File size: 1,398 Bytes
0d89ca2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
license: mit
datasets:
- masoudnickparvar/brain-tumor-mri-dataset
metrics:
- accuracy
pipeline_tag: image-classification
library_name: keras
tags:
- cnn
- keras
- brain-tumor
- medical-imaging
- tensor-flow
- image-classification
language:
- en
---
Brain Tumor Detection CNN Model
This model was trained using a Convolutional Neural Network (CNN) to classify brain MRI images as either having a tumor or not. It uses Keras with TensorFlow backend and was trained on the publicly available [Brain Tumor MRI Dataset](https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset) from Kaggle.
Dataset
The dataset contains 3,762 T1-weighted contrast-enhanced MRI images, labeled as:
- **Yes** – Images with a brain tumor
- **No** – Images without a brain tumor
The data is balanced and preprocessed into two folders: `yes/` and `no/`.
Train Accuracy: ~98%
Validation Accuracy: ~96%
## 🧠 Model Architecture
- Type: CNN
- Framework: Keras (TensorFlow backend)
- Input shape: `(150, 150, 3)`
- Final Activation: `sigmoid`
- Loss: `binary_crossentropy`
- Optimizer: `Adam`
Example (simplified):
```python
model = Sequential([
Conv2D(32, (3,3), activation='relu', input_shape=(150, 150, 3)),
MaxPooling2D(2,2),
Conv2D(64, (3,3), activation='relu'),
MaxPooling2D(2,2),
Flatten(),
Dense(128, activation='relu'),
Dense(1, activation='sigmoid')
]) |