File size: 79,647 Bytes
6661c10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 |
---
language:
- code
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:197351
- loss:MultipleNegativesRankingLoss
base_model: Qwen/Qwen3-Embedding-0.6B
widget:
- source_sentence: ABCB7
sentences:
- This gene encodes a tetrameric mitochondrial flavoprotein, which is a member of
the acyl-CoA dehydrogenase family. This enzyme catalyzes the initial step of the
mitochondrial fatty acid beta-oxidation pathway. Mutations in this gene have been
associated with short-chain acyl-CoA dehydrogenase (SCAD) deficiency. Alternative
splicing results in two variants which encode different isoforms. [provided by
RefSeq, Oct 2014]
- The membrane-associated protein encoded by this gene is a member of the superfamily
of ATP-binding cassette (ABC) transporters. ABC proteins transport various molecules
across extra- and intra-cellular membranes. ABC genes are divided into seven distinct
subfamilies (ABC1, MDR/TAP, MRP, ALD, OABP, GCN20, White). This protein is a member
of the MDR/TAP subfamily. Members of the MDR/TAP subfamily are involved in multidrug
resistance as well as antigen presentation. This gene encodes a half-transporter
involved in the transport of heme from the mitochondria to the cytosol. With iron/sulfur
cluster precursors as its substrates, this protein may play a role in metal homeostasis.
Mutations in this gene have been associated with mitochondrial iron accumulation
and isodicentric (X)(q13) and sideroblastic anemia. Alternatively spliced transcript
variants encoding multiple isoforms have been observed for this gene. [provided
by RefSeq, Nov 2012]
- The membrane-associated protein encoded by this gene is a member of the superfamily
of ATP-binding cassette (ABC) transporters. ABC proteins transport various molecules
across extra- and intracellular membranes. ABC genes are divided into seven distinct
subfamilies (ABC1, MDR/TAP, MRP, ALD, OABP, GCN20, and White). This encoded protein
is a member of the ABC1 subfamily. Members of the ABC1 subfamily comprise the
only major ABC subfamily found exclusively in multicellular eukaryotes. This gene
is clustered among 4 other ABC1 family members on 17q24, but neither the substrate
nor the function of this gene is known. Alternative splicing of this gene results
in several transcript variants; however, not all variants have been fully described.
[provided by RefSeq, Jul 2008]
- source_sentence: ABCC8
sentences:
- The protein encoded by this gene is a member of the superfamily of ATP-binding
cassette (ABC) transporters. ABC proteins transport various molecules across extra-
and intra-cellular membranes. ABC genes are divided into seven distinct subfamilies
(ABC1, MDR/TAP, MRP, ALD, OABP, GCN20, White). This protein is a member of the
MRP subfamily which is involved in multi-drug resistance. This protein functions
as a modulator of ATP-sensitive potassium channels and insulin release. Mutations
in the ABCC8 gene and deficiencies in the encoded protein have been observed in
patients with hyperinsulinemic hypoglycemia of infancy, an autosomal recessive
disorder of unregulated and high insulin secretion. Mutations have also been associated
with non-insulin-dependent diabetes mellitus type II, an autosomal dominant disease
of defective insulin secretion. Alternatively spliced transcript variants have
been found for this gene. [provided by RefSeq, Jul 2020]
- Predicted to enable GTPase activator activity and zinc ion binding activity. Predicted
to be involved in protein transport. Located in membrane. [provided by Alliance
of Genome Resources, Jul 2025]
- The protein encoded by this gene is a member of the superfamily of ATP-binding
cassette (ABC) transporters. ABC proteins transport various molecules across extra-
and intra-cellular membranes. ABC genes are divided into seven distinct subfamilies
(ABC1, MDR/TAP, MRP, ALD, OABP, GCN20, White). This ABC full transporter is a
member of the MRP subfamily which is involved in multi-drug resistance. The product
of this gene participates in physiological processes involving bile acids, conjugated
steroids, and cyclic nucleotides. In addition, a SNP in this gene is responsible
for determination of human earwax type. This gene and family member ABCC12 are
determined to be derived by duplication and are both localized to chromosome 16q12.1.
Multiple alternatively spliced transcript variants have been described for this
gene. [provided by RefSeq, Jul 2008]
- source_sentence: MALAT1 TMSB4X ACTB TPT1 EEF1A1 S100A10 LGALS1 VIM SH3BGRL3 S100A4
FTL PTMA SRGN TMSB10 CYBA GAPDH CD74 TAGLN2 FTH1 S100A6 UBA52 YBX1 MYL6 OAZ1 CST3
NACA FAU ARPC2 GSTP1 PFN1 HSP90AA1 COTL1 PPIA ARPC3 UQCRB MYL12A CD63 EIF1 NEAT1
RACK1 MACROH2A1 ATP6V0E1 ATP5F1E SRP14 ENO1 SLC25A3 CTSH PRDX1 VAMP8 COX4I1 CAP1
BTF3 DBI HNRNPA3 GNAS DDX5 H3-3B TPM3 LAPTM5 ZEB2 GNG5 FLNA CALM1 CD44
sentences:
- MALAT1 PTMA TMSB10 LGALS1 ACTB PRDX1 S100A4 H3-3B TMSB4X VIM TPT1 LMO4 HNRNPA2B1
SH3BGRL3 TAGLN2 HNRNPU DDIT4 PFN1 IGFBP7 HMGB1 FTH1 CFL1 CD74 SOX4 KLF2 BST2 S100A11
RACK1 PSMA4 DDX5 NCL RSRP1 IRF1 SERF2 EEF1A1 CALM1 UBA52 CYBA HSP90AA1 MYL12A
AHNAK ITM2B SRP14 EMP3 CALM2 TSC22D3 YWHAZ SELENOW PPIA S100A6 TSPO IRAG2 TPM3
UBC ARPC2 HNRNPA3 UBB EIF1 JUN IFITM2 PRR13 N4BP2L2 LAPTM4A CDC42
- This measurement was conducted with 10x 3' v3. This sample is derived from a 3-month-old
male patient with KMT2A-rearranged (KMT2A-r) infant acute lymphoblastic leukemia
(ALL) with a CD8_Cytotoxic T cell type, specifically T/NK cells, and a presumed
MLL-AF4 fusion.
- This measurement was conducted with 10x 3' v3. Blast cells derived from a 1-month-old
human with a presumed MLL-AF10 fusion, projected as cDC-like cells.
- source_sentence: MALAT1 CXCL14 EEF1A1 VIM IGFBP7 COL1A2 FTH1 TPT1 S100A6 TMSB4X
A2M APOE DCN PTGDS TMSB10 LGALS1 ACTB FBLN1 FTL RARRES2 CD81 CALD1 CD63 COL6A2
MYL6 SPARCL1 NEAT1 IGFBP5 PTMA CST3 FAU SERF2 SPARC IFITM3 EIF1 S100A4 NACA JUND
COL6A1 GSN C1S CFH HSP90AA1 PDLIM1 H3-3B EDIL3 UBA52 VCAN LTBP4 TIMP3 CTSC ITM2B
IGFBP4 UBC UBB RACK1 TIMP1 ACTA2 ZFP36L2 PLPP3 TUBA1A FILIP1L FOS S100A10
sentences:
- MALAT1 TMSB10 A2M FABP5 PTMA VIM ACTB CAV1 SPARCL1 CD74 EEF1A1 KLF2 IFITM3 CLDN5
TMSB4X TPT1 ENPP2 TM4SF1 FOS EIF1 S100A6 CALM1 CD81 HES1 SRGN ID1 GNG11 IGFBP4
STOM GSN TAGLN2 IGFBP7 CD320 FTH1 MCAM HSP90AA1 GNAS MYL6 TIMP3 EPAS1 TNFSF10
PODXL ITM2B SRP14 UBC TGFBR2 KCTD12 GIMAP7 UBA52 RHOA CD59 FTL PCSK5 MYH9 MYL12A
FLT1 CXCL12 LIFR TUBA1B DSTN ARPC1B JUND H3-3B TMBIM6
- This measurement was conducted with 10x 3' v3. Fibroblasts derived from the terminal
ileum of a female individual in her fourth decade, exhibiting Crohn's disease
(CD) related changes.
- This measurement was conducted with 10x 3' v3. Glial cells derived from the ileal
epithelium of a female in her fourth decade.
- source_sentence: MALAT1 DCN MGP APOD GSN LAMA2 CST3 SPARCL1 IGFBP7 TIMP1 VIM EEF1A1
ITM2B FBLN1 C3 IFITM3 FBN1 FTH1 TPT1 ABCA8 C1S TXNIP FTL TIMP3 FN1 CD63 RBMS3
ABCA6 ZBTB20 CEBPD NEAT1 CFH VCAN PTN PTGDS CD81 SERF2 COL6A1 COL6A2 ABI3BP ABCA10
EBF1 COL1A2 PRKG1 S100A6 MGST1 TMSB10 TIMP2 CELF2 LAPTM4A RORA ACTB LTBP4 MYL6
LGALS1 DDX5 SPTBN1 EFEMP1 BICC1 LRP1 H3-3B SCN7A IGFBP4 FAU
sentences:
- This measurement was conducted with 10x 3' v3. CD4+T naive lymphocyte cells derived
from the right cardiac atrium of a European male in his sixties.
- This measurement was conducted with 10x multiome. Fibroblast cell sample taken
from the right ventricle of a European female donor in her fifth decade, who is
a DCD donor. The sample is in nucleus form.
- MALAT1 NEAT1 LINC00486 SLC8A1 VMP1 SAT1 PIK3R5 DIRC3 FMN1 PMP22 RBM47 AGFG1 DIP2B
RBMS1 GNAQ TBC1D14 RAB1A ARHGAP24 DAPK1 SLC1A3 RHOQ SH3BGRL DOCK10 SLCO2B1 RUNX1
ENOX2 LDLRAD4 RNF150 PIAS1 DDX5 WSB1 TSHZ3 SBF2 DOCK2 LRP4 DENND4C FCHSD2 EXOC6B
AFF3 ARHGAP26 DIAPH2 MGAT5 TMEM163 NSMCE2 RBPJ ZEB2 TANC2 BPTF SH3RF3 MFSD14CP
TCF4 RORA-AS1 NOP58 MEF2A EPN2 PICALM ARHGAP15 MEF2C ANKRD12 FCGRT DOCK8 SETX
TBC1D9 KLHL2
datasets:
- jo-mengr/cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation
- jo-mengr/descriptions_genes
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
model-index:
- name: SentenceTransformer based on Qwen/Qwen3-Embedding-0.6B
results:
- task:
type: triplet
name: Triplet
dataset:
name: cellxgene pseudo bulk 100k multiplets natural language annotation cell
sentence 2
type: cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation_cell_sentence_2
metrics:
- type: cosine_accuracy
value: 0.8204416632652283
name: Cosine Accuracy
- task:
type: triplet
name: Triplet
dataset:
name: gene description
type: gene_description
metrics:
- type: cosine_accuracy
value: 0.9559999704360962
name: Cosine Accuracy
---
# SentenceTransformer based on Qwen/Qwen3-Embedding-0.6B
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) on the [cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation](https://huggingface.co/datasets/jo-mengr/cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation) and [gene_description](https://huggingface.co/datasets/jo-mengr/descriptions_genes) datasets. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) <!-- at revision c54f2e6e80b2d7b7de06f51cec4959f6b3e03418 -->
- **Maximum Sequence Length:** 32768 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
- [cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation](https://huggingface.co/datasets/jo-mengr/cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation)
- [gene_description](https://huggingface.co/datasets/jo-mengr/descriptions_genes)
- **Language:** code
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): MMContextEncoder(
(text_encoder): Qwen3Model(
(embed_tokens): Embedding(151669, 1024)
(layers): ModuleList(
(0-27): 28 x Qwen3DecoderLayer(
(self_attn): Qwen3Attention(
(q_proj): Linear(in_features=1024, out_features=2048, bias=False)
(k_proj): Linear(in_features=1024, out_features=1024, bias=False)
(v_proj): Linear(in_features=1024, out_features=1024, bias=False)
(o_proj): Linear(in_features=2048, out_features=1024, bias=False)
(q_norm): Qwen3RMSNorm((128,), eps=1e-06)
(k_norm): Qwen3RMSNorm((128,), eps=1e-06)
)
(mlp): Qwen3MLP(
(gate_proj): Linear(in_features=1024, out_features=3072, bias=False)
(up_proj): Linear(in_features=1024, out_features=3072, bias=False)
(down_proj): Linear(in_features=3072, out_features=1024, bias=False)
(act_fn): SiLU()
)
(input_layernorm): Qwen3RMSNorm((1024,), eps=1e-06)
(post_attention_layernorm): Qwen3RMSNorm((1024,), eps=1e-06)
)
)
(norm): Qwen3RMSNorm((1024,), eps=1e-06)
(rotary_emb): Qwen3RotaryEmbedding()
)
(pooling): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("jo-mengr/mmcontext-qwen-scvi_fm")
# Run inference
sentences = [
'MALAT1 DCN MGP APOD GSN LAMA2 CST3 SPARCL1 IGFBP7 TIMP1 VIM EEF1A1 ITM2B FBLN1 C3 IFITM3 FBN1 FTH1 TPT1 ABCA8 C1S TXNIP FTL TIMP3 FN1 CD63 RBMS3 ABCA6 ZBTB20 CEBPD NEAT1 CFH VCAN PTN PTGDS CD81 SERF2 COL6A1 COL6A2 ABI3BP ABCA10 EBF1 COL1A2 PRKG1 S100A6 MGST1 TMSB10 TIMP2 CELF2 LAPTM4A RORA ACTB LTBP4 MYL6 LGALS1 DDX5 SPTBN1 EFEMP1 BICC1 LRP1 H3-3B SCN7A IGFBP4 FAU',
'This measurement was conducted with 10x multiome. Fibroblast cell sample taken from the right ventricle of a European female donor in her fifth decade, who is a DCD donor. The sample is in nucleus form.',
"This measurement was conducted with 10x 3' v3. CD4+T naive lymphocyte cells derived from the right cardiac atrium of a European male in his sixties.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.6280, 0.0951],
# [0.6280, 1.0000, 0.2002],
# [0.0951, 0.2002, 1.0000]])
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Triplet
* Datasets: `cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation_cell_sentence_2` and `gene_description`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation_cell_sentence_2 | gene_description |
|:--------------------|:----------------------------------------------------------------------------------|:-----------------|
| **cosine_accuracy** | **0.8204** | **0.956** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Datasets
#### cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation
* Dataset: [cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation](https://huggingface.co/datasets/jo-mengr/cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation) at [d518eb2](https://huggingface.co/datasets/jo-mengr/cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation/tree/d518eb24af305653b43acd9e26f9502632059e7c)
* Size: 81,143 training samples
* Columns: <code>anchor</code>, <code>positive</code>, <code>negative_1</code>, and <code>negative_2</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative_1 | negative_2 |
|:--------|:--------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
| type | string | string | string | string |
| details | <ul><li>min: 356 characters</li><li>mean: 385.24 characters</li><li>max: 450 characters</li></ul> | <ul><li>min: 92 characters</li><li>mean: 216.13 characters</li><li>max: 900 characters</li></ul> | <ul><li>min: 103 characters</li><li>mean: 212.72 characters</li><li>max: 1186 characters</li></ul> | <ul><li>min: 353 characters</li><li>mean: 384.82 characters</li><li>max: 433 characters</li></ul> |
* Samples:
| anchor | positive | negative_1 | negative_2 |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>TMSB4X TMSB10 ACTB MALAT1 GNLY NKG7 IFITM2 LGALS1 GZMA EEF1A1 PFN1 HMGB2 FTH1 PTMA HSP90AA1 GZMB ARHGDIB HNRNPA2B1 PLAAT4 FAU CMC1 VIM MYL12A CBX3 ATP5F1E HCST IFI44L KLRF1 H3-3A COX6C ARL6IP1 CFL1 ISG15 HMGB1 S100A4 ATP5MF RORA MYL6 CORO1A OAZ1 KLRB1 ID2 HMGN3 CCNI RBM39 CAP1 SERF2 ELOC FCER1G S100A9 IFI16 YWHAZ EIF1 CALR HMGN2 SKAP2 SLC25A5 ZZZ3 YBX1 NUCB2 CDC42 GSTP1 FTL ATP5F1D</code> | <code>This measurement was conducted with 10x 3' v2. A proliferating lymphocyte cell sample, obtained from a 34-year-old female Asian individual, derived from peripheral blood mononuclear cells.</code> | <code>This measurement was conducted with 10x 3' v2. Sample is a CD8-positive, alpha-beta T cell derived from a 31-year-old Asian female's peripheral blood mononuclear cells.</code> | <code>MALAT1 TMSB4X EEF1A1 TMSB10 FAU TPT1 PTMA EIF1 UBA52 ACTB FTH1 RACK1 FTL H3-3B JUNB ATP5F1E BTG1 CD52 NACA MYL12A PFN1 COX7C COX4I1 SERF2 UQCRB TOMM7 IL32 YBX1 PABPC1 MYL6 EIF3E OAZ1 NOP53 ARHGDIB LDHB HCST SARAF ITM2B ATP6V1G1 SRP14 UBC H3-3A COX6C HINT1 UBB COMMD6 S100A4 S100A6 CALM1 VIM CYBA ENO1 HSP90AA1 FXYD5 HSP90AB1 CIRBP SRSF5 NFKBIA CORO1A LEPROTL1 TLE5 CHCHD2 DDX5 CD69</code> |
| <code>EEF1A1 MALAT1 FTH1 JUNB TPT1 FOS TMSB10 BTG1 TMSB4X ZFP36L2 NACA PABPC1 ACTB FAU VIM H3-3B EIF1 ZFP36 SARAF PTMA IL7R JUN RACK1 EEF2 UBA52 GAPDH FTL FXYD5 DUSP1 S100A4 CD69 CXCR4 UBC TSC22D3 CFL1 KLF6 ARHGDIB KLF2 BTG2 CITED2 IER2 TUBB4B CD3E EEF1G SLC2A3 NFKBIA PFN1 SRGN SNX9 COX4I1 DNAJB1 SERF2 CD8A PCBP2 IL32 BIRC3 SMAP2 FUS GADD45B MYL12A OAZ1 ATP5F1E TUBA4A PNRC1</code> | <code>This measurement was conducted with 10x 5' v1. Sample is a cell from the omentum tissue, specifically an effector memory CD4-positive, alpha-beta T cell, from a female in her sixth decade.</code> | <code>This measurement was conducted with 10x 5' v1. Sample is a CD4-positive helper T cell, specifically Trm_Th1/Th17 subset, derived from the duodenum tissue of a male individual in his sixth decade.</code> | <code>MALAT1 TPT1 EEF1A1 VIM JUND TMSB4X PTMA FTH1 CRIP1 ANXA1 EIF1 UBC H3-3B ACTB SRGN FTL FAU KLF6 IL7R CALM1 UBA52 BTG1 SARAF IL32 TMSB10 PABPC1 HSP90AB1 DDX5 GAPDH TAGLN2 NACA CD44 HSPA5 RORA HSP90AA1 KLRB1 TNFAIP3 ATP5F1E PNRC1 ZFP36L2 H3-3A UBB FOS RACK1 FYN FAM107B GNAS EZR MYL6 CREM NFKBIA PFN1 ARHGDIB SRSF7 CD2 CCNI HNRNPA2B1 COX7C ITM2B SERF2 SH3BGRL3 TSC22D3 LMNA YWHAZ</code> |
| <code>MALAT1 GRIK1 SYT1 PCDH9 RORA NRG1 CADPS ZFPM2 LRRC4C LINGO2 RALYL PTPRD SPHKAP CNTNAP5 SLC8A1 CCSER1 HDAC9 CELF2 R3HDM1 CNTN4 RBMS3 PCDH7 GALNT13 UNC5D ROBO1 SYNPR SNAP25 GPM6A ANK3 FRMPD4 CHRM2 RYR2 KHDRBS2 CADM1 CACNA1D RGS6 PDE4D DOCK4 UNC13C CDH18 FAT3 MEG3 NR2F2-AS1 HMCN1 GULP1 CAMK2D ZEB1 SYN2 DYNC1I1 OXR1 DPP10 OSBPL6 FRAS1 PPP3CA ZNF385D ZMAT4 PCBP3 HS6ST3 ERC2 PLEKHA5 CDK14 MAP2 NCOA1 ATP8A2</code> | <code>This measurement was conducted with 10x 3' v3. Neuron cell type from a 29-year-old male, specifically from the thalamic complex, specifically the thalamus (THM) - posterior nuclear complex of thalamus (PoN) - medial geniculate nuclei (MG).</code> | <code>This measurement was conducted with 10x 3' v3. Astrocyte cell type from the thalamic complex, specifically from the thalamus (THM) - posterior nuclear complex of thalamus (PoN) - medial geniculate nuclei (MG) region, of a 42-year-old male.</code> | <code>MALAT1 PCDH9 PLP1 MBP ST18 QKI PDE4B RNF220 PTPRD SEPTIN7 TTLL7 NCKAP5 GPM6B PIP4K2A MOBP SLC44A1 PTGDS PLCL1 MAP7 ELMO1 SIK3 FTH1 ZBTB20 MAN2A1 TMEM165 DOCK10 TCF12 EDIL3 ZEB2 DPYD MAP4K4 PHLPP1 TF GAB1 TRIM2 FRMD4B DNAJC6 MARCHF1 ANK3 DST AGAP1 TMEM144 NEAT1 PLEKHH1 DLG1 CRYAB ERBIN RTN4 SPP1 ATP8A1 DOCK4 SLAIN1 APP DOCK5 APBB2 SAMD12 SHTN1 ZNF536 ZFYVE16 ARAP2 LIMCH1 HIPK2 BCAS1 FAM107B</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### gene_description
* Dataset: [gene_description](https://huggingface.co/datasets/jo-mengr/descriptions_genes) at [dd22363](https://huggingface.co/datasets/jo-mengr/descriptions_genes/tree/dd22363de0a7c501f41ba324fb3b8d6ecdd14dc7)
* Size: 116,208 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative_1</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative_1 |
|:--------|:---------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 3 characters</li><li>mean: 5.88 characters</li><li>max: 12 characters</li></ul> | <ul><li>min: 16 characters</li><li>mean: 367.09 characters</li><li>max: 1375 characters</li></ul> | <ul><li>min: 13 characters</li><li>mean: 167.33 characters</li><li>max: 1375 characters</li></ul> |
* Samples:
| anchor | positive | negative_1 |
|:------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|
| <code>A1BG</code> | <code>The protein encoded by this gene is a plasma glycoprotein of unknown function. The protein shows sequence similarity to the variable regions of some immunoglobulin supergene family member proteins. [provided by RefSeq, Jul 2008]</code> | <code>A1BG antisense RNA 1</code> |
| <code>A1BG</code> | <code>The protein encoded by this gene is a plasma glycoprotein of unknown function. The protein shows sequence similarity to the variable regions of some immunoglobulin supergene family member proteins. [provided by RefSeq, Jul 2008]</code> | <code>G antigen 12D</code> |
| <code>A1BG</code> | <code>The protein encoded by this gene is a plasma glycoprotein of unknown function. The protein shows sequence similarity to the variable regions of some immunoglobulin supergene family member proteins. [provided by RefSeq, Jul 2008]</code> | <code>G antigen 12B</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Datasets
#### cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation
* Dataset: [cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation](https://huggingface.co/datasets/jo-mengr/cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation) at [d518eb2](https://huggingface.co/datasets/jo-mengr/cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation/tree/d518eb24af305653b43acd9e26f9502632059e7c)
* Size: 9,011 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, <code>negative_1</code>, and <code>negative_2</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative_1 | negative_2 |
|:--------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
| type | string | string | string | string |
| details | <ul><li>min: 347 characters</li><li>mean: 386.7 characters</li><li>max: 437 characters</li></ul> | <ul><li>min: 99 characters</li><li>mean: 209.99 characters</li><li>max: 941 characters</li></ul> | <ul><li>min: 101 characters</li><li>mean: 208.8 characters</li><li>max: 728 characters</li></ul> | <ul><li>min: 356 characters</li><li>mean: 386.56 characters</li><li>max: 434 characters</li></ul> |
* Samples:
| anchor | positive | negative_1 | negative_2 |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>MALAT1 EEF1A1 FTH1 TMSB4X ACTB FTL RTN4 ATP6V0B TPT1 FAU S100A6 NDUFA4 ATP5F1E COX7C ITM2B IGFBP7 EIF1 C12orf75 CD9 COX7B SERF2 ATP1B1 COX8A TXNIP NDUFB2 MYL6 PPDPF COX6B1 UQCR11 APOE COX4I1 CALM2 UQCRB S100A11 UQCRQ COX6C ATP5MG BSG ATP6AP2 UQCR10 PTMA NACA UBL5 UBA52 TMSB10 ADGRF5 HSP90AA1 GSTP1 ATP5F1D CHCHD2 GAPDH COX7A2 SKP1 HSPE1 PRDX1 CYSTM1 LGALS3 CD63 ATP5MJ CKB NDUFS5 ATP5ME UBB MAL</code> | <code>This measurement was conducted with 10x 3' v3. Cell sample from the cortex of kidney, taken from a 43-year-old male of European ethnicity with a reported history of kidney cancer. The cell type is identified as a kidney collecting duct intercalated cell.</code> | <code>This measurement was conducted with 10x 3' v3. Cell sample from the cortex of kidney, taken from a 72-year-old male of European ethnicity, identified as a kidney collecting duct intercalated cell, and preserved through cryopreservation.</code> | <code>MALAT1 TMSB4X TMSB10 ACTB TXNIP EEF1A1 TPT1 PFN1 BTG1 FAU PTMA S100A4 ATP5F1E EIF1 FTL CFL1 CYBA MYL12A SRGN SERF2 SH3BGRL3 CALM1 TYROBP MYL6 ZFP36 KLRD1 UBB NACA S100A6 UBA52 HSP90AA1 H3-3B LCP1 FTH1 DDIT4 FOS PPIA CD247 RACK1 TMA7 CORO1A OAZ1 TLE5 ARPC3 GAPDH KLF2 UBC ZFP36L2 TSC22D3 ITGB2 ARPC2 ATP5MG HOPX IFITM2 HMGB1 OST4 EEF1G PRDM1 CDC42 GSTP1 NDUFB2 CIRBP LGALS1 CHCHD2</code> |
| <code>MALAT1 KCND2 NRXN1 CDH18 NRXN3 ZNF385D CADM2 RALYL NKAIN2 CADPS2 RIMS1 FSTL5 GRID2 TRPM3 CHN2 DPP6 JMJD1C RORA PDE1A UNC13C TIAM1 NRG1 SNAP25 ZFPM2 CALN1 LSAMP CNTN1 ABLIM1 SYNE1 ANK3 CA10 NFIA ZBTB20 NTM CADM1 OPCML RELN DNM3 NEBL ERC1 SCN2A PPP3CA CACNA1A GALNT13 LRRC4C GPM6A RABGAP1L RIT2 CAMK4 GRIA4 PTPRD RBFOX3 MCTP1 LHFPL6 PCLO MEG3 PDE10A NOVA1 RTN1 ZNF385B CNTN4 GABRB2 SPOCK1 OXR1</code> | <code>This measurement was conducted with 10x 3' v3. Neuron cell type from a 29-year-old male cerebellum, specifically from the Cerebellar Vermis - CBV region, with European self-reported ethnicity, analyzed at the nucleus level.</code> | <code>This measurement was conducted with 10x 3' v3. Sample is an oligodendrocyte precursor cell taken from the cerebellum tissue of a 42-year-old human male, specifically from the Cerebellum (CB) - Cerebellar Vermis - CBV dissection.</code> | <code>MALAT1 NRXN3 SNTG1 UNC5C GRIA4 NRG1 RORA INPP4B CLSTN2 NKAIN2 FRMD4A DPP6 GRID2 NRXN1 LSAMP JMJD1C HS6ST3 NXPH1 MIR99AHG LRRC4C NTM CCNH NFIA ZFPM2 AFF3 OPCML PTPRT CADM2 ZBTB20 OLFM3 SLC22A3 CNTNAP5 CACNA2D3 CNTN4 KCND2 ADARB2 XKR4 GPM6A IL1RAPL1 ALK ANKRD36C UBE2E2 SYN3 GARNL3 PTPRG DAB1 TCF4 LINC00461 PRANCR GRIN2B TNRC6B MAPK10 NOVA1 NFIB ANK3 KCNMA1 KCNQ5 SPON1 TRIM9 VWA8 GDAP1 GABRG2 AHI1 ATP1B1</code> |
| <code>EEF1A1 ACTB GAPDH HMGN2 PTMA SERF2 TMSB4X CD74 PABPC1 FTH1 TMSB10 FAU PFN1 HMGN1 OAZ1 HMGB1 TPT1 PPIA NACA BTF3 MALAT1 MYL6 ATP5MG CFL1 RACK1 ODC1 ATP5F1E TMA7 SLC25A5 ELOB ARPC3 NPM1 COX7C ANP32B C4orf3 EIF1 PCBP2 KLF6 LAPTM5 COX8A RHOA HSPA8 H3-3B PTP4A2 UBA52 OST4 CIRBP LGALS1 EIF3L STMN1 PPDPF COX4I1 RAN EIF3F PPP1CC COMMD6 NDUFA4 YBX1 PEBP1 COTL1 COX7A2 HSPE1 CCNI TRIR</code> | <code>This measurement was conducted with 10x 5' v1. Cell sample from the tonsil of a 9-year-old female with recurrent tonsillitis, characterized as a centroblast B cell with IGLC2, IGLV7-43, IGLJ3 immunoglobulin genes expressed.</code> | <code>This measurement was conducted with 10x 5' v1. Germinal center B cell derived from the tonsil tissue of a 3-year-old male with recurrent tonsillitis.</code> | <code>CD74 MALAT1 EEF1A1 SSR4 TPT1 UBC EEF2 SAT1 RACK1 SEC11C ATP5MG FAU TSC22D3 PPIB XBP1 FTL GAPDH HLA-DRB5 HERPUD1 RGS2 HSPA8 TMSB4X HSP90B1 EIF1 PTMA SERP1 SERF2 NACA SEC61B GSTP1 UBA52 HSPA5 BTF3 LAPTM5 HSPE1 H3-3B ATP5F1A SEC61G CD38 EDF1 FTH1 IL16 NPM1 OST4 CIRBP EIF3E OAZ1 CYTIP PCBP2 MYDGF COX6B1 ZFP36 CSDE1 PABPC1 REXO2 KDELR1 PFN1 PTP4A1 TMBIM6 H1-10 PSAP UBE2J1 VIM MYL6</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### gene_description
* Dataset: [gene_description](https://huggingface.co/datasets/jo-mengr/descriptions_genes) at [dd22363](https://huggingface.co/datasets/jo-mengr/descriptions_genes/tree/dd22363de0a7c501f41ba324fb3b8d6ecdd14dc7)
* Size: 1,000 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative_1</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative_1 |
|:--------|:---------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 3 characters</li><li>mean: 5.88 characters</li><li>max: 12 characters</li></ul> | <ul><li>min: 16 characters</li><li>mean: 367.09 characters</li><li>max: 1375 characters</li></ul> | <ul><li>min: 13 characters</li><li>mean: 167.33 characters</li><li>max: 1375 characters</li></ul> |
* Samples:
| anchor | positive | negative_1 |
|:------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|
| <code>A1BG</code> | <code>The protein encoded by this gene is a plasma glycoprotein of unknown function. The protein shows sequence similarity to the variable regions of some immunoglobulin supergene family member proteins. [provided by RefSeq, Jul 2008]</code> | <code>A1BG antisense RNA 1</code> |
| <code>A1BG</code> | <code>The protein encoded by this gene is a plasma glycoprotein of unknown function. The protein shows sequence similarity to the variable regions of some immunoglobulin supergene family member proteins. [provided by RefSeq, Jul 2008]</code> | <code>G antigen 12D</code> |
| <code>A1BG</code> | <code>The protein encoded by this gene is a plasma glycoprotein of unknown function. The protein shows sequence similarity to the variable regions of some immunoglobulin supergene family member proteins. [provided by RefSeq, Jul 2008]</code> | <code>G antigen 12B</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `bf16`: True
- `gradient_checkpointing`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: True
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | cellxgene pseudo bulk 100k multiplets natural language annotation loss | gene description loss | cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation_cell_sentence_2_cosine_accuracy | gene_description_cosine_accuracy |
|:------:|:----:|:-------------:|:----------------------------------------------------------------------:|:---------------------:|:-------------------------------------------------------------------------------------------------:|:--------------------------------:|
| 0.0324 | 50 | 9.3314 | 12.6479 | 6.6616 | 0.5052 | 0.2570 |
| 0.0649 | 100 | 7.9528 | 10.8869 | 6.0596 | 0.5078 | 0.2660 |
| 0.0973 | 150 | 7.0084 | 7.0423 | 5.4704 | 0.5075 | 0.3020 |
| 0.1297 | 200 | 5.6925 | 6.0263 | 5.2950 | 0.5024 | 0.5200 |
| 0.1621 | 250 | 5.381 | 5.8141 | 4.7323 | 0.5367 | 0.6520 |
| 0.1946 | 300 | 4.3736 | 5.4432 | 4.3565 | 0.5518 | 0.7060 |
| 0.2270 | 350 | 3.8184 | 5.1966 | 4.1283 | 0.5836 | 0.7690 |
| 0.2594 | 400 | 3.6181 | 5.0588 | 3.9594 | 0.6064 | 0.7650 |
| 0.2918 | 450 | 3.1076 | 4.9406 | 3.7824 | 0.6218 | 0.8030 |
| 0.3243 | 500 | 3.127 | 4.8376 | 3.6785 | 0.6369 | 0.8230 |
| 0.3567 | 550 | 3.1702 | 4.8230 | 3.6029 | 0.6532 | 0.8410 |
| 0.3891 | 600 | 2.992 | 5.1160 | 3.6091 | 0.6240 | 0.8310 |
| 0.4215 | 650 | 2.606 | 4.5652 | 3.5555 | 0.6679 | 0.8490 |
| 0.4540 | 700 | 2.9473 | 4.5831 | 3.5215 | 0.6846 | 0.8600 |
| 0.4864 | 750 | 2.369 | 4.4464 | 3.4824 | 0.6930 | 0.8800 |
| 0.5188 | 800 | 2.5923 | 4.4542 | 3.4372 | 0.6983 | 0.8820 |
| 0.5512 | 850 | 2.9167 | 4.4572 | 3.4915 | 0.6984 | 0.8730 |
| 0.5837 | 900 | 2.5716 | 4.2259 | 3.4390 | 0.7126 | 0.8630 |
| 0.6161 | 950 | 2.375 | 4.2200 | 3.4250 | 0.7143 | 0.8740 |
| 0.6485 | 1000 | 2.4105 | 4.2001 | 3.3524 | 0.7187 | 0.8890 |
| 0.6809 | 1050 | 2.4014 | 4.0744 | 3.2688 | 0.7243 | 0.8950 |
| 0.7134 | 1100 | 2.7474 | 4.1131 | 3.3046 | 0.7270 | 0.8850 |
| 0.7458 | 1150 | 2.1615 | 4.2206 | 3.2392 | 0.7202 | 0.8860 |
| 0.7782 | 1200 | 2.4409 | 4.4682 | 3.1664 | 0.7106 | 0.8870 |
| 0.8106 | 1250 | 2.5041 | 4.0881 | 3.1417 | 0.7277 | 0.9030 |
| 0.8431 | 1300 | 2.4221 | 3.8777 | 3.2302 | 0.7409 | 0.8940 |
| 0.8755 | 1350 | 2.189 | 3.8482 | 3.1316 | 0.7441 | 0.9050 |
| 0.9079 | 1400 | 2.3055 | 3.8571 | 3.1550 | 0.7451 | 0.9030 |
| 0.9403 | 1450 | 2.0945 | 3.8233 | 3.1269 | 0.7530 | 0.9020 |
| 0.9728 | 1500 | 2.0217 | 3.7722 | 3.0707 | 0.7527 | 0.9070 |
| 1.0052 | 1550 | 2.2443 | 3.8285 | 3.0799 | 0.7459 | 0.9190 |
| 1.0376 | 1600 | 1.9441 | 3.8292 | 3.0957 | 0.7470 | 0.9090 |
| 1.0700 | 1650 | 1.8771 | 3.6837 | 3.0190 | 0.7555 | 0.9290 |
| 1.1025 | 1700 | 1.9489 | 3.6946 | 3.0298 | 0.7570 | 0.9210 |
| 1.1349 | 1750 | 2.0622 | 3.7221 | 3.0001 | 0.7574 | 0.9140 |
| 1.1673 | 1800 | 1.7275 | 3.7806 | 2.9919 | 0.7530 | 0.9090 |
| 1.1997 | 1850 | 2.0068 | 3.6648 | 2.9490 | 0.7584 | 0.9230 |
| 1.2322 | 1900 | 1.9126 | 3.7416 | 2.9131 | 0.7603 | 0.9160 |
| 1.2646 | 1950 | 1.9513 | 3.5770 | 2.9362 | 0.7625 | 0.9230 |
| 1.2970 | 2000 | 1.8021 | 3.6660 | 2.8868 | 0.7670 | 0.9360 |
| 1.3294 | 2050 | 1.9685 | 3.7318 | 2.8669 | 0.7587 | 0.9390 |
| 1.3619 | 2100 | 1.7835 | 3.5471 | 2.8356 | 0.7712 | 0.9350 |
| 1.3943 | 2150 | 1.826 | 3.5666 | 2.7893 | 0.7707 | 0.9340 |
| 1.4267 | 2200 | 1.9708 | 3.5630 | 2.7570 | 0.7741 | 0.9290 |
| 1.4591 | 2250 | 2.0131 | 3.5586 | 2.8239 | 0.7742 | 0.9360 |
| 1.4916 | 2300 | 1.856 | 3.5155 | 2.7658 | 0.7779 | 0.9410 |
| 1.5240 | 2350 | 1.9354 | 3.7959 | 2.7921 | 0.7622 | 0.9380 |
| 1.5564 | 2400 | 1.8961 | 3.5166 | 2.7456 | 0.7790 | 0.9430 |
| 1.5888 | 2450 | 1.6347 | 3.4784 | 2.7911 | 0.7800 | 0.9470 |
| 1.6213 | 2500 | 1.9176 | 3.4388 | 2.7349 | 0.7829 | 0.9440 |
| 1.6537 | 2550 | 2.0475 | 3.6968 | 2.7456 | 0.7754 | 0.9390 |
| 1.6861 | 2600 | 1.7946 | 3.4758 | 2.7046 | 0.7848 | 0.9470 |
| 1.7185 | 2650 | 1.9581 | 3.3828 | 2.7022 | 0.7867 | 0.9430 |
| 1.7510 | 2700 | 1.8475 | 3.3631 | 2.6706 | 0.7903 | 0.9470 |
| 1.7834 | 2750 | 1.836 | 3.5622 | 2.6512 | 0.7857 | 0.9450 |
| 1.8158 | 2800 | 2.051 | 3.3523 | 2.6542 | 0.7926 | 0.9390 |
| 1.8482 | 2850 | 1.829 | 3.3676 | 2.6730 | 0.7925 | 0.9390 |
| 1.8807 | 2900 | 1.7557 | 3.3632 | 2.6536 | 0.7954 | 0.9470 |
| 1.9131 | 2950 | 1.7725 | 3.3448 | 2.6437 | 0.7946 | 0.9470 |
| 1.9455 | 3000 | 1.7373 | 3.2736 | 2.6562 | 0.7987 | 0.9440 |
| 1.9780 | 3050 | 1.886 | 3.3404 | 2.6456 | 0.7958 | 0.9450 |
| 2.0104 | 3100 | 1.7217 | 3.2570 | 2.6893 | 0.7988 | 0.9400 |
| 2.0428 | 3150 | 1.6235 | 3.2331 | 2.6132 | 0.8004 | 0.9430 |
| 2.0752 | 3200 | 1.6678 | 3.2466 | 2.5904 | 0.8030 | 0.9470 |
| 2.1077 | 3250 | 1.6784 | 3.2339 | 2.5956 | 0.8008 | 0.9480 |
| 2.1401 | 3300 | 1.8422 | 3.2286 | 2.5997 | 0.8039 | 0.9480 |
| 2.1725 | 3350 | 1.4859 | 3.2163 | 2.5924 | 0.8049 | 0.9470 |
| 2.2049 | 3400 | 1.6165 | 3.3246 | 2.6167 | 0.7989 | 0.9440 |
| 2.2374 | 3450 | 1.65 | 3.2184 | 2.5864 | 0.8039 | 0.9460 |
| 2.2698 | 3500 | 1.5071 | 3.2274 | 2.5788 | 0.8019 | 0.9460 |
| 2.3022 | 3550 | 1.5238 | 3.2032 | 2.5608 | 0.8075 | 0.9480 |
| 2.3346 | 3600 | 1.568 | 3.2409 | 2.5649 | 0.8081 | 0.9470 |
| 2.3671 | 3650 | 1.4644 | 3.1937 | 2.5841 | 0.8079 | 0.9430 |
| 2.3995 | 3700 | 1.5782 | 3.2033 | 2.5909 | 0.8065 | 0.9450 |
| 2.4319 | 3750 | 1.6976 | 3.1905 | 2.5690 | 0.8073 | 0.9470 |
| 2.4643 | 3800 | 1.4682 | 3.2078 | 2.5610 | 0.8052 | 0.9490 |
| 2.4968 | 3850 | 1.7414 | 3.1822 | 2.5650 | 0.8072 | 0.9500 |
| 2.5292 | 3900 | 1.654 | 3.1890 | 2.5566 | 0.8110 | 0.9490 |
| 2.5616 | 3950 | 1.5187 | 3.1843 | 2.5508 | 0.8090 | 0.9470 |
| 2.5940 | 4000 | 1.4893 | 3.1855 | 2.5527 | 0.8067 | 0.9470 |
| 2.6265 | 4050 | 1.6716 | 3.1520 | 2.5432 | 0.8093 | 0.9480 |
| 2.6589 | 4100 | 1.4914 | 3.1868 | 2.5466 | 0.8099 | 0.9500 |
| 2.6913 | 4150 | 1.6231 | 3.1702 | 2.5235 | 0.8112 | 0.9500 |
| 2.7237 | 4200 | 1.6058 | 3.1561 | 2.5171 | 0.8096 | 0.9520 |
| 2.7562 | 4250 | 1.5753 | 3.1660 | 2.5068 | 0.8111 | 0.9530 |
| 2.7886 | 4300 | 1.4654 | 3.1507 | 2.5156 | 0.8138 | 0.9510 |
| 2.8210 | 4350 | 1.5901 | 3.1960 | 2.4917 | 0.8115 | 0.9540 |
| 2.8534 | 4400 | 1.5034 | 3.1491 | 2.4960 | 0.8116 | 0.9550 |
| 2.8859 | 4450 | 1.4088 | 3.1505 | 2.5086 | 0.8133 | 0.9530 |
| 2.9183 | 4500 | 1.5527 | 3.1671 | 2.5154 | 0.8112 | 0.9540 |
| 2.9507 | 4550 | 1.5344 | 3.1329 | 2.5016 | 0.8141 | 0.9530 |
| 2.9831 | 4600 | 1.4156 | 3.1439 | 2.4858 | 0.8146 | 0.9550 |
| 3.0156 | 4650 | 1.8602 | 3.1056 | 2.4799 | 0.8163 | 0.9550 |
| 3.0480 | 4700 | 1.4472 | 3.1387 | 2.4539 | 0.8126 | 0.9540 |
| 3.0804 | 4750 | 1.3582 | 3.1220 | 2.4676 | 0.8159 | 0.9530 |
| 3.1128 | 4800 | 1.5408 | 3.1309 | 2.4722 | 0.8142 | 0.9540 |
| 3.1453 | 4850 | 1.3755 | 3.1227 | 2.4624 | 0.8171 | 0.9530 |
| 3.1777 | 4900 | 1.4571 | 3.1284 | 2.4410 | 0.8162 | 0.9560 |
| 3.2101 | 4950 | 1.5657 | 3.0882 | 2.4486 | 0.8167 | 0.9550 |
| 3.2425 | 5000 | 1.5325 | 3.0980 | 2.4339 | 0.8178 | 0.9540 |
| 3.2750 | 5050 | 1.4671 | 3.0961 | 2.4625 | 0.8169 | 0.9550 |
| 3.3074 | 5100 | 1.4808 | 3.1176 | 2.4578 | 0.8180 | 0.9550 |
| 3.3398 | 5150 | 1.4172 | 3.1338 | 2.4515 | 0.8168 | 0.9550 |
| 3.3722 | 5200 | 1.4953 | 3.1047 | 2.4425 | 0.8174 | 0.9540 |
| 3.4047 | 5250 | 1.6419 | 3.1081 | 2.4317 | 0.8180 | 0.9540 |
| 3.4371 | 5300 | 1.5425 | 3.0910 | 2.4481 | 0.8210 | 0.9560 |
| 3.4695 | 5350 | 1.5598 | 3.1049 | 2.4365 | 0.8198 | 0.9560 |
| 3.5019 | 5400 | 1.4086 | 3.1036 | 2.4352 | 0.8198 | 0.9550 |
| 3.5344 | 5450 | 1.6057 | 3.1076 | 2.4269 | 0.8197 | 0.9560 |
| 3.5668 | 5500 | 1.6735 | 3.0792 | 2.4291 | 0.8200 | 0.9550 |
| 3.5992 | 5550 | 1.401 | 3.0959 | 2.4364 | 0.8211 | 0.9550 |
| 3.6316 | 5600 | 1.2475 | 3.0909 | 2.4324 | 0.8202 | 0.9570 |
| 3.6641 | 5650 | 1.2495 | 3.0686 | 2.4148 | 0.8210 | 0.9550 |
| 3.6965 | 5700 | 1.4457 | 3.0837 | 2.4123 | 0.8197 | 0.9570 |
| 3.7289 | 5750 | 1.5794 | 3.0877 | 2.4171 | 0.8191 | 0.9560 |
| 3.7613 | 5800 | 1.5696 | 3.0936 | 2.4153 | 0.8186 | 0.9560 |
| 3.7938 | 5850 | 1.5947 | 3.0778 | 2.4173 | 0.8190 | 0.9560 |
| 3.8262 | 5900 | 1.4517 | 3.0760 | 2.4242 | 0.8202 | 0.9560 |
| 3.8586 | 5950 | 1.553 | 3.0897 | 2.4222 | 0.8188 | 0.9580 |
| 3.8911 | 6000 | 1.2109 | 3.0683 | 2.4233 | 0.8211 | 0.9550 |
| 3.9235 | 6050 | 1.4384 | 3.0756 | 2.4221 | 0.8208 | 0.9560 |
| 3.9559 | 6100 | 1.4945 | 3.0755 | 2.4179 | 0.8202 | 0.9560 |
| 3.9883 | 6150 | 1.4597 | 3.0686 | 2.4183 | 0.8204 | 0.9560 |
</details>
### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 5.0.0
- Transformers: 4.55.0.dev0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.9.0
- Datasets: 2.19.1
- Tokenizers: 0.21.4
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |