SentenceTransformer based on Qwen/Qwen3-Embedding-0.6B
This is a sentence-transformers model finetuned from Qwen/Qwen3-Embedding-0.6B on the cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation and gene_description datasets. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Qwen/Qwen3-Embedding-0.6B
- Maximum Sequence Length: 32768 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Datasets:
- Language: code
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): MMContextEncoder(
(text_encoder): Qwen3Model(
(embed_tokens): Embedding(151669, 1024)
(layers): ModuleList(
(0-27): 28 x Qwen3DecoderLayer(
(self_attn): Qwen3Attention(
(q_proj): Linear(in_features=1024, out_features=2048, bias=False)
(k_proj): Linear(in_features=1024, out_features=1024, bias=False)
(v_proj): Linear(in_features=1024, out_features=1024, bias=False)
(o_proj): Linear(in_features=2048, out_features=1024, bias=False)
(q_norm): Qwen3RMSNorm((128,), eps=1e-06)
(k_norm): Qwen3RMSNorm((128,), eps=1e-06)
)
(mlp): Qwen3MLP(
(gate_proj): Linear(in_features=1024, out_features=3072, bias=False)
(up_proj): Linear(in_features=1024, out_features=3072, bias=False)
(down_proj): Linear(in_features=3072, out_features=1024, bias=False)
(act_fn): SiLU()
)
(input_layernorm): Qwen3RMSNorm((1024,), eps=1e-06)
(post_attention_layernorm): Qwen3RMSNorm((1024,), eps=1e-06)
)
)
(norm): Qwen3RMSNorm((1024,), eps=1e-06)
(rotary_emb): Qwen3RotaryEmbedding()
)
(pooling): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("jo-mengr/mmcontext-qwen-scvi_fm")
# Run inference
sentences = [
'MALAT1 DCN MGP APOD GSN LAMA2 CST3 SPARCL1 IGFBP7 TIMP1 VIM EEF1A1 ITM2B FBLN1 C3 IFITM3 FBN1 FTH1 TPT1 ABCA8 C1S TXNIP FTL TIMP3 FN1 CD63 RBMS3 ABCA6 ZBTB20 CEBPD NEAT1 CFH VCAN PTN PTGDS CD81 SERF2 COL6A1 COL6A2 ABI3BP ABCA10 EBF1 COL1A2 PRKG1 S100A6 MGST1 TMSB10 TIMP2 CELF2 LAPTM4A RORA ACTB LTBP4 MYL6 LGALS1 DDX5 SPTBN1 EFEMP1 BICC1 LRP1 H3-3B SCN7A IGFBP4 FAU',
'This measurement was conducted with 10x multiome. Fibroblast cell sample taken from the right ventricle of a European female donor in her fifth decade, who is a DCD donor. The sample is in nucleus form.',
"This measurement was conducted with 10x 3' v3. CD4+T naive lymphocyte cells derived from the right cardiac atrium of a European male in his sixties.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.6280, 0.0951],
# [0.6280, 1.0000, 0.2002],
# [0.0951, 0.2002, 1.0000]])
Evaluation
Metrics
Triplet
- Datasets:
cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation_cell_sentence_2
andgene_description
- Evaluated with
TripletEvaluator
Metric | cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation_cell_sentence_2 | gene_description |
---|---|---|
cosine_accuracy | 0.8204 | 0.956 |
Training Details
Training Datasets
cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation
- Dataset: cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation at d518eb2
- Size: 81,143 training samples
- Columns:
anchor
,positive
,negative_1
, andnegative_2
- Approximate statistics based on the first 1000 samples:
anchor positive negative_1 negative_2 type string string string string details - min: 356 characters
- mean: 385.24 characters
- max: 450 characters
- min: 92 characters
- mean: 216.13 characters
- max: 900 characters
- min: 103 characters
- mean: 212.72 characters
- max: 1186 characters
- min: 353 characters
- mean: 384.82 characters
- max: 433 characters
- Samples:
anchor positive negative_1 negative_2 TMSB4X TMSB10 ACTB MALAT1 GNLY NKG7 IFITM2 LGALS1 GZMA EEF1A1 PFN1 HMGB2 FTH1 PTMA HSP90AA1 GZMB ARHGDIB HNRNPA2B1 PLAAT4 FAU CMC1 VIM MYL12A CBX3 ATP5F1E HCST IFI44L KLRF1 H3-3A COX6C ARL6IP1 CFL1 ISG15 HMGB1 S100A4 ATP5MF RORA MYL6 CORO1A OAZ1 KLRB1 ID2 HMGN3 CCNI RBM39 CAP1 SERF2 ELOC FCER1G S100A9 IFI16 YWHAZ EIF1 CALR HMGN2 SKAP2 SLC25A5 ZZZ3 YBX1 NUCB2 CDC42 GSTP1 FTL ATP5F1D
This measurement was conducted with 10x 3' v2. A proliferating lymphocyte cell sample, obtained from a 34-year-old female Asian individual, derived from peripheral blood mononuclear cells.
This measurement was conducted with 10x 3' v2. Sample is a CD8-positive, alpha-beta T cell derived from a 31-year-old Asian female's peripheral blood mononuclear cells.
MALAT1 TMSB4X EEF1A1 TMSB10 FAU TPT1 PTMA EIF1 UBA52 ACTB FTH1 RACK1 FTL H3-3B JUNB ATP5F1E BTG1 CD52 NACA MYL12A PFN1 COX7C COX4I1 SERF2 UQCRB TOMM7 IL32 YBX1 PABPC1 MYL6 EIF3E OAZ1 NOP53 ARHGDIB LDHB HCST SARAF ITM2B ATP6V1G1 SRP14 UBC H3-3A COX6C HINT1 UBB COMMD6 S100A4 S100A6 CALM1 VIM CYBA ENO1 HSP90AA1 FXYD5 HSP90AB1 CIRBP SRSF5 NFKBIA CORO1A LEPROTL1 TLE5 CHCHD2 DDX5 CD69
EEF1A1 MALAT1 FTH1 JUNB TPT1 FOS TMSB10 BTG1 TMSB4X ZFP36L2 NACA PABPC1 ACTB FAU VIM H3-3B EIF1 ZFP36 SARAF PTMA IL7R JUN RACK1 EEF2 UBA52 GAPDH FTL FXYD5 DUSP1 S100A4 CD69 CXCR4 UBC TSC22D3 CFL1 KLF6 ARHGDIB KLF2 BTG2 CITED2 IER2 TUBB4B CD3E EEF1G SLC2A3 NFKBIA PFN1 SRGN SNX9 COX4I1 DNAJB1 SERF2 CD8A PCBP2 IL32 BIRC3 SMAP2 FUS GADD45B MYL12A OAZ1 ATP5F1E TUBA4A PNRC1
This measurement was conducted with 10x 5' v1. Sample is a cell from the omentum tissue, specifically an effector memory CD4-positive, alpha-beta T cell, from a female in her sixth decade.
This measurement was conducted with 10x 5' v1. Sample is a CD4-positive helper T cell, specifically Trm_Th1/Th17 subset, derived from the duodenum tissue of a male individual in his sixth decade.
MALAT1 TPT1 EEF1A1 VIM JUND TMSB4X PTMA FTH1 CRIP1 ANXA1 EIF1 UBC H3-3B ACTB SRGN FTL FAU KLF6 IL7R CALM1 UBA52 BTG1 SARAF IL32 TMSB10 PABPC1 HSP90AB1 DDX5 GAPDH TAGLN2 NACA CD44 HSPA5 RORA HSP90AA1 KLRB1 TNFAIP3 ATP5F1E PNRC1 ZFP36L2 H3-3A UBB FOS RACK1 FYN FAM107B GNAS EZR MYL6 CREM NFKBIA PFN1 ARHGDIB SRSF7 CD2 CCNI HNRNPA2B1 COX7C ITM2B SERF2 SH3BGRL3 TSC22D3 LMNA YWHAZ
MALAT1 GRIK1 SYT1 PCDH9 RORA NRG1 CADPS ZFPM2 LRRC4C LINGO2 RALYL PTPRD SPHKAP CNTNAP5 SLC8A1 CCSER1 HDAC9 CELF2 R3HDM1 CNTN4 RBMS3 PCDH7 GALNT13 UNC5D ROBO1 SYNPR SNAP25 GPM6A ANK3 FRMPD4 CHRM2 RYR2 KHDRBS2 CADM1 CACNA1D RGS6 PDE4D DOCK4 UNC13C CDH18 FAT3 MEG3 NR2F2-AS1 HMCN1 GULP1 CAMK2D ZEB1 SYN2 DYNC1I1 OXR1 DPP10 OSBPL6 FRAS1 PPP3CA ZNF385D ZMAT4 PCBP3 HS6ST3 ERC2 PLEKHA5 CDK14 MAP2 NCOA1 ATP8A2
This measurement was conducted with 10x 3' v3. Neuron cell type from a 29-year-old male, specifically from the thalamic complex, specifically the thalamus (THM) - posterior nuclear complex of thalamus (PoN) - medial geniculate nuclei (MG).
This measurement was conducted with 10x 3' v3. Astrocyte cell type from the thalamic complex, specifically from the thalamus (THM) - posterior nuclear complex of thalamus (PoN) - medial geniculate nuclei (MG) region, of a 42-year-old male.
MALAT1 PCDH9 PLP1 MBP ST18 QKI PDE4B RNF220 PTPRD SEPTIN7 TTLL7 NCKAP5 GPM6B PIP4K2A MOBP SLC44A1 PTGDS PLCL1 MAP7 ELMO1 SIK3 FTH1 ZBTB20 MAN2A1 TMEM165 DOCK10 TCF12 EDIL3 ZEB2 DPYD MAP4K4 PHLPP1 TF GAB1 TRIM2 FRMD4B DNAJC6 MARCHF1 ANK3 DST AGAP1 TMEM144 NEAT1 PLEKHH1 DLG1 CRYAB ERBIN RTN4 SPP1 ATP8A1 DOCK4 SLAIN1 APP DOCK5 APBB2 SAMD12 SHTN1 ZNF536 ZFYVE16 ARAP2 LIMCH1 HIPK2 BCAS1 FAM107B
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
gene_description
- Dataset: gene_description at dd22363
- Size: 116,208 training samples
- Columns:
anchor
,positive
, andnegative_1
- Approximate statistics based on the first 1000 samples:
anchor positive negative_1 type string string string details - min: 3 characters
- mean: 5.88 characters
- max: 12 characters
- min: 16 characters
- mean: 367.09 characters
- max: 1375 characters
- min: 13 characters
- mean: 167.33 characters
- max: 1375 characters
- Samples:
anchor positive negative_1 A1BG
The protein encoded by this gene is a plasma glycoprotein of unknown function. The protein shows sequence similarity to the variable regions of some immunoglobulin supergene family member proteins. [provided by RefSeq, Jul 2008]
A1BG antisense RNA 1
A1BG
The protein encoded by this gene is a plasma glycoprotein of unknown function. The protein shows sequence similarity to the variable regions of some immunoglobulin supergene family member proteins. [provided by RefSeq, Jul 2008]
G antigen 12D
A1BG
The protein encoded by this gene is a plasma glycoprotein of unknown function. The protein shows sequence similarity to the variable regions of some immunoglobulin supergene family member proteins. [provided by RefSeq, Jul 2008]
G antigen 12B
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Datasets
cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation
- Dataset: cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation at d518eb2
- Size: 9,011 evaluation samples
- Columns:
anchor
,positive
,negative_1
, andnegative_2
- Approximate statistics based on the first 1000 samples:
anchor positive negative_1 negative_2 type string string string string details - min: 347 characters
- mean: 386.7 characters
- max: 437 characters
- min: 99 characters
- mean: 209.99 characters
- max: 941 characters
- min: 101 characters
- mean: 208.8 characters
- max: 728 characters
- min: 356 characters
- mean: 386.56 characters
- max: 434 characters
- Samples:
anchor positive negative_1 negative_2 MALAT1 EEF1A1 FTH1 TMSB4X ACTB FTL RTN4 ATP6V0B TPT1 FAU S100A6 NDUFA4 ATP5F1E COX7C ITM2B IGFBP7 EIF1 C12orf75 CD9 COX7B SERF2 ATP1B1 COX8A TXNIP NDUFB2 MYL6 PPDPF COX6B1 UQCR11 APOE COX4I1 CALM2 UQCRB S100A11 UQCRQ COX6C ATP5MG BSG ATP6AP2 UQCR10 PTMA NACA UBL5 UBA52 TMSB10 ADGRF5 HSP90AA1 GSTP1 ATP5F1D CHCHD2 GAPDH COX7A2 SKP1 HSPE1 PRDX1 CYSTM1 LGALS3 CD63 ATP5MJ CKB NDUFS5 ATP5ME UBB MAL
This measurement was conducted with 10x 3' v3. Cell sample from the cortex of kidney, taken from a 43-year-old male of European ethnicity with a reported history of kidney cancer. The cell type is identified as a kidney collecting duct intercalated cell.
This measurement was conducted with 10x 3' v3. Cell sample from the cortex of kidney, taken from a 72-year-old male of European ethnicity, identified as a kidney collecting duct intercalated cell, and preserved through cryopreservation.
MALAT1 TMSB4X TMSB10 ACTB TXNIP EEF1A1 TPT1 PFN1 BTG1 FAU PTMA S100A4 ATP5F1E EIF1 FTL CFL1 CYBA MYL12A SRGN SERF2 SH3BGRL3 CALM1 TYROBP MYL6 ZFP36 KLRD1 UBB NACA S100A6 UBA52 HSP90AA1 H3-3B LCP1 FTH1 DDIT4 FOS PPIA CD247 RACK1 TMA7 CORO1A OAZ1 TLE5 ARPC3 GAPDH KLF2 UBC ZFP36L2 TSC22D3 ITGB2 ARPC2 ATP5MG HOPX IFITM2 HMGB1 OST4 EEF1G PRDM1 CDC42 GSTP1 NDUFB2 CIRBP LGALS1 CHCHD2
MALAT1 KCND2 NRXN1 CDH18 NRXN3 ZNF385D CADM2 RALYL NKAIN2 CADPS2 RIMS1 FSTL5 GRID2 TRPM3 CHN2 DPP6 JMJD1C RORA PDE1A UNC13C TIAM1 NRG1 SNAP25 ZFPM2 CALN1 LSAMP CNTN1 ABLIM1 SYNE1 ANK3 CA10 NFIA ZBTB20 NTM CADM1 OPCML RELN DNM3 NEBL ERC1 SCN2A PPP3CA CACNA1A GALNT13 LRRC4C GPM6A RABGAP1L RIT2 CAMK4 GRIA4 PTPRD RBFOX3 MCTP1 LHFPL6 PCLO MEG3 PDE10A NOVA1 RTN1 ZNF385B CNTN4 GABRB2 SPOCK1 OXR1
This measurement was conducted with 10x 3' v3. Neuron cell type from a 29-year-old male cerebellum, specifically from the Cerebellar Vermis - CBV region, with European self-reported ethnicity, analyzed at the nucleus level.
This measurement was conducted with 10x 3' v3. Sample is an oligodendrocyte precursor cell taken from the cerebellum tissue of a 42-year-old human male, specifically from the Cerebellum (CB) - Cerebellar Vermis - CBV dissection.
MALAT1 NRXN3 SNTG1 UNC5C GRIA4 NRG1 RORA INPP4B CLSTN2 NKAIN2 FRMD4A DPP6 GRID2 NRXN1 LSAMP JMJD1C HS6ST3 NXPH1 MIR99AHG LRRC4C NTM CCNH NFIA ZFPM2 AFF3 OPCML PTPRT CADM2 ZBTB20 OLFM3 SLC22A3 CNTNAP5 CACNA2D3 CNTN4 KCND2 ADARB2 XKR4 GPM6A IL1RAPL1 ALK ANKRD36C UBE2E2 SYN3 GARNL3 PTPRG DAB1 TCF4 LINC00461 PRANCR GRIN2B TNRC6B MAPK10 NOVA1 NFIB ANK3 KCNMA1 KCNQ5 SPON1 TRIM9 VWA8 GDAP1 GABRG2 AHI1 ATP1B1
EEF1A1 ACTB GAPDH HMGN2 PTMA SERF2 TMSB4X CD74 PABPC1 FTH1 TMSB10 FAU PFN1 HMGN1 OAZ1 HMGB1 TPT1 PPIA NACA BTF3 MALAT1 MYL6 ATP5MG CFL1 RACK1 ODC1 ATP5F1E TMA7 SLC25A5 ELOB ARPC3 NPM1 COX7C ANP32B C4orf3 EIF1 PCBP2 KLF6 LAPTM5 COX8A RHOA HSPA8 H3-3B PTP4A2 UBA52 OST4 CIRBP LGALS1 EIF3L STMN1 PPDPF COX4I1 RAN EIF3F PPP1CC COMMD6 NDUFA4 YBX1 PEBP1 COTL1 COX7A2 HSPE1 CCNI TRIR
This measurement was conducted with 10x 5' v1. Cell sample from the tonsil of a 9-year-old female with recurrent tonsillitis, characterized as a centroblast B cell with IGLC2, IGLV7-43, IGLJ3 immunoglobulin genes expressed.
This measurement was conducted with 10x 5' v1. Germinal center B cell derived from the tonsil tissue of a 3-year-old male with recurrent tonsillitis.
CD74 MALAT1 EEF1A1 SSR4 TPT1 UBC EEF2 SAT1 RACK1 SEC11C ATP5MG FAU TSC22D3 PPIB XBP1 FTL GAPDH HLA-DRB5 HERPUD1 RGS2 HSPA8 TMSB4X HSP90B1 EIF1 PTMA SERP1 SERF2 NACA SEC61B GSTP1 UBA52 HSPA5 BTF3 LAPTM5 HSPE1 H3-3B ATP5F1A SEC61G CD38 EDF1 FTH1 IL16 NPM1 OST4 CIRBP EIF3E OAZ1 CYTIP PCBP2 MYDGF COX6B1 ZFP36 CSDE1 PABPC1 REXO2 KDELR1 PFN1 PTP4A1 TMBIM6 H1-10 PSAP UBE2J1 VIM MYL6
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
gene_description
- Dataset: gene_description at dd22363
- Size: 1,000 evaluation samples
- Columns:
anchor
,positive
, andnegative_1
- Approximate statistics based on the first 1000 samples:
anchor positive negative_1 type string string string details - min: 3 characters
- mean: 5.88 characters
- max: 12 characters
- min: 16 characters
- mean: 367.09 characters
- max: 1375 characters
- min: 13 characters
- mean: 167.33 characters
- max: 1375 characters
- Samples:
anchor positive negative_1 A1BG
The protein encoded by this gene is a plasma glycoprotein of unknown function. The protein shows sequence similarity to the variable regions of some immunoglobulin supergene family member proteins. [provided by RefSeq, Jul 2008]
A1BG antisense RNA 1
A1BG
The protein encoded by this gene is a plasma glycoprotein of unknown function. The protein shows sequence similarity to the variable regions of some immunoglobulin supergene family member proteins. [provided by RefSeq, Jul 2008]
G antigen 12D
A1BG
The protein encoded by this gene is a plasma glycoprotein of unknown function. The protein shows sequence similarity to the variable regions of some immunoglobulin supergene family member proteins. [provided by RefSeq, Jul 2008]
G antigen 12B
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 128per_device_eval_batch_size
: 128learning_rate
: 2e-05num_train_epochs
: 4warmup_ratio
: 0.1bf16
: Truegradient_checkpointing
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Truegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Click to expand
Epoch | Step | Training Loss | cellxgene pseudo bulk 100k multiplets natural language annotation loss | gene description loss | cellxgene_pseudo_bulk_100k_multiplets_natural_language_annotation_cell_sentence_2_cosine_accuracy | gene_description_cosine_accuracy |
---|---|---|---|---|---|---|
0.0324 | 50 | 9.3314 | 12.6479 | 6.6616 | 0.5052 | 0.2570 |
0.0649 | 100 | 7.9528 | 10.8869 | 6.0596 | 0.5078 | 0.2660 |
0.0973 | 150 | 7.0084 | 7.0423 | 5.4704 | 0.5075 | 0.3020 |
0.1297 | 200 | 5.6925 | 6.0263 | 5.2950 | 0.5024 | 0.5200 |
0.1621 | 250 | 5.381 | 5.8141 | 4.7323 | 0.5367 | 0.6520 |
0.1946 | 300 | 4.3736 | 5.4432 | 4.3565 | 0.5518 | 0.7060 |
0.2270 | 350 | 3.8184 | 5.1966 | 4.1283 | 0.5836 | 0.7690 |
0.2594 | 400 | 3.6181 | 5.0588 | 3.9594 | 0.6064 | 0.7650 |
0.2918 | 450 | 3.1076 | 4.9406 | 3.7824 | 0.6218 | 0.8030 |
0.3243 | 500 | 3.127 | 4.8376 | 3.6785 | 0.6369 | 0.8230 |
0.3567 | 550 | 3.1702 | 4.8230 | 3.6029 | 0.6532 | 0.8410 |
0.3891 | 600 | 2.992 | 5.1160 | 3.6091 | 0.6240 | 0.8310 |
0.4215 | 650 | 2.606 | 4.5652 | 3.5555 | 0.6679 | 0.8490 |
0.4540 | 700 | 2.9473 | 4.5831 | 3.5215 | 0.6846 | 0.8600 |
0.4864 | 750 | 2.369 | 4.4464 | 3.4824 | 0.6930 | 0.8800 |
0.5188 | 800 | 2.5923 | 4.4542 | 3.4372 | 0.6983 | 0.8820 |
0.5512 | 850 | 2.9167 | 4.4572 | 3.4915 | 0.6984 | 0.8730 |
0.5837 | 900 | 2.5716 | 4.2259 | 3.4390 | 0.7126 | 0.8630 |
0.6161 | 950 | 2.375 | 4.2200 | 3.4250 | 0.7143 | 0.8740 |
0.6485 | 1000 | 2.4105 | 4.2001 | 3.3524 | 0.7187 | 0.8890 |
0.6809 | 1050 | 2.4014 | 4.0744 | 3.2688 | 0.7243 | 0.8950 |
0.7134 | 1100 | 2.7474 | 4.1131 | 3.3046 | 0.7270 | 0.8850 |
0.7458 | 1150 | 2.1615 | 4.2206 | 3.2392 | 0.7202 | 0.8860 |
0.7782 | 1200 | 2.4409 | 4.4682 | 3.1664 | 0.7106 | 0.8870 |
0.8106 | 1250 | 2.5041 | 4.0881 | 3.1417 | 0.7277 | 0.9030 |
0.8431 | 1300 | 2.4221 | 3.8777 | 3.2302 | 0.7409 | 0.8940 |
0.8755 | 1350 | 2.189 | 3.8482 | 3.1316 | 0.7441 | 0.9050 |
0.9079 | 1400 | 2.3055 | 3.8571 | 3.1550 | 0.7451 | 0.9030 |
0.9403 | 1450 | 2.0945 | 3.8233 | 3.1269 | 0.7530 | 0.9020 |
0.9728 | 1500 | 2.0217 | 3.7722 | 3.0707 | 0.7527 | 0.9070 |
1.0052 | 1550 | 2.2443 | 3.8285 | 3.0799 | 0.7459 | 0.9190 |
1.0376 | 1600 | 1.9441 | 3.8292 | 3.0957 | 0.7470 | 0.9090 |
1.0700 | 1650 | 1.8771 | 3.6837 | 3.0190 | 0.7555 | 0.9290 |
1.1025 | 1700 | 1.9489 | 3.6946 | 3.0298 | 0.7570 | 0.9210 |
1.1349 | 1750 | 2.0622 | 3.7221 | 3.0001 | 0.7574 | 0.9140 |
1.1673 | 1800 | 1.7275 | 3.7806 | 2.9919 | 0.7530 | 0.9090 |
1.1997 | 1850 | 2.0068 | 3.6648 | 2.9490 | 0.7584 | 0.9230 |
1.2322 | 1900 | 1.9126 | 3.7416 | 2.9131 | 0.7603 | 0.9160 |
1.2646 | 1950 | 1.9513 | 3.5770 | 2.9362 | 0.7625 | 0.9230 |
1.2970 | 2000 | 1.8021 | 3.6660 | 2.8868 | 0.7670 | 0.9360 |
1.3294 | 2050 | 1.9685 | 3.7318 | 2.8669 | 0.7587 | 0.9390 |
1.3619 | 2100 | 1.7835 | 3.5471 | 2.8356 | 0.7712 | 0.9350 |
1.3943 | 2150 | 1.826 | 3.5666 | 2.7893 | 0.7707 | 0.9340 |
1.4267 | 2200 | 1.9708 | 3.5630 | 2.7570 | 0.7741 | 0.9290 |
1.4591 | 2250 | 2.0131 | 3.5586 | 2.8239 | 0.7742 | 0.9360 |
1.4916 | 2300 | 1.856 | 3.5155 | 2.7658 | 0.7779 | 0.9410 |
1.5240 | 2350 | 1.9354 | 3.7959 | 2.7921 | 0.7622 | 0.9380 |
1.5564 | 2400 | 1.8961 | 3.5166 | 2.7456 | 0.7790 | 0.9430 |
1.5888 | 2450 | 1.6347 | 3.4784 | 2.7911 | 0.7800 | 0.9470 |
1.6213 | 2500 | 1.9176 | 3.4388 | 2.7349 | 0.7829 | 0.9440 |
1.6537 | 2550 | 2.0475 | 3.6968 | 2.7456 | 0.7754 | 0.9390 |
1.6861 | 2600 | 1.7946 | 3.4758 | 2.7046 | 0.7848 | 0.9470 |
1.7185 | 2650 | 1.9581 | 3.3828 | 2.7022 | 0.7867 | 0.9430 |
1.7510 | 2700 | 1.8475 | 3.3631 | 2.6706 | 0.7903 | 0.9470 |
1.7834 | 2750 | 1.836 | 3.5622 | 2.6512 | 0.7857 | 0.9450 |
1.8158 | 2800 | 2.051 | 3.3523 | 2.6542 | 0.7926 | 0.9390 |
1.8482 | 2850 | 1.829 | 3.3676 | 2.6730 | 0.7925 | 0.9390 |
1.8807 | 2900 | 1.7557 | 3.3632 | 2.6536 | 0.7954 | 0.9470 |
1.9131 | 2950 | 1.7725 | 3.3448 | 2.6437 | 0.7946 | 0.9470 |
1.9455 | 3000 | 1.7373 | 3.2736 | 2.6562 | 0.7987 | 0.9440 |
1.9780 | 3050 | 1.886 | 3.3404 | 2.6456 | 0.7958 | 0.9450 |
2.0104 | 3100 | 1.7217 | 3.2570 | 2.6893 | 0.7988 | 0.9400 |
2.0428 | 3150 | 1.6235 | 3.2331 | 2.6132 | 0.8004 | 0.9430 |
2.0752 | 3200 | 1.6678 | 3.2466 | 2.5904 | 0.8030 | 0.9470 |
2.1077 | 3250 | 1.6784 | 3.2339 | 2.5956 | 0.8008 | 0.9480 |
2.1401 | 3300 | 1.8422 | 3.2286 | 2.5997 | 0.8039 | 0.9480 |
2.1725 | 3350 | 1.4859 | 3.2163 | 2.5924 | 0.8049 | 0.9470 |
2.2049 | 3400 | 1.6165 | 3.3246 | 2.6167 | 0.7989 | 0.9440 |
2.2374 | 3450 | 1.65 | 3.2184 | 2.5864 | 0.8039 | 0.9460 |
2.2698 | 3500 | 1.5071 | 3.2274 | 2.5788 | 0.8019 | 0.9460 |
2.3022 | 3550 | 1.5238 | 3.2032 | 2.5608 | 0.8075 | 0.9480 |
2.3346 | 3600 | 1.568 | 3.2409 | 2.5649 | 0.8081 | 0.9470 |
2.3671 | 3650 | 1.4644 | 3.1937 | 2.5841 | 0.8079 | 0.9430 |
2.3995 | 3700 | 1.5782 | 3.2033 | 2.5909 | 0.8065 | 0.9450 |
2.4319 | 3750 | 1.6976 | 3.1905 | 2.5690 | 0.8073 | 0.9470 |
2.4643 | 3800 | 1.4682 | 3.2078 | 2.5610 | 0.8052 | 0.9490 |
2.4968 | 3850 | 1.7414 | 3.1822 | 2.5650 | 0.8072 | 0.9500 |
2.5292 | 3900 | 1.654 | 3.1890 | 2.5566 | 0.8110 | 0.9490 |
2.5616 | 3950 | 1.5187 | 3.1843 | 2.5508 | 0.8090 | 0.9470 |
2.5940 | 4000 | 1.4893 | 3.1855 | 2.5527 | 0.8067 | 0.9470 |
2.6265 | 4050 | 1.6716 | 3.1520 | 2.5432 | 0.8093 | 0.9480 |
2.6589 | 4100 | 1.4914 | 3.1868 | 2.5466 | 0.8099 | 0.9500 |
2.6913 | 4150 | 1.6231 | 3.1702 | 2.5235 | 0.8112 | 0.9500 |
2.7237 | 4200 | 1.6058 | 3.1561 | 2.5171 | 0.8096 | 0.9520 |
2.7562 | 4250 | 1.5753 | 3.1660 | 2.5068 | 0.8111 | 0.9530 |
2.7886 | 4300 | 1.4654 | 3.1507 | 2.5156 | 0.8138 | 0.9510 |
2.8210 | 4350 | 1.5901 | 3.1960 | 2.4917 | 0.8115 | 0.9540 |
2.8534 | 4400 | 1.5034 | 3.1491 | 2.4960 | 0.8116 | 0.9550 |
2.8859 | 4450 | 1.4088 | 3.1505 | 2.5086 | 0.8133 | 0.9530 |
2.9183 | 4500 | 1.5527 | 3.1671 | 2.5154 | 0.8112 | 0.9540 |
2.9507 | 4550 | 1.5344 | 3.1329 | 2.5016 | 0.8141 | 0.9530 |
2.9831 | 4600 | 1.4156 | 3.1439 | 2.4858 | 0.8146 | 0.9550 |
3.0156 | 4650 | 1.8602 | 3.1056 | 2.4799 | 0.8163 | 0.9550 |
3.0480 | 4700 | 1.4472 | 3.1387 | 2.4539 | 0.8126 | 0.9540 |
3.0804 | 4750 | 1.3582 | 3.1220 | 2.4676 | 0.8159 | 0.9530 |
3.1128 | 4800 | 1.5408 | 3.1309 | 2.4722 | 0.8142 | 0.9540 |
3.1453 | 4850 | 1.3755 | 3.1227 | 2.4624 | 0.8171 | 0.9530 |
3.1777 | 4900 | 1.4571 | 3.1284 | 2.4410 | 0.8162 | 0.9560 |
3.2101 | 4950 | 1.5657 | 3.0882 | 2.4486 | 0.8167 | 0.9550 |
3.2425 | 5000 | 1.5325 | 3.0980 | 2.4339 | 0.8178 | 0.9540 |
3.2750 | 5050 | 1.4671 | 3.0961 | 2.4625 | 0.8169 | 0.9550 |
3.3074 | 5100 | 1.4808 | 3.1176 | 2.4578 | 0.8180 | 0.9550 |
3.3398 | 5150 | 1.4172 | 3.1338 | 2.4515 | 0.8168 | 0.9550 |
3.3722 | 5200 | 1.4953 | 3.1047 | 2.4425 | 0.8174 | 0.9540 |
3.4047 | 5250 | 1.6419 | 3.1081 | 2.4317 | 0.8180 | 0.9540 |
3.4371 | 5300 | 1.5425 | 3.0910 | 2.4481 | 0.8210 | 0.9560 |
3.4695 | 5350 | 1.5598 | 3.1049 | 2.4365 | 0.8198 | 0.9560 |
3.5019 | 5400 | 1.4086 | 3.1036 | 2.4352 | 0.8198 | 0.9550 |
3.5344 | 5450 | 1.6057 | 3.1076 | 2.4269 | 0.8197 | 0.9560 |
3.5668 | 5500 | 1.6735 | 3.0792 | 2.4291 | 0.8200 | 0.9550 |
3.5992 | 5550 | 1.401 | 3.0959 | 2.4364 | 0.8211 | 0.9550 |
3.6316 | 5600 | 1.2475 | 3.0909 | 2.4324 | 0.8202 | 0.9570 |
3.6641 | 5650 | 1.2495 | 3.0686 | 2.4148 | 0.8210 | 0.9550 |
3.6965 | 5700 | 1.4457 | 3.0837 | 2.4123 | 0.8197 | 0.9570 |
3.7289 | 5750 | 1.5794 | 3.0877 | 2.4171 | 0.8191 | 0.9560 |
3.7613 | 5800 | 1.5696 | 3.0936 | 2.4153 | 0.8186 | 0.9560 |
3.7938 | 5850 | 1.5947 | 3.0778 | 2.4173 | 0.8190 | 0.9560 |
3.8262 | 5900 | 1.4517 | 3.0760 | 2.4242 | 0.8202 | 0.9560 |
3.8586 | 5950 | 1.553 | 3.0897 | 2.4222 | 0.8188 | 0.9580 |
3.8911 | 6000 | 1.2109 | 3.0683 | 2.4233 | 0.8211 | 0.9550 |
3.9235 | 6050 | 1.4384 | 3.0756 | 2.4221 | 0.8208 | 0.9560 |
3.9559 | 6100 | 1.4945 | 3.0755 | 2.4179 | 0.8202 | 0.9560 |
3.9883 | 6150 | 1.4597 | 3.0686 | 2.4183 | 0.8204 | 0.9560 |
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 5.0.0
- Transformers: 4.55.0.dev0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.9.0
- Datasets: 2.19.1
- Tokenizers: 0.21.4
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for jo-mengr/mmcontext-qwen
Evaluation results
- Cosine Accuracy on cellxgene pseudo bulk 100k multiplets natural language annotation cell sentence 2self-reported0.820
- Cosine Accuracy on gene descriptionself-reported0.956