jawadskript commited on
Commit
0d89ca2
·
verified ·
1 Parent(s): 9df1c45

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -0
README.md ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - masoudnickparvar/brain-tumor-mri-dataset
5
+ metrics:
6
+ - accuracy
7
+ pipeline_tag: image-classification
8
+ library_name: keras
9
+ tags:
10
+ - cnn
11
+ - keras
12
+ - brain-tumor
13
+ - medical-imaging
14
+ - tensor-flow
15
+ - image-classification
16
+ language:
17
+ - en
18
+ ---
19
+
20
+ Brain Tumor Detection CNN Model
21
+
22
+ This model was trained using a Convolutional Neural Network (CNN) to classify brain MRI images as either having a tumor or not. It uses Keras with TensorFlow backend and was trained on the publicly available [Brain Tumor MRI Dataset](https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset) from Kaggle.
23
+ Dataset
24
+
25
+ The dataset contains 3,762 T1-weighted contrast-enhanced MRI images, labeled as:
26
+
27
+ - **Yes** – Images with a brain tumor
28
+ - **No** – Images without a brain tumor
29
+
30
+ The data is balanced and preprocessed into two folders: `yes/` and `no/`.
31
+
32
+ Train Accuracy: ~98%
33
+ Validation Accuracy: ~96%
34
+
35
+ ## 🧠 Model Architecture
36
+
37
+ - Type: CNN
38
+ - Framework: Keras (TensorFlow backend)
39
+ - Input shape: `(150, 150, 3)`
40
+ - Final Activation: `sigmoid`
41
+ - Loss: `binary_crossentropy`
42
+ - Optimizer: `Adam`
43
+
44
+ Example (simplified):
45
+
46
+ ```python
47
+ model = Sequential([
48
+ Conv2D(32, (3,3), activation='relu', input_shape=(150, 150, 3)),
49
+ MaxPooling2D(2,2),
50
+ Conv2D(64, (3,3), activation='relu'),
51
+ MaxPooling2D(2,2),
52
+ Flatten(),
53
+ Dense(128, activation='relu'),
54
+ Dense(1, activation='sigmoid')
55
+ ])