|  | --- | 
					
						
						|  | tags: | 
					
						
						|  | - mteb | 
					
						
						|  | - sentence-transformers | 
					
						
						|  | - transformers | 
					
						
						|  | model-index: | 
					
						
						|  | - name: multilingual-e5-large-instruct | 
					
						
						|  | results: | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_counterfactual | 
					
						
						|  | name: MTEB AmazonCounterfactualClassification (en) | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | revision: e8379541af4e31359cca9fbcf4b00f2671dba205 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 76.23880597014924 | 
					
						
						|  | - type: ap | 
					
						
						|  | value: 39.07351965022687 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 70.04836733862683 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_counterfactual | 
					
						
						|  | name: MTEB AmazonCounterfactualClassification (de) | 
					
						
						|  | config: de | 
					
						
						|  | split: test | 
					
						
						|  | revision: e8379541af4e31359cca9fbcf4b00f2671dba205 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 66.71306209850107 | 
					
						
						|  | - type: ap | 
					
						
						|  | value: 79.01499914759529 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 64.81951817560703 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_counterfactual | 
					
						
						|  | name: MTEB AmazonCounterfactualClassification (en-ext) | 
					
						
						|  | config: en-ext | 
					
						
						|  | split: test | 
					
						
						|  | revision: e8379541af4e31359cca9fbcf4b00f2671dba205 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 73.85307346326837 | 
					
						
						|  | - type: ap | 
					
						
						|  | value: 22.447519885878737 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 61.0162730745633 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_counterfactual | 
					
						
						|  | name: MTEB AmazonCounterfactualClassification (ja) | 
					
						
						|  | config: ja | 
					
						
						|  | split: test | 
					
						
						|  | revision: e8379541af4e31359cca9fbcf4b00f2671dba205 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 76.04925053533191 | 
					
						
						|  | - type: ap | 
					
						
						|  | value: 23.44983217128922 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 62.5723230907759 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_polarity | 
					
						
						|  | name: MTEB AmazonPolarityClassification | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: e2d317d38cd51312af73b3d32a06d1a08b442046 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 96.28742500000001 | 
					
						
						|  | - type: ap | 
					
						
						|  | value: 94.8449918887462 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 96.28680923610432 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_reviews_multi | 
					
						
						|  | name: MTEB AmazonReviewsClassification (en) | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | revision: 1399c76144fd37290681b995c656ef9b2e06e26d | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 56.716 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 55.76510398266401 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_reviews_multi | 
					
						
						|  | name: MTEB AmazonReviewsClassification (de) | 
					
						
						|  | config: de | 
					
						
						|  | split: test | 
					
						
						|  | revision: 1399c76144fd37290681b995c656ef9b2e06e26d | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 52.99999999999999 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 52.00829994765178 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_reviews_multi | 
					
						
						|  | name: MTEB AmazonReviewsClassification (es) | 
					
						
						|  | config: es | 
					
						
						|  | split: test | 
					
						
						|  | revision: 1399c76144fd37290681b995c656ef9b2e06e26d | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 48.806000000000004 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 48.082345914983634 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_reviews_multi | 
					
						
						|  | name: MTEB AmazonReviewsClassification (fr) | 
					
						
						|  | config: fr | 
					
						
						|  | split: test | 
					
						
						|  | revision: 1399c76144fd37290681b995c656ef9b2e06e26d | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 48.507999999999996 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 47.68752844642045 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_reviews_multi | 
					
						
						|  | name: MTEB AmazonReviewsClassification (ja) | 
					
						
						|  | config: ja | 
					
						
						|  | split: test | 
					
						
						|  | revision: 1399c76144fd37290681b995c656ef9b2e06e26d | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 47.709999999999994 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 47.05870376637181 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_reviews_multi | 
					
						
						|  | name: MTEB AmazonReviewsClassification (zh) | 
					
						
						|  | config: zh | 
					
						
						|  | split: test | 
					
						
						|  | revision: 1399c76144fd37290681b995c656ef9b2e06e26d | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 44.662000000000006 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 43.42371965372771 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: arguana | 
					
						
						|  | name: MTEB ArguAna | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 31.721 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 49.221 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 49.884 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 49.888 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 44.31 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 47.276 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 32.432 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 49.5 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 50.163000000000004 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 50.166 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 44.618 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 47.541 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 31.721 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 58.384 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 61.111000000000004 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 61.187999999999995 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 48.386 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 53.708999999999996 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 31.721 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 8.741 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 0.991 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.1 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 20.057 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 14.609 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 31.721 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 87.411 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 99.075 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 99.644 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 60.171 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 73.044 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/arxiv-clustering-p2p | 
					
						
						|  | name: MTEB ArxivClusteringP2P | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 46.40419580759799 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/arxiv-clustering-s2s | 
					
						
						|  | name: MTEB ArxivClusteringS2S | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 40.48593255007969 | 
					
						
						|  | - task: | 
					
						
						|  | type: Reranking | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/askubuntudupquestions-reranking | 
					
						
						|  | name: MTEB AskUbuntuDupQuestions | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map | 
					
						
						|  | value: 63.889179122289995 | 
					
						
						|  | - type: mrr | 
					
						
						|  | value: 77.61146286769556 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/biosses-sts | 
					
						
						|  | name: MTEB BIOSSES | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: d3fb88f8f02e40887cd149695127462bbcf29b4a | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 88.15075203727929 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 86.9622224570873 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 86.70473853624121 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 86.9622224570873 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 86.21089380980065 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 86.75318154937008 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/bucc-bitext-mining | 
					
						
						|  | name: MTEB BUCC (de-en) | 
					
						
						|  | config: de-en | 
					
						
						|  | split: test | 
					
						
						|  | revision: d51519689f32196a32af33b075a01d0e7c51e252 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 99.65553235908142 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 99.60681976339595 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 99.58246346555325 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 99.65553235908142 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/bucc-bitext-mining | 
					
						
						|  | name: MTEB BUCC (fr-en) | 
					
						
						|  | config: fr-en | 
					
						
						|  | split: test | 
					
						
						|  | revision: d51519689f32196a32af33b075a01d0e7c51e252 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 99.26260180497468 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 99.14520507740848 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 99.08650671362535 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 99.26260180497468 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/bucc-bitext-mining | 
					
						
						|  | name: MTEB BUCC (ru-en) | 
					
						
						|  | config: ru-en | 
					
						
						|  | split: test | 
					
						
						|  | revision: d51519689f32196a32af33b075a01d0e7c51e252 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 98.07412538967787 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 97.86629719431936 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 97.76238309664012 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 98.07412538967787 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/bucc-bitext-mining | 
					
						
						|  | name: MTEB BUCC (zh-en) | 
					
						
						|  | config: zh-en | 
					
						
						|  | split: test | 
					
						
						|  | revision: d51519689f32196a32af33b075a01d0e7c51e252 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 99.42074776197998 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 99.38564156573635 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 99.36808846761454 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 99.42074776197998 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/banking77 | 
					
						
						|  | name: MTEB Banking77Classification | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 85.73376623376623 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 85.68480707214599 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/biorxiv-clustering-p2p | 
					
						
						|  | name: MTEB BiorxivClusteringP2P | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 40.935218072113855 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/biorxiv-clustering-s2s | 
					
						
						|  | name: MTEB BiorxivClusteringS2S | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 36.276389017675264 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: BeIR/cqadupstack | 
					
						
						|  | name: MTEB CQADupstackRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 27.764166666666668 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 37.298166666666674 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 38.530166666666666 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 38.64416666666667 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 34.484833333333334 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 36.0385 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 32.93558333333333 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 41.589749999999995 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 42.425333333333334 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 42.476333333333336 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 39.26825 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 40.567083333333336 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 32.93558333333333 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 42.706583333333334 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 47.82483333333333 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 49.95733333333334 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 38.064750000000004 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 40.18158333333333 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 32.93558333333333 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 7.459833333333334 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.1830833333333335 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.15608333333333332 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 17.5235 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 12.349833333333333 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 27.764166666666668 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 54.31775 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 76.74350000000001 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 91.45208333333332 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 41.23425 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 46.73983333333334 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: climate-fever | 
					
						
						|  | name: MTEB ClimateFEVER | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 12.969 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 21.584999999999997 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 23.3 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 23.5 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 18.218999999999998 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 19.983 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 29.316 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 40.033 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 40.96 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 41.001 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 37.123 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 38.757999999999996 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 29.316 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 29.858 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 36.756 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 40.245999999999995 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 24.822 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 26.565 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 29.316 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 9.186 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.6549999999999998 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.22999999999999998 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 18.436 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 13.876 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 12.969 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 35.142 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 59.143 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 78.594 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 22.604 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 27.883000000000003 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: dbpedia-entity | 
					
						
						|  | name: MTEB DBPedia | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 8.527999999999999 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 17.974999999999998 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 25.665 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 27.406000000000002 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 13.017999999999999 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 15.137 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 62.5 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 71.891 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 72.294 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 72.296 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 69.958 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 71.121 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 50.875 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 38.36 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 44.235 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 52.154 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 43.008 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 40.083999999999996 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 62.5 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 30.0 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 10.038 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 2.0869999999999997 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 46.833000000000006 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 38.800000000000004 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 8.527999999999999 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 23.828 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 52.322 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 77.143 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 14.136000000000001 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 17.761 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/emotion | 
					
						
						|  | name: MTEB EmotionClassification | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 51.51 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 47.632159862049896 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: fever | 
					
						
						|  | name: MTEB FEVER | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 60.734 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 72.442 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 72.735 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 72.75 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 70.41199999999999 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 71.80499999999999 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 65.212 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 76.613 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 76.79899999999999 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 76.801 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 74.8 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 76.12400000000001 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 65.212 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 77.988 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 79.167 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 79.452 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 74.362 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 76.666 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 65.212 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 10.003 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.077 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.11199999999999999 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 29.518 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 19.016 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 60.734 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 90.824 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 95.71600000000001 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 97.577 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 81.243 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 86.90299999999999 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: fiqa | 
					
						
						|  | name: MTEB FiQA2018 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 23.845 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 39.281 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 41.422 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 41.593 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 34.467 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 37.017 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 47.531 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 56.204 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 56.928999999999995 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 56.962999999999994 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 54.115 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 55.373000000000005 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 47.531 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 47.711999999999996 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 54.510999999999996 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 57.103 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 44.145 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 45.032 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 47.531 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 13.194 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 2.045 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.249 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 29.424 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 21.451 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 23.845 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 54.967 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 79.11399999999999 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 94.56700000000001 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 40.256 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 46.215 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: hotpotqa | 
					
						
						|  | name: MTEB HotpotQA | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 37.819 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 60.889 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 61.717999999999996 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 61.778 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 57.254000000000005 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 59.541 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 75.638 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 82.173 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 82.362 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 82.37 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 81.089 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 81.827 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 75.638 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 69.317 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 72.221 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 73.382 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 64.14 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 67.07600000000001 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 75.638 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 14.704999999999998 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.698 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.185 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 41.394999999999996 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 27.162999999999997 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 37.819 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 73.52499999999999 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 84.875 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 92.559 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 62.092999999999996 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 67.907 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/imdb | 
					
						
						|  | name: MTEB ImdbClassification | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 94.60079999999999 | 
					
						
						|  | - type: ap | 
					
						
						|  | value: 92.67396345347356 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 94.5988098167121 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: msmarco | 
					
						
						|  | name: MTEB MSMARCO | 
					
						
						|  | config: default | 
					
						
						|  | split: dev | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 21.285 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 33.436 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 34.63 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 34.681 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 29.412 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 31.715 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 21.848 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 33.979 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 35.118 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 35.162 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 30.036 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 32.298 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 21.862000000000002 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 40.43 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 46.17 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 47.412 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 32.221 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 36.332 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 21.862000000000002 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 6.491 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 0.935 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.104 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 13.744 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 10.331999999999999 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 21.285 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 62.083 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 88.576 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 98.006 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 39.729 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 49.608000000000004 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/mtop_domain | 
					
						
						|  | name: MTEB MTOPDomainClassification (en) | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 93.92612859097127 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 93.82370333372853 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/mtop_domain | 
					
						
						|  | name: MTEB MTOPDomainClassification (de) | 
					
						
						|  | config: de | 
					
						
						|  | split: test | 
					
						
						|  | revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 92.67681036911807 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 92.14191382411472 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/mtop_domain | 
					
						
						|  | name: MTEB MTOPDomainClassification (es) | 
					
						
						|  | config: es | 
					
						
						|  | split: test | 
					
						
						|  | revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 92.26817878585723 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 91.92824250337878 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/mtop_domain | 
					
						
						|  | name: MTEB MTOPDomainClassification (fr) | 
					
						
						|  | config: fr | 
					
						
						|  | split: test | 
					
						
						|  | revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 89.96554963983714 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 90.02859329630792 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/mtop_domain | 
					
						
						|  | name: MTEB MTOPDomainClassification (hi) | 
					
						
						|  | config: hi | 
					
						
						|  | split: test | 
					
						
						|  | revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 90.02509860164935 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 89.30665159182062 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/mtop_domain | 
					
						
						|  | name: MTEB MTOPDomainClassification (th) | 
					
						
						|  | config: th | 
					
						
						|  | split: test | 
					
						
						|  | revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 87.55515370705244 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 87.94449232331907 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/mtop_intent | 
					
						
						|  | name: MTEB MTOPIntentClassification (en) | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 82.4623803009576 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 66.06738378772725 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/mtop_intent | 
					
						
						|  | name: MTEB MTOPIntentClassification (de) | 
					
						
						|  | config: de | 
					
						
						|  | split: test | 
					
						
						|  | revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 79.3716539870386 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 60.37614033396853 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/mtop_intent | 
					
						
						|  | name: MTEB MTOPIntentClassification (es) | 
					
						
						|  | config: es | 
					
						
						|  | split: test | 
					
						
						|  | revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 80.34022681787857 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 58.302008026952 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/mtop_intent | 
					
						
						|  | name: MTEB MTOPIntentClassification (fr) | 
					
						
						|  | config: fr | 
					
						
						|  | split: test | 
					
						
						|  | revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 76.72095208268087 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 59.64524724009049 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/mtop_intent | 
					
						
						|  | name: MTEB MTOPIntentClassification (hi) | 
					
						
						|  | config: hi | 
					
						
						|  | split: test | 
					
						
						|  | revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 77.87020437432773 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 57.80202694670567 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/mtop_intent | 
					
						
						|  | name: MTEB MTOPIntentClassification (th) | 
					
						
						|  | config: th | 
					
						
						|  | split: test | 
					
						
						|  | revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 77.73598553345387 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 58.19628250675031 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (af) | 
					
						
						|  | config: af | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 67.6630800268998 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 65.00996668051691 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (am) | 
					
						
						|  | config: am | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 60.7128446536651 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 57.95860594874963 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (ar) | 
					
						
						|  | config: ar | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 63.61129791526563 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 59.75328290206483 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (az) | 
					
						
						|  | config: az | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 69.00134498991257 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 67.0230483991802 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (bn) | 
					
						
						|  | config: bn | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 68.54068594485541 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 65.54604628946976 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (cy) | 
					
						
						|  | config: cy | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 63.032952252858095 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 58.715741857057104 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (da) | 
					
						
						|  | config: da | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 71.80901143241427 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 68.33963989243877 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (de) | 
					
						
						|  | config: de | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 72.47141896435777 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 69.56765020308262 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (el) | 
					
						
						|  | config: el | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 71.2373907195696 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 69.04529836036467 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (en) | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 77.05783456624076 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 74.69430584708174 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (es) | 
					
						
						|  | config: es | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 72.82111634162744 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 70.77228952803762 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (fa) | 
					
						
						|  | config: fa | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 74.25353059852051 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 71.05310103416411 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (fi) | 
					
						
						|  | config: fi | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 72.28648285137861 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 69.08020473732226 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (fr) | 
					
						
						|  | config: fr | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 73.31540013449899 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 70.9426355465791 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (he) | 
					
						
						|  | config: he | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 70.2151983860121 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 67.52541755908858 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (hi) | 
					
						
						|  | config: hi | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 71.58372562205784 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 69.49769064229827 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (hu) | 
					
						
						|  | config: hu | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 71.9233355749832 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 69.36311548259593 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (hy) | 
					
						
						|  | config: hy | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 68.07330195023538 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 64.99882022345572 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (id) | 
					
						
						|  | config: id | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 72.62273032952253 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 70.6394885471001 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (is) | 
					
						
						|  | config: is | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 65.77000672494957 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 62.9368944815065 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (it) | 
					
						
						|  | config: it | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 73.453261600538 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 70.85069934666681 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (ja) | 
					
						
						|  | config: ja | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 74.6906523201076 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 72.03249740074217 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (jv) | 
					
						
						|  | config: jv | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 63.03631472763953 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 59.3165215571852 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (ka) | 
					
						
						|  | config: ka | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 58.913920645595155 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 57.367337711611285 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (km) | 
					
						
						|  | config: km | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 54.42837928715535 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 52.60527294970906 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (kn) | 
					
						
						|  | config: kn | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 66.33490248823135 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 63.213340969404065 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (ko) | 
					
						
						|  | config: ko | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 70.58507061197041 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 68.40256628040486 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (lv) | 
					
						
						|  | config: lv | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 69.11230665770006 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 66.44863577842305 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (ml) | 
					
						
						|  | config: ml | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 69.70073974445192 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 67.21291337273702 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (mn) | 
					
						
						|  | config: mn | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 66.43913920645595 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 64.09838087422806 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (ms) | 
					
						
						|  | config: ms | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 70.80026899798251 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 68.76986742962444 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (my) | 
					
						
						|  | config: my | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 64.78816408876934 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 62.18781873428972 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (nb) | 
					
						
						|  | config: nb | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 71.6577000672495 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 68.75171511133003 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (nl) | 
					
						
						|  | config: nl | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 74.42501681237391 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 71.18434963451544 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (pl) | 
					
						
						|  | config: pl | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 73.64828513786146 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 70.67741914007422 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (pt) | 
					
						
						|  | config: pt | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 73.62811028917284 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 71.36402039740959 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (ro) | 
					
						
						|  | config: ro | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 71.88634835238736 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 69.23701923480677 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (ru) | 
					
						
						|  | config: ru | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 74.15938130464022 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 71.87792218993388 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (sl) | 
					
						
						|  | config: sl | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 69.96301277740416 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 67.29584200202983 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (sq) | 
					
						
						|  | config: sq | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 69.49562878278412 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 66.91716685679431 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (sv) | 
					
						
						|  | config: sv | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 74.6805648957633 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 72.02723592594374 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (sw) | 
					
						
						|  | config: sw | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 63.00605245460659 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 60.16716669482932 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (ta) | 
					
						
						|  | config: ta | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 66.90988567585742 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 63.99405488777784 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (te) | 
					
						
						|  | config: te | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 67.62273032952253 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 65.17213906909481 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (th) | 
					
						
						|  | config: th | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 69.50907868190988 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 69.15165697194853 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (tl) | 
					
						
						|  | config: tl | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 69.30733019502352 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 66.69024007380474 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (tr) | 
					
						
						|  | config: tr | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 72.24277067921989 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 68.80515408492947 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (ur) | 
					
						
						|  | config: ur | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 67.49831876260929 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 64.83778567111116 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (vi) | 
					
						
						|  | config: vi | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 71.28782784129119 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 69.3294186700733 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (zh-CN) | 
					
						
						|  | config: zh-CN | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 73.315400134499 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 71.22674385243207 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (zh-TW) | 
					
						
						|  | config: zh-TW | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 69.37794216543377 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 68.96962492838232 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (af) | 
					
						
						|  | config: af | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 73.33557498318764 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 72.28949738478356 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (am) | 
					
						
						|  | config: am | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 65.84398117014123 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 64.71026362091463 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (ar) | 
					
						
						|  | config: ar | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 69.76462676529925 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 69.8229667407667 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (az) | 
					
						
						|  | config: az | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 72.02420981842636 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 71.76576384895898 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (bn) | 
					
						
						|  | config: bn | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 72.7572293207801 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 72.76840765295256 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (cy) | 
					
						
						|  | config: cy | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 68.02286482851379 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 66.17237947327872 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (da) | 
					
						
						|  | config: da | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 77.60928043039678 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 77.27094731234773 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (de) | 
					
						
						|  | config: de | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 77.68325487558843 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 77.97530399082261 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (el) | 
					
						
						|  | config: el | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 76.13315400134498 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 75.97558584796424 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (en) | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 80.47410894418292 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 80.52244841473792 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (es) | 
					
						
						|  | config: es | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 76.9670477471419 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 77.37318805793146 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (fa) | 
					
						
						|  | config: fa | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 78.09683927370544 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 77.69773737430847 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (fi) | 
					
						
						|  | config: fi | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 75.20847343644922 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 75.17071738727348 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (fr) | 
					
						
						|  | config: fr | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 77.07464694014796 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 77.16136207698571 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (he) | 
					
						
						|  | config: he | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 73.53396099529255 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 73.58296404484122 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (hi) | 
					
						
						|  | config: hi | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 75.75319435104237 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 75.24674707850833 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (hu) | 
					
						
						|  | config: hu | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 77.0948217888366 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 76.47559490205028 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (hy) | 
					
						
						|  | config: hy | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 71.07599193006052 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 70.76028043093511 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (id) | 
					
						
						|  | config: id | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 77.10490921318089 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 77.01215275283272 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (is) | 
					
						
						|  | config: is | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 71.25756556825824 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 70.20605314648762 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (it) | 
					
						
						|  | config: it | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 77.08137188971082 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 77.3899269057439 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (ja) | 
					
						
						|  | config: ja | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 79.35440484196369 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 79.58964690002772 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (jv) | 
					
						
						|  | config: jv | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 68.42299932750504 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 68.07844356925413 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (ka) | 
					
						
						|  | config: ka | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 66.15669132481507 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 65.89383352608513 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (km) | 
					
						
						|  | config: km | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 60.11432414256894 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 57.69910594559806 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (kn) | 
					
						
						|  | config: kn | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 71.24747814391392 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 70.42455553830918 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (ko) | 
					
						
						|  | config: ko | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 76.46267652992603 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 76.8854559308316 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (lv) | 
					
						
						|  | config: lv | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 73.24815063887021 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 72.77805034658074 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (ml) | 
					
						
						|  | config: ml | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 74.11566913248151 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 73.86147988001356 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (mn) | 
					
						
						|  | config: mn | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 70.0168123739072 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 69.38515920054571 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (ms) | 
					
						
						|  | config: ms | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 74.41156691324814 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 73.43474953408237 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (my) | 
					
						
						|  | config: my | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 68.39609952925353 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 67.29731681109291 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (nb) | 
					
						
						|  | config: nb | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 77.20914593140552 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 77.07066497935367 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (nl) | 
					
						
						|  | config: nl | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 78.52387357094821 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 78.5259569473291 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (pl) | 
					
						
						|  | config: pl | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 76.6913248150639 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 76.91201656350455 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (pt) | 
					
						
						|  | config: pt | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 77.1217215870881 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 77.41179937912504 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (ro) | 
					
						
						|  | config: ro | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 75.25891055817083 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 75.8089244542887 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (ru) | 
					
						
						|  | config: ru | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 77.70679219905851 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 78.21459594517711 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (sl) | 
					
						
						|  | config: sl | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 74.83523873570948 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 74.86847028401978 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (sq) | 
					
						
						|  | config: sq | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 74.71755211835911 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 74.0214326485662 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (sv) | 
					
						
						|  | config: sv | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 79.06523201075991 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 79.10545620325138 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (sw) | 
					
						
						|  | config: sw | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 67.91862811028918 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 66.50386121217983 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (ta) | 
					
						
						|  | config: ta | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 70.93140551445865 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 70.755435928495 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (te) | 
					
						
						|  | config: te | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 72.40753194351042 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 71.61816115782923 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (th) | 
					
						
						|  | config: th | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 75.1815736381977 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 75.08016717887205 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (tl) | 
					
						
						|  | config: tl | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 72.86482851378614 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 72.39521180006291 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (tr) | 
					
						
						|  | config: tr | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 76.46940147948891 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 76.70044085362349 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (ur) | 
					
						
						|  | config: ur | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 71.89307330195024 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 71.5721825332298 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (vi) | 
					
						
						|  | config: vi | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 74.7511768661735 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 75.17918654541515 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (zh-CN) | 
					
						
						|  | config: zh-CN | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 78.69535978480162 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 78.90019070153316 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (zh-TW) | 
					
						
						|  | config: zh-TW | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 75.45729657027572 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 76.19578371794672 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/medrxiv-clustering-p2p | 
					
						
						|  | name: MTEB MedrxivClusteringP2P | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 36.92715354123554 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/medrxiv-clustering-s2s | 
					
						
						|  | name: MTEB MedrxivClusteringS2S | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 35.53536244162518 | 
					
						
						|  | - task: | 
					
						
						|  | type: Reranking | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/mind_small | 
					
						
						|  | name: MTEB MindSmallReranking | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map | 
					
						
						|  | value: 33.08507884504006 | 
					
						
						|  | - type: mrr | 
					
						
						|  | value: 34.32436977159129 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: nfcorpus | 
					
						
						|  | name: MTEB NFCorpus | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 5.935 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 13.297 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 16.907 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 18.391 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 9.626999999999999 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 11.190999999999999 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 46.129999999999995 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 54.346000000000004 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 55.067 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 55.1 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 51.961 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 53.246 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 44.118 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 35.534 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 32.946999999999996 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 41.599000000000004 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 40.25 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 37.978 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 46.129999999999995 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 26.842 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 8.427 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 2.128 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 37.977 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 32.879000000000005 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 5.935 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 17.211000000000002 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 34.33 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 65.551 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 10.483 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 13.078999999999999 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: nq | 
					
						
						|  | name: MTEB NQ | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 35.231 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 50.202000000000005 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 51.154999999999994 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 51.181 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 45.774 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 48.522 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 39.687 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 52.88 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 53.569 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 53.58500000000001 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 49.228 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 51.525 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 39.687 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 57.754000000000005 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 61.597 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 62.18900000000001 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 49.55 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 54.11899999999999 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 39.687 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 9.313 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.146 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.12 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 22.229 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 15.939 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 35.231 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 78.083 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 94.42099999999999 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 98.81 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 57.047000000000004 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 67.637 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: quora | 
					
						
						|  | name: MTEB QuoraRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 71.241 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 85.462 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 86.083 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 86.09700000000001 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 82.49499999999999 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 84.392 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 82.09 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 88.301 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 88.383 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 88.384 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 87.37 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 88.035 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 82.12 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 89.149 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 90.235 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 90.307 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 86.37599999999999 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 87.964 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 82.12 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 13.56 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.539 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.157 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 37.88 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 24.92 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 71.241 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 96.128 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 99.696 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 99.994 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 88.181 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 92.694 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/reddit-clustering | 
					
						
						|  | name: MTEB RedditClustering | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 24640382cdbf8abc73003fb0fa6d111a705499eb | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 56.59757799655151 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/reddit-clustering-p2p | 
					
						
						|  | name: MTEB RedditClusteringP2P | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 282350215ef01743dc01b456c7f5241fa8937f16 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 64.27391998854624 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: scidocs | 
					
						
						|  | name: MTEB SCIDOCS | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 4.243 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 10.965 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 12.934999999999999 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 13.256 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 7.907 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 9.435 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 20.9 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 31.849 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 32.964 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 33.024 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 28.517 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 30.381999999999998 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 20.9 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 18.723 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 26.384999999999998 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 32.114 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 17.753 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 15.558 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 20.9 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 9.8 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 2.078 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.345 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 16.900000000000002 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 13.88 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 4.243 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 19.885 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 42.17 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 70.12 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 10.288 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 14.072000000000001 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sickr-sts | 
					
						
						|  | name: MTEB SICK-R | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: a6ea5a8cab320b040a23452cc28066d9beae2cee | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 85.84209174935282 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 81.73248048438833 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 83.02810070308149 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 81.73248295679514 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 82.95368060376002 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 81.60277910998718 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts12-sts | 
					
						
						|  | name: MTEB STS12 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: a0d554a64d88156834ff5ae9920b964011b16384 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 88.52628804556943 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 82.5713913555672 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 85.8796774746988 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 82.57137506803424 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 85.79671002960058 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 82.49445981618027 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts13-sts | 
					
						
						|  | name: MTEB STS13 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 86.23682503505542 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 87.15008956711806 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 86.79805401524959 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 87.15008956711806 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 86.65298502699244 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 86.97677821948562 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts14-sts | 
					
						
						|  | name: MTEB STS14 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 85.63370304677802 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 84.97105553540318 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 85.28896108687721 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 84.97105553540318 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 85.09663190337331 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 84.79126831644619 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts15-sts | 
					
						
						|  | name: MTEB STS15 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 90.2614838800733 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 91.0509162991835 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 90.33098317533373 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 91.05091625871644 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 90.26250435151107 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 90.97999594417519 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts16-sts | 
					
						
						|  | name: MTEB STS16 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 85.80480973335091 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 87.313695492969 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 86.49267251576939 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 87.313695492969 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 86.44019901831935 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 87.24205395460392 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts17-crosslingual-sts | 
					
						
						|  | name: MTEB STS17 (en-en) | 
					
						
						|  | config: en-en | 
					
						
						|  | split: test | 
					
						
						|  | revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 90.05662789380672 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 90.02759424426651 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 90.4042483422981 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 90.02759424426651 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 90.51446975000226 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 90.08832889933616 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts22-crosslingual-sts | 
					
						
						|  | name: MTEB STS22 (en) | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 67.5975528273532 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 67.62969861411354 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 69.224275734323 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 67.62969861411354 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 69.3761447059927 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 67.90921005611467 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/stsbenchmark-sts | 
					
						
						|  | name: MTEB STSBenchmark | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 87.11244327231684 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 88.37902438979035 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 87.86054279847336 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 88.37902438979035 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 87.77257757320378 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 88.25208966098123 | 
					
						
						|  | - task: | 
					
						
						|  | type: Reranking | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/scidocs-reranking | 
					
						
						|  | name: MTEB SciDocsRR | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map | 
					
						
						|  | value: 85.87174608143563 | 
					
						
						|  | - type: mrr | 
					
						
						|  | value: 96.12836872640794 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: scifact | 
					
						
						|  | name: MTEB SciFact | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 57.760999999999996 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 67.258 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 67.757 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 67.78800000000001 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 64.602 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 65.64 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 60.667 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 68.441 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 68.825 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 68.853 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 66.444 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 67.26100000000001 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 60.667 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 71.852 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 73.9 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 74.628 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 67.093 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 68.58 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 60.667 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 9.6 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.0670000000000002 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.11199999999999999 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 26.111 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 16.733 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 57.760999999999996 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 84.967 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 93.833 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 99.333 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 71.589 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 75.483 | 
					
						
						|  | - task: | 
					
						
						|  | type: PairClassification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sprintduplicatequestions-pairclassification | 
					
						
						|  | name: MTEB SprintDuplicateQuestions | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_accuracy | 
					
						
						|  | value: 99.66633663366336 | 
					
						
						|  | - type: cos_sim_ap | 
					
						
						|  | value: 91.17685358899108 | 
					
						
						|  | - type: cos_sim_f1 | 
					
						
						|  | value: 82.16818642350559 | 
					
						
						|  | - type: cos_sim_precision | 
					
						
						|  | value: 83.26488706365504 | 
					
						
						|  | - type: cos_sim_recall | 
					
						
						|  | value: 81.10000000000001 | 
					
						
						|  | - type: dot_accuracy | 
					
						
						|  | value: 99.66633663366336 | 
					
						
						|  | - type: dot_ap | 
					
						
						|  | value: 91.17663411119032 | 
					
						
						|  | - type: dot_f1 | 
					
						
						|  | value: 82.16818642350559 | 
					
						
						|  | - type: dot_precision | 
					
						
						|  | value: 83.26488706365504 | 
					
						
						|  | - type: dot_recall | 
					
						
						|  | value: 81.10000000000001 | 
					
						
						|  | - type: euclidean_accuracy | 
					
						
						|  | value: 99.66633663366336 | 
					
						
						|  | - type: euclidean_ap | 
					
						
						|  | value: 91.17685189882275 | 
					
						
						|  | - type: euclidean_f1 | 
					
						
						|  | value: 82.16818642350559 | 
					
						
						|  | - type: euclidean_precision | 
					
						
						|  | value: 83.26488706365504 | 
					
						
						|  | - type: euclidean_recall | 
					
						
						|  | value: 81.10000000000001 | 
					
						
						|  | - type: manhattan_accuracy | 
					
						
						|  | value: 99.66633663366336 | 
					
						
						|  | - type: manhattan_ap | 
					
						
						|  | value: 91.2241619496737 | 
					
						
						|  | - type: manhattan_f1 | 
					
						
						|  | value: 82.20472440944883 | 
					
						
						|  | - type: manhattan_precision | 
					
						
						|  | value: 86.51933701657458 | 
					
						
						|  | - type: manhattan_recall | 
					
						
						|  | value: 78.3 | 
					
						
						|  | - type: max_accuracy | 
					
						
						|  | value: 99.66633663366336 | 
					
						
						|  | - type: max_ap | 
					
						
						|  | value: 91.2241619496737 | 
					
						
						|  | - type: max_f1 | 
					
						
						|  | value: 82.20472440944883 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/stackexchange-clustering | 
					
						
						|  | name: MTEB StackExchangeClustering | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 66.85101268897951 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/stackexchange-clustering-p2p | 
					
						
						|  | name: MTEB StackExchangeClusteringP2P | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 815ca46b2622cec33ccafc3735d572c266efdb44 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 42.461184054706905 | 
					
						
						|  | - task: | 
					
						
						|  | type: Reranking | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/stackoverflowdupquestions-reranking | 
					
						
						|  | name: MTEB StackOverflowDupQuestions | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map | 
					
						
						|  | value: 51.44542568873886 | 
					
						
						|  | - type: mrr | 
					
						
						|  | value: 52.33656151854681 | 
					
						
						|  | - task: | 
					
						
						|  | type: Summarization | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/summeval | 
					
						
						|  | name: MTEB SummEval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 30.75982974997539 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 30.385405026539914 | 
					
						
						|  | - type: dot_pearson | 
					
						
						|  | value: 30.75982433546523 | 
					
						
						|  | - type: dot_spearman | 
					
						
						|  | value: 30.385405026539914 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: trec-covid | 
					
						
						|  | name: MTEB TRECCOVID | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 0.22799999999999998 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 2.064 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 13.056000000000001 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 31.747999999999998 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 0.67 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 1.097 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 90.0 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 94.667 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 94.667 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 94.667 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 94.667 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 94.667 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 86.0 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 82.0 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 64.307 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 57.023999999999994 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 85.816 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 84.904 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 90.0 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 85.8 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 66.46 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 25.202 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 90.0 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 89.2 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 0.22799999999999998 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 2.235 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 16.185 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 53.620999999999995 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 0.7040000000000001 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 1.172 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (sqi-eng) | 
					
						
						|  | config: sqi-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 97.39999999999999 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 96.75 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 96.45 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 97.39999999999999 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (fry-eng) | 
					
						
						|  | config: fry-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 85.54913294797689 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 82.46628131021194 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 81.1175337186898 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 85.54913294797689 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (kur-eng) | 
					
						
						|  | config: kur-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 81.21951219512195 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 77.33333333333334 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 75.54878048780488 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 81.21951219512195 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (tur-eng) | 
					
						
						|  | config: tur-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 98.6 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 98.26666666666665 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 98.1 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 98.6 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (deu-eng) | 
					
						
						|  | config: deu-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 99.5 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 99.33333333333333 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 99.25 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 99.5 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (nld-eng) | 
					
						
						|  | config: nld-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 97.8 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 97.2 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 96.89999999999999 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 97.8 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (ron-eng) | 
					
						
						|  | config: ron-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 97.8 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 97.18333333333334 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 96.88333333333333 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 97.8 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (ang-eng) | 
					
						
						|  | config: ang-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 77.61194029850746 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 72.81094527363183 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 70.83333333333333 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 77.61194029850746 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (ido-eng) | 
					
						
						|  | config: ido-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 93.7 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 91.91666666666667 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 91.08333333333334 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 93.7 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (jav-eng) | 
					
						
						|  | config: jav-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 88.29268292682927 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 85.27642276422765 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 84.01277584204414 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 88.29268292682927 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (isl-eng) | 
					
						
						|  | config: isl-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 96.1 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 95.0 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 94.46666666666668 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 96.1 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (slv-eng) | 
					
						
						|  | config: slv-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 93.681652490887 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 91.90765492102065 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 91.05913325232888 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 93.681652490887 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (cym-eng) | 
					
						
						|  | config: cym-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 92.17391304347827 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 89.97101449275361 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 88.96811594202899 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 92.17391304347827 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (kaz-eng) | 
					
						
						|  | config: kaz-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 90.43478260869566 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 87.72173913043478 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 86.42028985507245 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 90.43478260869566 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (est-eng) | 
					
						
						|  | config: est-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 90.4 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 88.03 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 86.95 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 90.4 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (heb-eng) | 
					
						
						|  | config: heb-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 93.4 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 91.45666666666666 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 90.525 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 93.4 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (gla-eng) | 
					
						
						|  | config: gla-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 81.9059107358263 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 78.32557872364869 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 76.78260286824823 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 81.9059107358263 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (mar-eng) | 
					
						
						|  | config: mar-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 94.3 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 92.58333333333333 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 91.73333333333332 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 94.3 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (lat-eng) | 
					
						
						|  | config: lat-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 79.10000000000001 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 74.50500000000001 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 72.58928571428571 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 79.10000000000001 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (bel-eng) | 
					
						
						|  | config: bel-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 96.6 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 95.55 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 95.05 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 96.6 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (pms-eng) | 
					
						
						|  | config: pms-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 82.0952380952381 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 77.98458049886621 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 76.1968253968254 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 82.0952380952381 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (gle-eng) | 
					
						
						|  | config: gle-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 87.9 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 84.99190476190476 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 83.65 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 87.9 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (pes-eng) | 
					
						
						|  | config: pes-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 95.7 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 94.56666666666666 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 94.01666666666667 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 95.7 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (nob-eng) | 
					
						
						|  | config: nob-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 98.6 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 98.2 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 98.0 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 98.6 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (bul-eng) | 
					
						
						|  | config: bul-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 95.6 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 94.38333333333334 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 93.78333333333335 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 95.6 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (cbk-eng) | 
					
						
						|  | config: cbk-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 87.4 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 84.10380952380952 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 82.67 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 87.4 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (hun-eng) | 
					
						
						|  | config: hun-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 95.5 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 94.33333333333334 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 93.78333333333333 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 95.5 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (uig-eng) | 
					
						
						|  | config: uig-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 89.4 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 86.82000000000001 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 85.64500000000001 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 89.4 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (rus-eng) | 
					
						
						|  | config: rus-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 95.1 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 93.56666666666668 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 92.81666666666666 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 95.1 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (spa-eng) | 
					
						
						|  | config: spa-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 98.9 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 98.6 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 98.45 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 98.9 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (hye-eng) | 
					
						
						|  | config: hye-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 95.01347708894879 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 93.51752021563343 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 92.82794249775381 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 95.01347708894879 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (tel-eng) | 
					
						
						|  | config: tel-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 97.00854700854701 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 96.08262108262107 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 95.65527065527067 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 97.00854700854701 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (afr-eng) | 
					
						
						|  | config: afr-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 96.5 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 95.39999999999999 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 94.88333333333333 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 96.5 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (mon-eng) | 
					
						
						|  | config: mon-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 96.5909090909091 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 95.49242424242425 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 94.9621212121212 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 96.5909090909091 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (arz-eng) | 
					
						
						|  | config: arz-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 84.90566037735849 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 81.85883997204752 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 80.54507337526205 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 84.90566037735849 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (hrv-eng) | 
					
						
						|  | config: hrv-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 97.5 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 96.75 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 96.38333333333333 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 97.5 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (nov-eng) | 
					
						
						|  | config: nov-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 86.7704280155642 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 82.99610894941635 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 81.32295719844358 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 86.7704280155642 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (gsw-eng) | 
					
						
						|  | config: gsw-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 67.52136752136752 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 61.89662189662191 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 59.68660968660969 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 67.52136752136752 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (nds-eng) | 
					
						
						|  | config: nds-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 89.2 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 86.32 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 85.015 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 89.2 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (ukr-eng) | 
					
						
						|  | config: ukr-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 96.0 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 94.78333333333333 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 94.18333333333334 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 96.0 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (uzb-eng) | 
					
						
						|  | config: uzb-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 83.8785046728972 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 80.54517133956385 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 79.154984423676 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 83.8785046728972 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (lit-eng) | 
					
						
						|  | config: lit-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 93.60000000000001 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 92.01333333333334 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 91.28333333333333 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 93.60000000000001 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (ina-eng) | 
					
						
						|  | config: ina-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 97.1 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 96.26666666666667 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 95.85000000000001 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 97.1 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (lfn-eng) | 
					
						
						|  | config: lfn-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 84.3 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 80.67833333333333 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 79.03928571428571 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 84.3 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (zsm-eng) | 
					
						
						|  | config: zsm-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 97.3 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 96.48333333333332 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 96.08333333333331 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 97.3 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (ita-eng) | 
					
						
						|  | config: ita-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 95.7 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 94.66666666666667 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 94.16666666666667 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 95.7 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (cmn-eng) | 
					
						
						|  | config: cmn-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 97.2 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 96.36666666666667 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 95.96666666666668 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 97.2 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (lvs-eng) | 
					
						
						|  | config: lvs-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 94.3 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 92.80666666666667 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 92.12833333333333 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 94.3 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (glg-eng) | 
					
						
						|  | config: glg-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 97.0 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 96.22333333333334 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 95.875 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 97.0 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (ceb-eng) | 
					
						
						|  | config: ceb-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 74.33333333333333 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 70.78174603174602 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 69.28333333333332 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 74.33333333333333 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (bre-eng) | 
					
						
						|  | config: bre-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 37.6 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 32.938348952090365 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 31.2811038961039 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 37.6 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (ben-eng) | 
					
						
						|  | config: ben-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 91.5 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 89.13333333333333 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 88.03333333333333 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 91.5 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (swg-eng) | 
					
						
						|  | config: swg-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 82.14285714285714 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 77.67857142857143 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 75.59523809523809 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 82.14285714285714 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (arq-eng) | 
					
						
						|  | config: arq-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 69.0450054884742 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 63.070409283362075 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 60.58992781824835 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 69.0450054884742 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (kab-eng) | 
					
						
						|  | config: kab-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 63.1 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 57.848333333333336 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 55.69500000000001 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 63.1 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (fra-eng) | 
					
						
						|  | config: fra-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 96.1 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 95.01666666666667 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 94.5 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 96.1 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (por-eng) | 
					
						
						|  | config: por-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 95.89999999999999 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 94.90666666666667 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 94.425 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 95.89999999999999 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (tat-eng) | 
					
						
						|  | config: tat-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 87.6 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 84.61333333333333 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 83.27 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 87.6 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (oci-eng) | 
					
						
						|  | config: oci-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 76.4 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 71.90746031746032 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 70.07027777777778 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 76.4 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (pol-eng) | 
					
						
						|  | config: pol-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 97.89999999999999 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 97.26666666666667 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 96.95 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 97.89999999999999 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (war-eng) | 
					
						
						|  | config: war-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 78.8 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 74.39555555555555 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 72.59416666666667 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 78.8 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (aze-eng) | 
					
						
						|  | config: aze-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 95.19999999999999 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 93.78999999999999 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 93.125 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 95.19999999999999 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (vie-eng) | 
					
						
						|  | config: vie-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 97.8 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 97.1 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 96.75 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 97.8 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (nno-eng) | 
					
						
						|  | config: nno-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 95.6 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 94.25666666666666 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 93.64166666666668 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 95.6 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (cha-eng) | 
					
						
						|  | config: cha-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 56.934306569343065 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 51.461591936044485 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 49.37434827945776 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 56.934306569343065 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (mhr-eng) | 
					
						
						|  | config: mhr-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 20.200000000000003 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 16.91799284049284 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 15.791855158730158 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 20.200000000000003 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (dan-eng) | 
					
						
						|  | config: dan-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 96.2 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 95.3 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 94.85 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 96.2 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (ell-eng) | 
					
						
						|  | config: ell-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 96.3 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 95.11666666666667 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 94.53333333333333 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 96.3 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (amh-eng) | 
					
						
						|  | config: amh-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 89.88095238095238 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 87.14285714285714 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 85.96230158730161 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 89.88095238095238 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (pam-eng) | 
					
						
						|  | config: pam-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 24.099999999999998 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 19.630969083349783 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 18.275094905094907 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 24.099999999999998 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (hsb-eng) | 
					
						
						|  | config: hsb-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 83.4368530020704 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 79.45183870649709 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 77.7432712215321 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 83.4368530020704 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (srp-eng) | 
					
						
						|  | config: srp-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 95.8 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 94.53333333333333 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 93.91666666666666 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 95.8 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (epo-eng) | 
					
						
						|  | config: epo-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 98.8 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 98.48333333333332 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 98.33333333333334 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 98.8 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (kzj-eng) | 
					
						
						|  | config: kzj-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 17.5 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 14.979285714285714 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 14.23235060690943 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 17.5 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (awa-eng) | 
					
						
						|  | config: awa-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 93.93939393939394 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 91.991341991342 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 91.05339105339105 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 93.93939393939394 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (fao-eng) | 
					
						
						|  | config: fao-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 89.31297709923665 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 86.76844783715012 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 85.63613231552164 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 89.31297709923665 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (mal-eng) | 
					
						
						|  | config: mal-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 99.12663755458514 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 98.93255701115964 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 98.83551673944687 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 99.12663755458514 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (ile-eng) | 
					
						
						|  | config: ile-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 92.0 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 89.77999999999999 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 88.78333333333333 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 92.0 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (bos-eng) | 
					
						
						|  | config: bos-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 96.89265536723164 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 95.85687382297553 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 95.33898305084746 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 96.89265536723164 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (cor-eng) | 
					
						
						|  | config: cor-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 14.6 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 11.820611790170615 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 11.022616224355355 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 14.6 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (cat-eng) | 
					
						
						|  | config: cat-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 95.89999999999999 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 94.93333333333334 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 94.48666666666666 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 95.89999999999999 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (eus-eng) | 
					
						
						|  | config: eus-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 87.6 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 84.72333333333334 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 83.44166666666666 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 87.6 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (yue-eng) | 
					
						
						|  | config: yue-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 94.8 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 93.47333333333333 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 92.875 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 94.8 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (swe-eng) | 
					
						
						|  | config: swe-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 96.6 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 95.71666666666665 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 95.28333333333335 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 96.6 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (dtp-eng) | 
					
						
						|  | config: dtp-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 17.8 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 14.511074040901628 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 13.503791000666002 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 17.8 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (kat-eng) | 
					
						
						|  | config: kat-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 94.10187667560321 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 92.46648793565683 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 91.71134941912423 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 94.10187667560321 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (jpn-eng) | 
					
						
						|  | config: jpn-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 97.0 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 96.11666666666666 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 95.68333333333334 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 97.0 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (csb-eng) | 
					
						
						|  | config: csb-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 72.72727272727273 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 66.58949745906267 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 63.86693017127799 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 72.72727272727273 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (xho-eng) | 
					
						
						|  | config: xho-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 90.14084507042254 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 88.26291079812206 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 87.32394366197182 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 90.14084507042254 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (orv-eng) | 
					
						
						|  | config: orv-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 64.67065868263472 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 58.2876627696987 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 55.79255774165953 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 64.67065868263472 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (ind-eng) | 
					
						
						|  | config: ind-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 95.6 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 94.41666666666667 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 93.85 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 95.6 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (tuk-eng) | 
					
						
						|  | config: tuk-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 55.172413793103445 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 49.63992493549144 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 47.71405113769646 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 55.172413793103445 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (max-eng) | 
					
						
						|  | config: max-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 77.46478873239437 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 73.4417616811983 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 71.91607981220658 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 77.46478873239437 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (swh-eng) | 
					
						
						|  | config: swh-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 84.61538461538461 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 80.91452991452994 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 79.33760683760683 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 84.61538461538461 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (hin-eng) | 
					
						
						|  | config: hin-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 98.2 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 97.6 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 97.3 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 98.2 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (dsb-eng) | 
					
						
						|  | config: dsb-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 75.5741127348643 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 72.00417536534445 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 70.53467872883321 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 75.5741127348643 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (ber-eng) | 
					
						
						|  | config: ber-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 62.2 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 55.577460317460314 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 52.98583333333333 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 62.2 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (tam-eng) | 
					
						
						|  | config: tam-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 92.18241042345277 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 90.6468124709167 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 89.95656894679696 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 92.18241042345277 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (slk-eng) | 
					
						
						|  | config: slk-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 96.1 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 95.13333333333333 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 94.66666666666667 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 96.1 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (tgl-eng) | 
					
						
						|  | config: tgl-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 96.8 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 95.85000000000001 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 95.39999999999999 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 96.8 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (ast-eng) | 
					
						
						|  | config: ast-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 92.1259842519685 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 89.76377952755905 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 88.71391076115485 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 92.1259842519685 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (mkd-eng) | 
					
						
						|  | config: mkd-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 94.1 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 92.49 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 91.725 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 94.1 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (khm-eng) | 
					
						
						|  | config: khm-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 77.5623268698061 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 73.27364463791058 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 71.51947852086357 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 77.5623268698061 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (ces-eng) | 
					
						
						|  | config: ces-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 97.39999999999999 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 96.56666666666666 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 96.16666666666667 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 97.39999999999999 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (tzl-eng) | 
					
						
						|  | config: tzl-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 66.34615384615384 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 61.092032967032964 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 59.27197802197802 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 66.34615384615384 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (urd-eng) | 
					
						
						|  | config: urd-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 94.89999999999999 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 93.41190476190476 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 92.7 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 94.89999999999999 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (ara-eng) | 
					
						
						|  | config: ara-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 93.10000000000001 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 91.10000000000001 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 90.13333333333333 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 93.10000000000001 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (kor-eng) | 
					
						
						|  | config: kor-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 93.7 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 91.97333333333334 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 91.14166666666667 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 93.7 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (yid-eng) | 
					
						
						|  | config: yid-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 92.21698113207547 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 90.3796046720575 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 89.56367924528303 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 92.21698113207547 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (fin-eng) | 
					
						
						|  | config: fin-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 97.6 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 96.91666666666667 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 96.6 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 97.6 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (tha-eng) | 
					
						
						|  | config: tha-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 97.44525547445255 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 96.71532846715328 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 96.35036496350365 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 97.44525547445255 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (wuu-eng) | 
					
						
						|  | config: wuu-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 94.1 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 92.34000000000002 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 91.49166666666667 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 94.1 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: webis-touche2020 | 
					
						
						|  | name: MTEB Touche2020 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 3.2910000000000004 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 10.373000000000001 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 15.612 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 17.06 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 6.119 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 7.917000000000001 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 44.897999999999996 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 56.054 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 56.82000000000001 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 56.82000000000001 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 52.381 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 53.81 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 42.857 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 27.249000000000002 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 36.529 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 48.136 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 33.938 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 29.951 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 44.897999999999996 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 22.653000000000002 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 7.000000000000001 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 1.48 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 32.653 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 27.755000000000003 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 3.2910000000000004 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 16.16 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 43.908 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 79.823 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 7.156 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 10.204 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/toxic_conversations_50k | 
					
						
						|  | name: MTEB ToxicConversationsClassification | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 71.05879999999999 | 
					
						
						|  | - type: ap | 
					
						
						|  | value: 14.609748142799111 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 54.878956295843096 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tweet_sentiment_extraction | 
					
						
						|  | name: MTEB TweetSentimentExtractionClassification | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: d604517c81ca91fe16a244d1248fc021f9ecee7a | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 64.61799660441426 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 64.8698191961434 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/twentynewsgroups-clustering | 
					
						
						|  | name: MTEB TwentyNewsgroupsClustering | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 51.32860036611885 | 
					
						
						|  | - task: | 
					
						
						|  | type: PairClassification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/twittersemeval2015-pairclassification | 
					
						
						|  | name: MTEB TwitterSemEval2015 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_accuracy | 
					
						
						|  | value: 88.34714192048638 | 
					
						
						|  | - type: cos_sim_ap | 
					
						
						|  | value: 80.26732975975634 | 
					
						
						|  | - type: cos_sim_f1 | 
					
						
						|  | value: 73.53415148134374 | 
					
						
						|  | - type: cos_sim_precision | 
					
						
						|  | value: 69.34767360299276 | 
					
						
						|  | - type: cos_sim_recall | 
					
						
						|  | value: 78.25857519788919 | 
					
						
						|  | - type: dot_accuracy | 
					
						
						|  | value: 88.34714192048638 | 
					
						
						|  | - type: dot_ap | 
					
						
						|  | value: 80.26733698491206 | 
					
						
						|  | - type: dot_f1 | 
					
						
						|  | value: 73.53415148134374 | 
					
						
						|  | - type: dot_precision | 
					
						
						|  | value: 69.34767360299276 | 
					
						
						|  | - type: dot_recall | 
					
						
						|  | value: 78.25857519788919 | 
					
						
						|  | - type: euclidean_accuracy | 
					
						
						|  | value: 88.34714192048638 | 
					
						
						|  | - type: euclidean_ap | 
					
						
						|  | value: 80.26734337771738 | 
					
						
						|  | - type: euclidean_f1 | 
					
						
						|  | value: 73.53415148134374 | 
					
						
						|  | - type: euclidean_precision | 
					
						
						|  | value: 69.34767360299276 | 
					
						
						|  | - type: euclidean_recall | 
					
						
						|  | value: 78.25857519788919 | 
					
						
						|  | - type: manhattan_accuracy | 
					
						
						|  | value: 88.30541813196639 | 
					
						
						|  | - type: manhattan_ap | 
					
						
						|  | value: 80.19415808104145 | 
					
						
						|  | - type: manhattan_f1 | 
					
						
						|  | value: 73.55143870713441 | 
					
						
						|  | - type: manhattan_precision | 
					
						
						|  | value: 73.25307511122743 | 
					
						
						|  | - type: manhattan_recall | 
					
						
						|  | value: 73.85224274406332 | 
					
						
						|  | - type: max_accuracy | 
					
						
						|  | value: 88.34714192048638 | 
					
						
						|  | - type: max_ap | 
					
						
						|  | value: 80.26734337771738 | 
					
						
						|  | - type: max_f1 | 
					
						
						|  | value: 73.55143870713441 | 
					
						
						|  | - task: | 
					
						
						|  | type: PairClassification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/twitterurlcorpus-pairclassification | 
					
						
						|  | name: MTEB TwitterURLCorpus | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_accuracy | 
					
						
						|  | value: 89.81061047075717 | 
					
						
						|  | - type: cos_sim_ap | 
					
						
						|  | value: 87.11747055081017 | 
					
						
						|  | - type: cos_sim_f1 | 
					
						
						|  | value: 80.04355498817256 | 
					
						
						|  | - type: cos_sim_precision | 
					
						
						|  | value: 78.1165262000733 | 
					
						
						|  | - type: cos_sim_recall | 
					
						
						|  | value: 82.06806282722513 | 
					
						
						|  | - type: dot_accuracy | 
					
						
						|  | value: 89.81061047075717 | 
					
						
						|  | - type: dot_ap | 
					
						
						|  | value: 87.11746902745236 | 
					
						
						|  | - type: dot_f1 | 
					
						
						|  | value: 80.04355498817256 | 
					
						
						|  | - type: dot_precision | 
					
						
						|  | value: 78.1165262000733 | 
					
						
						|  | - type: dot_recall | 
					
						
						|  | value: 82.06806282722513 | 
					
						
						|  | - type: euclidean_accuracy | 
					
						
						|  | value: 89.81061047075717 | 
					
						
						|  | - type: euclidean_ap | 
					
						
						|  | value: 87.11746919324248 | 
					
						
						|  | - type: euclidean_f1 | 
					
						
						|  | value: 80.04355498817256 | 
					
						
						|  | - type: euclidean_precision | 
					
						
						|  | value: 78.1165262000733 | 
					
						
						|  | - type: euclidean_recall | 
					
						
						|  | value: 82.06806282722513 | 
					
						
						|  | - type: manhattan_accuracy | 
					
						
						|  | value: 89.79508673885202 | 
					
						
						|  | - type: manhattan_ap | 
					
						
						|  | value: 87.11074390832218 | 
					
						
						|  | - type: manhattan_f1 | 
					
						
						|  | value: 80.13002540726349 | 
					
						
						|  | - type: manhattan_precision | 
					
						
						|  | value: 77.83826945412311 | 
					
						
						|  | - type: manhattan_recall | 
					
						
						|  | value: 82.56082537727133 | 
					
						
						|  | - type: max_accuracy | 
					
						
						|  | value: 89.81061047075717 | 
					
						
						|  | - type: max_ap | 
					
						
						|  | value: 87.11747055081017 | 
					
						
						|  | - type: max_f1 | 
					
						
						|  | value: 80.13002540726349 | 
					
						
						|  | language: | 
					
						
						|  | - multilingual | 
					
						
						|  | - af | 
					
						
						|  | - am | 
					
						
						|  | - ar | 
					
						
						|  | - as | 
					
						
						|  | - az | 
					
						
						|  | - be | 
					
						
						|  | - bg | 
					
						
						|  | - bn | 
					
						
						|  | - br | 
					
						
						|  | - bs | 
					
						
						|  | - ca | 
					
						
						|  | - cs | 
					
						
						|  | - cy | 
					
						
						|  | - da | 
					
						
						|  | - de | 
					
						
						|  | - el | 
					
						
						|  | - en | 
					
						
						|  | - eo | 
					
						
						|  | - es | 
					
						
						|  | - et | 
					
						
						|  | - eu | 
					
						
						|  | - fa | 
					
						
						|  | - fi | 
					
						
						|  | - fr | 
					
						
						|  | - fy | 
					
						
						|  | - ga | 
					
						
						|  | - gd | 
					
						
						|  | - gl | 
					
						
						|  | - gu | 
					
						
						|  | - ha | 
					
						
						|  | - he | 
					
						
						|  | - hi | 
					
						
						|  | - hr | 
					
						
						|  | - hu | 
					
						
						|  | - hy | 
					
						
						|  | - id | 
					
						
						|  | - is | 
					
						
						|  | - it | 
					
						
						|  | - ja | 
					
						
						|  | - jv | 
					
						
						|  | - ka | 
					
						
						|  | - kk | 
					
						
						|  | - km | 
					
						
						|  | - kn | 
					
						
						|  | - ko | 
					
						
						|  | - ku | 
					
						
						|  | - ky | 
					
						
						|  | - la | 
					
						
						|  | - lo | 
					
						
						|  | - lt | 
					
						
						|  | - lv | 
					
						
						|  | - mg | 
					
						
						|  | - mk | 
					
						
						|  | - ml | 
					
						
						|  | - mn | 
					
						
						|  | - mr | 
					
						
						|  | - ms | 
					
						
						|  | - my | 
					
						
						|  | - ne | 
					
						
						|  | - nl | 
					
						
						|  | - 'no' | 
					
						
						|  | - om | 
					
						
						|  | - or | 
					
						
						|  | - pa | 
					
						
						|  | - pl | 
					
						
						|  | - ps | 
					
						
						|  | - pt | 
					
						
						|  | - ro | 
					
						
						|  | - ru | 
					
						
						|  | - sa | 
					
						
						|  | - sd | 
					
						
						|  | - si | 
					
						
						|  | - sk | 
					
						
						|  | - sl | 
					
						
						|  | - so | 
					
						
						|  | - sq | 
					
						
						|  | - sr | 
					
						
						|  | - su | 
					
						
						|  | - sv | 
					
						
						|  | - sw | 
					
						
						|  | - ta | 
					
						
						|  | - te | 
					
						
						|  | - th | 
					
						
						|  | - tl | 
					
						
						|  | - tr | 
					
						
						|  | - ug | 
					
						
						|  | - uk | 
					
						
						|  | - ur | 
					
						
						|  | - uz | 
					
						
						|  | - vi | 
					
						
						|  | - xh | 
					
						
						|  | - yi | 
					
						
						|  | - zh | 
					
						
						|  | license: mit | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | ## Multilingual-E5-large-instruct | 
					
						
						|  |  | 
					
						
						|  | [Multilingual E5 Text Embeddings: A Technical Report](https://arxiv.org/pdf/2402.05672). | 
					
						
						|  | Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, Furu Wei, arXiv 2024 | 
					
						
						|  |  | 
					
						
						|  | This model has 24 layers and the embedding size is 1024. | 
					
						
						|  |  | 
					
						
						|  | ## Usage | 
					
						
						|  |  | 
					
						
						|  | Below are examples to encode queries and passages from the MS-MARCO passage ranking dataset. | 
					
						
						|  |  | 
					
						
						|  | ### Transformers | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  |  | 
					
						
						|  | from torch import Tensor | 
					
						
						|  | from transformers import AutoTokenizer, AutoModel | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def average_pool(last_hidden_states: Tensor, | 
					
						
						|  | attention_mask: Tensor) -> Tensor: | 
					
						
						|  | last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) | 
					
						
						|  | return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] | 
					
						
						|  |  | 
					
						
						|  | def get_detailed_instruct(task_description: str, query: str) -> str: | 
					
						
						|  | return f'Instruct: {task_description}\nQuery: {query}' | 
					
						
						|  |  | 
					
						
						|  | # Each query must come with a one-sentence instruction that describes the task | 
					
						
						|  | task = 'Given a web search query, retrieve relevant passages that answer the query' | 
					
						
						|  | queries = [ | 
					
						
						|  | get_detailed_instruct(task, 'how much protein should a female eat'), | 
					
						
						|  | get_detailed_instruct(task, '南瓜的家常做法') | 
					
						
						|  | ] | 
					
						
						|  | # No need to add instruction for retrieval documents | 
					
						
						|  | documents = [ | 
					
						
						|  | "As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", | 
					
						
						|  | "1.清炒南瓜丝 原料:嫩南瓜半个 调料:葱、盐、白糖、鸡精 做法: 1、南瓜用刀薄薄的削去表面一层皮,用勺子刮去瓤 2、擦成细丝(没有擦菜板就用刀慢慢切成细丝) 3、锅烧热放油,入葱花煸出香味 4、入南瓜丝快速翻炒一分钟左右,放盐、一点白糖和鸡精调味出锅 2.香葱炒南瓜 原料:南瓜1只 调料:香葱、蒜末、橄榄油、盐 做法: 1、将南瓜去皮,切成片 2、油锅8成热后,将蒜末放入爆香 3、爆香后,将南瓜片放入,翻炒 4、在翻炒的同时,可以不时地往锅里加水,但不要太多 5、放入盐,炒匀 6、南瓜差不多软和绵了之后,就可以关火 7、撒入香葱,即可出锅" | 
					
						
						|  | ] | 
					
						
						|  | input_texts = queries + documents | 
					
						
						|  |  | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained('intfloat/multilingual-e5-large-instruct') | 
					
						
						|  | model = AutoModel.from_pretrained('intfloat/multilingual-e5-large-instruct') | 
					
						
						|  |  | 
					
						
						|  | # Tokenize the input texts | 
					
						
						|  | batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt') | 
					
						
						|  |  | 
					
						
						|  | outputs = model(**batch_dict) | 
					
						
						|  | embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask']) | 
					
						
						|  |  | 
					
						
						|  | # normalize embeddings | 
					
						
						|  | embeddings = F.normalize(embeddings, p=2, dim=1) | 
					
						
						|  | scores = (embeddings[:2] @ embeddings[2:].T) * 100 | 
					
						
						|  | print(scores.tolist()) | 
					
						
						|  | # => [[91.92852783203125, 67.580322265625], [70.3814468383789, 92.1330795288086]] | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ### Sentence Transformers | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | # Requires: sentence-transformers | 
					
						
						|  | from sentence_transformers import SentenceTransformer | 
					
						
						|  |  | 
					
						
						|  | def get_detailed_instruct(task_description: str, query: str) -> str: | 
					
						
						|  | return f'Instruct: {task_description}\nQuery: {query}' | 
					
						
						|  |  | 
					
						
						|  | # Each query must come with a one-sentence instruction that describes the task | 
					
						
						|  | task = 'Given a web search query, retrieve relevant passages that answer the query' | 
					
						
						|  | queries = [ | 
					
						
						|  | get_detailed_instruct(task, 'how much protein should a female eat'), | 
					
						
						|  | get_detailed_instruct(task, '南瓜的家常做法') | 
					
						
						|  | ] | 
					
						
						|  | # No need to add instruction for retrieval documents | 
					
						
						|  | documents = [ | 
					
						
						|  | "As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", | 
					
						
						|  | "1.清炒南瓜丝 原料:嫩南瓜半个 调料:葱、盐、白糖、鸡精 做法: 1、南瓜用刀薄薄的削去表面一层皮,用勺子刮去瓤 2、擦成细丝(没有擦菜板就用刀慢慢切成细丝) 3、锅烧热放油,入葱花煸出香味 4、入南瓜丝快速翻炒一分钟左右,放盐、一点白糖和鸡精调味出锅 2.香葱炒南瓜 原料:南瓜1只 调料:香葱、蒜末、橄榄油、盐 做法: 1、将南瓜去皮,切成片 2、油锅8成热后,将蒜末放入爆香 3、爆香后,将南瓜片放入,翻炒 4、在翻炒的同时,可以不时地往锅里加水,但不要太多 5、放入盐,炒匀 6、南瓜差不多软和绵了之后,就可以关火 7、撒入香葱,即可出锅" | 
					
						
						|  | ] | 
					
						
						|  | input_texts = queries + documents | 
					
						
						|  |  | 
					
						
						|  | model = SentenceTransformer('intfloat/multilingual-e5-large-instruct') | 
					
						
						|  |  | 
					
						
						|  | embeddings = model.encode(input_texts, convert_to_tensor=True, normalize_embeddings=True) | 
					
						
						|  | scores = (embeddings[:2] @ embeddings[2:].T) * 100 | 
					
						
						|  | print(scores.tolist()) | 
					
						
						|  | # [[91.92853546142578, 67.5802993774414], [70.38143157958984, 92.13307189941406]] | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ### Infinity | 
					
						
						|  |  | 
					
						
						|  | Usage with [Infinity](https://github.com/michaelfeil/infinity): | 
					
						
						|  |  | 
					
						
						|  | ```bash | 
					
						
						|  | docker run --gpus all -v $PWD/data:/app/.cache -e HF_TOKEN=$HF_TOKEN -p "7997":"7997" \ | 
					
						
						|  | michaelf34/infinity:0.0.68 \ | 
					
						
						|  | v2 --model-id intfloat/multilingual-e5-large-instruct --revision "main" --dtype float16 --batch-size 32 --engine torch --port 7997 | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ## Supported Languages | 
					
						
						|  |  | 
					
						
						|  | This model is initialized from [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) | 
					
						
						|  | and continually trained on a mixture of multilingual datasets. | 
					
						
						|  | It supports 100 languages from xlm-roberta, | 
					
						
						|  | but low-resource languages may see performance degradation. | 
					
						
						|  |  | 
					
						
						|  | ## Training Details | 
					
						
						|  |  | 
					
						
						|  | **Initialization**: [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) | 
					
						
						|  |  | 
					
						
						|  | **First stage**: contrastive pre-training with 1 billion weakly supervised text pairs. | 
					
						
						|  |  | 
					
						
						|  | **Second stage**: fine-tuning on datasets from the [E5-mistral](https://arxiv.org/abs/2401.00368) paper. | 
					
						
						|  |  | 
					
						
						|  | ## MTEB Benchmark Evaluation | 
					
						
						|  |  | 
					
						
						|  | Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results | 
					
						
						|  | on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB benchmark](https://arxiv.org/abs/2210.07316). | 
					
						
						|  |  | 
					
						
						|  | ## FAQ | 
					
						
						|  |  | 
					
						
						|  | **1. Do I need to add instructions to the query?** | 
					
						
						|  |  | 
					
						
						|  | Yes, this is how the model is trained, otherwise you will see a performance degradation. | 
					
						
						|  | The task definition should be a one-sentence instruction that describes the task. | 
					
						
						|  | This is a way to customize text embeddings for different scenarios through natural language instructions. | 
					
						
						|  |  | 
					
						
						|  | Please check out [unilm/e5/utils.py](https://github.com/microsoft/unilm/blob/9c0f1ff7ca53431fe47d2637dfe253643d94185b/e5/utils.py#L106) for instructions we used for evaluation. | 
					
						
						|  |  | 
					
						
						|  | On the other hand, there is no need to add instructions to the document side. | 
					
						
						|  |  | 
					
						
						|  | **2. Why are my reproduced results slightly different from reported in the model card?** | 
					
						
						|  |  | 
					
						
						|  | Different versions of `transformers` and `pytorch` could cause negligible but non-zero performance differences. | 
					
						
						|  |  | 
					
						
						|  | **3. Why does the cosine similarity scores distribute around 0.7 to 1.0?** | 
					
						
						|  |  | 
					
						
						|  | This is a known and expected behavior as we use a low temperature 0.01 for InfoNCE contrastive loss. | 
					
						
						|  |  | 
					
						
						|  | For text embedding tasks like text retrieval or semantic similarity, | 
					
						
						|  | what matters is the relative order of the scores instead of the absolute values, | 
					
						
						|  | so this should not be an issue. | 
					
						
						|  |  | 
					
						
						|  | ## Citation | 
					
						
						|  |  | 
					
						
						|  | If you find our paper or models helpful, please consider cite as follows: | 
					
						
						|  |  | 
					
						
						|  | ``` | 
					
						
						|  | @article{wang2024multilingual, | 
					
						
						|  | title={Multilingual E5 Text Embeddings: A Technical Report}, | 
					
						
						|  | author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Yang, Linjun and Majumder, Rangan and Wei, Furu}, | 
					
						
						|  | journal={arXiv preprint arXiv:2402.05672}, | 
					
						
						|  | year={2024} | 
					
						
						|  | } | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ## Limitations | 
					
						
						|  |  | 
					
						
						|  | Long texts will be truncated to at most 512 tokens. | 
					
						
						|  |  |