyframes_dropped: ${policy.horizon} - ${policy.n_action_steps} - ${policy.n_obs_steps}
    + 1
eval:
  n_episodes: 50
  batch_size: 50
  use_async_envs: false
wandb:
  enable: true
  disable_artifact: true
  project: lerobot
  notes: ''
fps: 10
env:
  name: pusht
  task: PushT-v0
  from_pixels: true
  pixels_only: false
  image_size: 96
  episode_length: 300
  fps: ${fps}
  state_dim: 2
  action_dim: 2
override_dataset_stats:
  observation.image:
    mean:
    - - - 0.5
    - - - 0.5
    - - - 0.5
    std:
    - - - 0.5
    - - - 0.5
    - - - 0.5
  observation.state:
    min:
    - 13.456424
    - 32.938293
    max:
    - 496.14618
    - 510.9579
  action:
    min:
    - 12.0
    - 25.0
    max:
    - 511.0
    - 511.0
policy:
  name: diffusion
  n_obs_steps: 2
  horizon: 16
  n_action_steps: 8
  input_shapes:
    observation.image:
    - 3
    - 96
    - 96
    observation.state:
    - ${env.state_dim}
  output_shapes:
    action:
    - ${env.action_dim}
  input_normalization_modes:
    observation.image: mean_std
    observation.state: min_max
  output_normalization_modes:
    action: min_max
  vision_backbone: resnet18
  crop_shape:
  - 84
  - 84
  crop_is_random: true
  pretrained_backbone_weights: null
  use_group_norm: true
  spatial_softmax_num_keypoints: 32
  down_dims:
  - 512
  - 1024
  - 2048
  kernel_size: 5
  n_groups: 8
  diffusion_step_embed_dim: 128
  use_film_scale_modulation: true
  num_train_timesteps: 100
  beta_schedule: squaredcos_cap_v2
  beta_start: 0.0001
  beta_end: 0.02
  prediction_type: epsilon
  clip_sample: true
  clip_sample_range: 1.0
  num_inference_steps: 100
 |