Remove code snippet, add base model
#2
by
nielsr
HF Staff
- opened
README.md
CHANGED
@@ -2,6 +2,8 @@
|
|
2 |
license: mit
|
3 |
pipeline_tag: image-segmentation
|
4 |
library_name: transformers
|
|
|
|
|
5 |
---
|
6 |
|
7 |
# MLLMSeg: Unlocking the Potential of MLLMs in Referring Expression Segmentation via a Light-weight Mask Decoder
|
@@ -33,111 +35,9 @@ pip install -r requirements.txt # Assuming requirements.txt from the cloned repo
|
|
33 |
pip install flash-attn==2.3.6 --no-build-isolation # Note: requires GPU to install
|
34 |
```
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
import numpy as np
|
40 |
-
import torch
|
41 |
-
import torchvision.transforms as T
|
42 |
-
from PIL import Image
|
43 |
-
from torchvision.transforms.functional import InterpolationMode
|
44 |
-
from transformers import AutoModel, AutoTokenizer
|
45 |
-
|
46 |
-
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
47 |
-
IMAGENET_STD = (0.229, 0.224, 0.225)
|
48 |
-
|
49 |
-
def build_transform(input_size):
|
50 |
-
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
|
51 |
-
transform = T.Compose([
|
52 |
-
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
53 |
-
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
|
54 |
-
T.ToTensor(),
|
55 |
-
T.Normalize(mean=MEAN, std=STD)
|
56 |
-
])
|
57 |
-
return transform
|
58 |
-
|
59 |
-
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
60 |
-
best_ratio_diff = float('inf')
|
61 |
-
best_ratio = (1, 1)
|
62 |
-
area = width * height
|
63 |
-
for ratio in target_ratios:
|
64 |
-
target_aspect_ratio = ratio[0] / ratio[1]
|
65 |
-
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
66 |
-
if ratio_diff < best_ratio_diff:
|
67 |
-
best_ratio_diff = ratio_diff
|
68 |
-
best_ratio = ratio
|
69 |
-
elif ratio_diff == best_ratio_diff:
|
70 |
-
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
71 |
-
best_ratio = ratio
|
72 |
-
return best_ratio
|
73 |
-
|
74 |
-
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
|
75 |
-
orig_width, orig_height = image.size
|
76 |
-
aspect_ratio = orig_width / orig_height
|
77 |
-
|
78 |
-
# calculate the existing image aspect ratio
|
79 |
-
target_ratios = set(
|
80 |
-
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
81 |
-
i * j <= max_num and i * j >= min_num)
|
82 |
-
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
83 |
-
|
84 |
-
# find the closest aspect ratio to the target
|
85 |
-
target_aspect_ratio = find_closest_aspect_ratio(
|
86 |
-
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
87 |
-
|
88 |
-
# calculate the target width and height
|
89 |
-
target_width = image_size * target_aspect_ratio[0]
|
90 |
-
target_height = image_size * target_aspect_ratio[1]
|
91 |
-
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
92 |
-
|
93 |
-
# resize the image
|
94 |
-
resized_img = image.resize((target_width, target_height))
|
95 |
-
processed_images = []
|
96 |
-
for i in range(blocks):
|
97 |
-
box = (
|
98 |
-
(i % (target_width // image_size)) * image_size,
|
99 |
-
(i // (target_width // image_size)) * image_size,
|
100 |
-
((i % (target_width // image_size)) + 1) * image_size,
|
101 |
-
((i // (target_width // image_size)) + 1) * image_size
|
102 |
-
)
|
103 |
-
# split the image
|
104 |
-
split_img = resized_img.crop(box)
|
105 |
-
processed_images.append(split_img)
|
106 |
-
assert len(processed_images) == blocks
|
107 |
-
if use_thumbnail and len(processed_images) != 1:
|
108 |
-
thumbnail_img = image.resize((image_size, image_size))
|
109 |
-
processed_images.append(thumbnail_img)
|
110 |
-
return processed_images
|
111 |
-
|
112 |
-
def load_image(image_file, input_size=448, max_num=12):
|
113 |
-
image = Image.open(image_file).convert('RGB')
|
114 |
-
transform = build_transform(input_size=input_size)
|
115 |
-
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
116 |
-
pixel_values = [transform(image) for image in images]
|
117 |
-
pixel_values = torch.stack(pixel_values)
|
118 |
-
return pixel_values
|
119 |
-
|
120 |
-
# Load the model and tokenizer
|
121 |
-
# Note: trust_remote_code=True is required for this model architecture
|
122 |
-
model_path = 'jcwang0602/MLLMSeg_InternVL2_5_1B_RES'
|
123 |
-
model = AutoModel.from_pretrained(
|
124 |
-
model_path,
|
125 |
-
torch_dtype=torch.bfloat16,
|
126 |
-
low_cpu_mem_usage=True,
|
127 |
-
trust_remote_code=True).eval().cuda()
|
128 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False)
|
129 |
-
|
130 |
-
# Example image (replace with your image path)
|
131 |
-
# You can find example images in the GitHub repository of MLLMSeg, e.g., in the 'examples/images' directory.
|
132 |
-
image_path = './path/to/your/image.png'
|
133 |
-
pixel_values = load_image(image_path, max_num=6).to(torch.bfloat16).cuda()
|
134 |
-
generation_config = dict(max_new_tokens=1024, do_sample=True)
|
135 |
-
|
136 |
-
# Example query for referring expression segmentation
|
137 |
-
question = "Please segment the person in the image." # Replace with your specific referring expression
|
138 |
-
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
|
139 |
-
print(f'User: {question}
|
140 |
-
Assistant: {response}')
|
141 |
|
142 |
# The 'response' will contain the segmentation mask coordinates in a specific format (normalized 0-1000).
|
143 |
# You will need to parse these coordinates and visualize the mask as per the paper's methodology or example scripts.
|
|
|
2 |
license: mit
|
3 |
pipeline_tag: image-segmentation
|
4 |
library_name: transformers
|
5 |
+
base_model:
|
6 |
+
- OpenGVLab/InternVL2_5-2B
|
7 |
---
|
8 |
|
9 |
# MLLMSeg: Unlocking the Potential of MLLMs in Referring Expression Segmentation via a Light-weight Mask Decoder
|
|
|
35 |
pip install flash-attn==2.3.6 --no-build-isolation # Note: requires GPU to install
|
36 |
```
|
37 |
|
38 |
+
## Usage
|
39 |
+
|
40 |
+
Refer to the Github README:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
# The 'response' will contain the segmentation mask coordinates in a specific format (normalized 0-1000).
|
43 |
# You will need to parse these coordinates and visualize the mask as per the paper's methodology or example scripts.
|