|  | --- | 
					
						
						|  | tags: | 
					
						
						|  | - mteb | 
					
						
						|  | - Sentence Transformers | 
					
						
						|  | - sentence-similarity | 
					
						
						|  | - sentence-transformers | 
					
						
						|  | model-index: | 
					
						
						|  | - name: e5-small-v2 | 
					
						
						|  | results: | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_counterfactual | 
					
						
						|  | name: MTEB AmazonCounterfactualClassification (en) | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | revision: e8379541af4e31359cca9fbcf4b00f2671dba205 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 77.59701492537313 | 
					
						
						|  | - type: ap | 
					
						
						|  | value: 41.67064885731708 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 71.86465946398573 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_polarity | 
					
						
						|  | name: MTEB AmazonPolarityClassification | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: e2d317d38cd51312af73b3d32a06d1a08b442046 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 91.265875 | 
					
						
						|  | - type: ap | 
					
						
						|  | value: 87.67633085349644 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 91.24297521425744 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_reviews_multi | 
					
						
						|  | name: MTEB AmazonReviewsClassification (en) | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | revision: 1399c76144fd37290681b995c656ef9b2e06e26d | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 45.882000000000005 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 45.08058870381236 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: arguana | 
					
						
						|  | name: MTEB ArguAna | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 20.697 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 33.975 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 35.223 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 35.260000000000005 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 29.776999999999997 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 32.035000000000004 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 20.982 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 34.094 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 35.343 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 35.38 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 29.884 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 32.141999999999996 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 20.697 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 41.668 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 47.397 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 48.305 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 32.928000000000004 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 36.998999999999995 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 20.697 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 6.636 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 0.924 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.099 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 14.035 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 10.398 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 20.697 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 66.35799999999999 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 92.39 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 99.36 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 42.105 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 51.991 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/arxiv-clustering-p2p | 
					
						
						|  | name: MTEB ArxivClusteringP2P | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 42.1169517447068 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/arxiv-clustering-s2s | 
					
						
						|  | name: MTEB ArxivClusteringS2S | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 34.79553720107097 | 
					
						
						|  | - task: | 
					
						
						|  | type: Reranking | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/askubuntudupquestions-reranking | 
					
						
						|  | name: MTEB AskUbuntuDupQuestions | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map | 
					
						
						|  | value: 58.10811337308168 | 
					
						
						|  | - type: mrr | 
					
						
						|  | value: 71.56410763751482 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/biosses-sts | 
					
						
						|  | name: MTEB BIOSSES | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: d3fb88f8f02e40887cd149695127462bbcf29b4a | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 78.46834918248696 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 79.4289182755206 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 76.26662973727008 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 78.11744260952536 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 76.08175262609434 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 78.29395265552289 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/banking77 | 
					
						
						|  | name: MTEB Banking77Classification | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 81.63636363636364 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 81.55779952376953 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/biorxiv-clustering-p2p | 
					
						
						|  | name: MTEB BiorxivClusteringP2P | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 35.88541137137571 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/biorxiv-clustering-s2s | 
					
						
						|  | name: MTEB BiorxivClusteringS2S | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 30.05205685274407 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: BeIR/cqadupstack | 
					
						
						|  | name: MTEB CQADupstackAndroidRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 30.293999999999997 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 39.876 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 41.315000000000005 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 41.451 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 37.194 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 38.728 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 37.053000000000004 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 45.281 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 46.188 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 46.245999999999995 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 43.228 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 44.366 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 37.053000000000004 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 45.086 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 50.756 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 53.123 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 41.416 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 43.098 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 37.053000000000004 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 8.34 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.346 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.186 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 19.647000000000002 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 13.877 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 30.293999999999997 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 54.309 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 78.59 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 93.82300000000001 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 43.168 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 48.192 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: BeIR/cqadupstack | 
					
						
						|  | name: MTEB CQADupstackEnglishRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 28.738000000000003 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 36.925999999999995 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 38.017 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 38.144 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 34.446 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 35.704 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 35.478 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 42.786 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 43.458999999999996 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 43.507 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 40.648 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 41.804 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 35.478 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 42.044 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 46.249 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 48.44 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 38.314 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 39.798 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 35.478 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 7.764 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.253 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.174 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 18.047 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 12.637 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 28.738000000000003 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 50.659 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 68.76299999999999 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 82.811 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 39.536 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 43.763999999999996 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: BeIR/cqadupstack | 
					
						
						|  | name: MTEB CQADupstackGamingRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 38.565 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 50.168 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 51.11 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 51.173 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 47.044000000000004 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 48.838 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 44.201 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 53.596999999999994 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 54.211 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 54.247 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 51.202000000000005 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 52.608999999999995 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 44.201 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 55.694 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 59.518 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 60.907 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 50.395999999999994 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 53.022999999999996 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 44.201 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 8.84 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.162 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.133 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 22.153 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 15.260000000000002 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 38.565 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 68.65 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 85.37400000000001 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 95.37400000000001 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 54.645999999999994 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 60.958 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: BeIR/cqadupstack | 
					
						
						|  | name: MTEB CQADupstackGisRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 23.945 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 30.641000000000002 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 31.599 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 31.691000000000003 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 28.405 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 29.704000000000004 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 25.537 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 32.22 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 33.138 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 33.214 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 30.151 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 31.298 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 25.537 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 34.638000000000005 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 39.486 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 41.936 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 30.333 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 32.482 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 25.537 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 5.153 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 0.7929999999999999 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.104 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 12.429 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 8.723 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 23.945 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 45.412 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 67.836 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 86.467 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 34.031 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 39.039 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: BeIR/cqadupstack | 
					
						
						|  | name: MTEB CQADupstackMathematicaRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 14.419 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 20.858999999999998 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 22.067999999999998 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 22.192 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 18.673000000000002 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 19.968 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 17.785999999999998 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 24.878 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 26.021 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 26.095000000000002 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 22.616 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 23.785 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 17.785999999999998 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 25.153 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 31.05 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 34.052 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 21.117 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 23.048 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 17.785999999999998 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 4.590000000000001 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 0.864 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.125 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 9.908999999999999 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 7.313 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 14.419 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 34.477999999999994 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 60.02499999999999 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 81.646 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 23.515 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 28.266999999999996 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: BeIR/cqadupstack | 
					
						
						|  | name: MTEB CQADupstackPhysicsRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 26.268 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 35.114000000000004 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 36.212 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 36.333 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 32.436 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 33.992 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 31.761 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 40.355999999999995 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 41.125 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 41.186 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 37.937 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 39.463 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 31.761 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 40.422000000000004 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 45.458999999999996 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 47.951 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 35.972 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 38.272 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 31.761 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 7.103 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.133 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.152 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 16.779 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 11.877 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 26.268 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 51.053000000000004 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 72.702 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 89.521 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 38.619 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 44.671 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: BeIR/cqadupstack | 
					
						
						|  | name: MTEB CQADupstackProgrammersRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 25.230999999999998 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 34.227000000000004 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 35.370000000000005 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 35.488 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 31.496000000000002 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 33.034 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 30.822 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 39.045 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 39.809 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 39.873 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 36.663000000000004 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 37.964 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 30.822 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 39.472 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 44.574999999999996 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 47.162 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 34.929 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 37.002 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 30.822 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 7.055 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.124 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.152 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 16.591 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 11.667 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 25.230999999999998 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 50.42100000000001 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 72.685 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 90.469 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 37.503 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 43.123 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: BeIR/cqadupstack | 
					
						
						|  | name: MTEB CQADupstackRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 24.604166666666664 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 32.427166666666665 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 33.51474999999999 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 33.6345 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 30.02366666666667 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 31.382333333333328 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 29.001166666666666 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 36.3315 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 37.16683333333333 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 37.23341666666668 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 34.19916666666667 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 35.40458333333334 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 29.001166666666666 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 37.06883333333334 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 41.95816666666666 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 44.501583333333336 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 32.973499999999994 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 34.90833333333334 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 29.001166666666666 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 6.336 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.0282499999999999 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.14391666666666664 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 14.932499999999996 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 10.50825 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 24.604166666666664 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 46.9525 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 68.67816666666667 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 86.59783333333334 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 35.49783333333333 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 40.52525000000001 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: BeIR/cqadupstack | 
					
						
						|  | name: MTEB CQADupstackStatsRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 23.559 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 29.023 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 29.818 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 29.909000000000002 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 27.037 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 28.225 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 26.994 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 31.962000000000003 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 32.726 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 32.800000000000004 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 30.266 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 31.208999999999996 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 26.994 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 32.53 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 36.758 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 39.362 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 28.985 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 30.757 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 26.994 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 4.968999999999999 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 0.759 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.106 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 12.219 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 8.527999999999999 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 23.559 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 40.585 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 60.306000000000004 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 80.11 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 30.794 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 35.186 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: BeIR/cqadupstack | 
					
						
						|  | name: MTEB CQADupstackTexRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 16.384999999999998 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 22.142 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 23.057 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 23.177 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 20.29 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 21.332 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 19.89 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 25.771 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 26.599 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 26.680999999999997 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 23.962 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 24.934 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 19.89 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 25.97 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 30.605 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 33.619 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 22.704 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 24.199 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 19.89 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 4.553 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 0.8049999999999999 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.122 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 10.541 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 7.46 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 16.384999999999998 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 34.001 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 55.17100000000001 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 77.125 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 24.618000000000002 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 28.695999999999998 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: BeIR/cqadupstack | 
					
						
						|  | name: MTEB CQADupstackUnixRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 23.726 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 31.227 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 32.311 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 32.419 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 28.765 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 30.229 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 27.705000000000002 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 35.085 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 35.931000000000004 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 36 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 32.603 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 34.117999999999995 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 27.705000000000002 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 35.968 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 41.197 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 43.76 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 31.304 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 33.661 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 27.705000000000002 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 5.942 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 0.964 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.13 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 13.868 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 9.944 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 23.726 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 46.786 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 70.072 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 88.2 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 33.981 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 39.893 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: BeIR/cqadupstack | 
					
						
						|  | name: MTEB CQADupstackWebmastersRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 23.344 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 31.636999999999997 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 33.065 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 33.300000000000004 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 29.351 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 30.432 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 27.866000000000003 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 35.587 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 36.52 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 36.597 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 33.696 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 34.713 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 27.866000000000003 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 36.61 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 41.88 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 45.105000000000004 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 33.038000000000004 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 34.331 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 27.866000000000003 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 6.917 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.3599999999999999 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.233 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 15.547 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 10.791 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 23.344 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 45.782000000000004 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 69.503 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 90.742 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 35.160000000000004 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 39.058 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: BeIR/cqadupstack | 
					
						
						|  | name: MTEB CQADupstackWordpressRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 20.776 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 27.285999999999998 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 28.235 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 28.337 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 25.147000000000002 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 26.401999999999997 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 22.921 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 29.409999999999997 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 30.275000000000002 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 30.354999999999997 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 27.418 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 28.592000000000002 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 22.921 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 31.239 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 35.965 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 38.602 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 27.174 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 29.229 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 22.921 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 4.806 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 0.776 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.11 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 11.459999999999999 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 8.022 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 20.776 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 41.294 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 63.111 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 82.88600000000001 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 30.403000000000002 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 35.455999999999996 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: climate-fever | 
					
						
						|  | name: MTEB ClimateFEVER | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 9.376 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 15.926000000000002 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 17.585 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 17.776 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 13.014000000000001 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 14.417 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 20.195 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 29.95 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 31.052000000000003 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 31.108000000000004 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 26.667 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 28.458 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 20.195 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 22.871 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 29.921999999999997 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 33.672999999999995 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 17.782999999999998 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 19.544 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 20.195 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 7.394 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.493 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.218 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 13.073 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 10.436 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 9.376 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 28.544999999999998 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 53.147999999999996 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 74.62 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 16.464000000000002 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 21.004 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: dbpedia-entity | 
					
						
						|  | name: MTEB DBPedia | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 8.415000000000001 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 18.738 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 27.291999999999998 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 28.992 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 13.196 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 15.539 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 66.5 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 74.518 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 74.86 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 74.87 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 72.375 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 73.86200000000001 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 54.37499999999999 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 41.317 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 45.845 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 52.92 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 44.983000000000004 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 42.989 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 66.5 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 33.6 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 10.972999999999999 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 2.214 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 48.583 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 42.15 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 8.415000000000001 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 24.953 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 52.48199999999999 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 75.093 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 14.341000000000001 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 18.468 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/emotion | 
					
						
						|  | name: MTEB EmotionClassification | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 47.06499999999999 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 41.439327599975385 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: fever | 
					
						
						|  | name: MTEB FEVER | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 66.02 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 76.68599999999999 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 76.959 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 76.972 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 75.024 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 76.153 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 71.197 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 81.105 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 81.232 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 81.233 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 79.758 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 80.69 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 71.197 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 81.644 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 82.645 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 82.879 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 78.792 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 80.528 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 71.197 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 10.206999999999999 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.093 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.11299999999999999 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 30.868000000000002 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 19.559 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 66.02 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 92.50699999999999 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 96.497 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 97.956 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 84.866 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 89.16199999999999 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: fiqa | 
					
						
						|  | name: MTEB FiQA2018 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 17.948 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 29.833 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 31.487 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 31.674000000000003 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 26.029999999999998 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 28.038999999999998 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 34.721999999999994 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 44.214999999999996 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 44.994 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 45.051 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 41.667 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 43.032 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 34.721999999999994 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 37.434 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 43.702000000000005 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 46.993 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 33.56 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 34.687 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 34.721999999999994 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 10.401 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.7049999999999998 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.22799999999999998 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 22.531000000000002 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 16.42 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 17.948 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 45.062999999999995 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 68.191 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 87.954 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 31.112000000000002 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 36.823 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: hotpotqa | 
					
						
						|  | name: MTEB HotpotQA | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 36.644 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 57.658 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 58.562000000000005 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 58.62500000000001 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 54.022999999999996 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 56.293000000000006 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 73.288 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 80.51700000000001 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 80.72 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 80.728 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 79.33200000000001 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 80.085 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 73.288 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 66.61 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 69.723 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 70.96000000000001 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 61.358999999999995 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 64.277 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 73.288 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 14.17 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.659 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.182 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 39.487 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 25.999 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 36.644 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 70.851 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 82.94399999999999 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 91.134 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 59.230000000000004 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 64.997 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/imdb | 
					
						
						|  | name: MTEB ImdbClassification | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 86.00280000000001 | 
					
						
						|  | - type: ap | 
					
						
						|  | value: 80.46302061021223 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 85.9592921596419 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: msmarco | 
					
						
						|  | name: MTEB MSMARCO | 
					
						
						|  | config: default | 
					
						
						|  | split: dev | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 22.541 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 34.625 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 35.785 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 35.831 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 30.823 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 32.967999999999996 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 23.180999999999997 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 35.207 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 36.315 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 36.355 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 31.483 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 33.589999999999996 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 23.195 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 41.461 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 47.032000000000004 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 48.199999999999996 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 33.702 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 37.522 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 23.195 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 6.526999999999999 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 0.932 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.10300000000000001 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 14.308000000000002 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 10.507 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 22.541 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 62.524 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 88.228 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 97.243 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 41.38 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 50.55 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/mtop_domain | 
					
						
						|  | name: MTEB MTOPDomainClassification (en) | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 92.69949840401279 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 92.54141471311786 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/mtop_intent | 
					
						
						|  | name: MTEB MTOPIntentClassification (en) | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 72.56041951664386 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 55.88499977508287 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (en) | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 71.62071284465365 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 69.36717546572152 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (en) | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 76.35843981170142 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 76.15496453538884 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/medrxiv-clustering-p2p | 
					
						
						|  | name: MTEB MedrxivClusteringP2P | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 31.33664956793118 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/medrxiv-clustering-s2s | 
					
						
						|  | name: MTEB MedrxivClusteringS2S | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 27.883839621715524 | 
					
						
						|  | - task: | 
					
						
						|  | type: Reranking | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/mind_small | 
					
						
						|  | name: MTEB MindSmallReranking | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map | 
					
						
						|  | value: 30.096874986740758 | 
					
						
						|  | - type: mrr | 
					
						
						|  | value: 30.97300481932132 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: nfcorpus | 
					
						
						|  | name: MTEB NFCorpus | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 5.4 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 11.852 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 14.758 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 16.134 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 8.558 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 10.087 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 44.272 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 52.05800000000001 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 52.689 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 52.742999999999995 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 50.205999999999996 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 51.367 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 42.57 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 32.449 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 29.596 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 38.351 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 37.044 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 35.275 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 44.272 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 23.87 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 7.625 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 2.045 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 34.365 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 30.341 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 5.4 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 15.943999999999999 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 29.805 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 61.695 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 9.539 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 12.127 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: nq | 
					
						
						|  | name: MTEB NQ | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 36.047000000000004 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 51.6 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 52.449999999999996 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 52.476 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 47.452 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 49.964 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 40.382 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 54.273 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 54.859 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 54.876000000000005 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 51.014 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 52.983999999999995 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 40.353 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 59.11300000000001 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 62.604000000000006 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 63.187000000000005 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 51.513 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 55.576 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 40.353 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 9.418 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.1440000000000001 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.12 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 23.078000000000003 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 16.250999999999998 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 36.047000000000004 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 79.22200000000001 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 94.23 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 98.51100000000001 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 59.678 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 68.967 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: quora | 
					
						
						|  | name: MTEB QuoraRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 68.232 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 81.674 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 82.338 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 82.36099999999999 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 78.833 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 80.58 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 78.64 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 85.164 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 85.317 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 85.319 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 84.127 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 84.789 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 78.63 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 85.711 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 87.238 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 87.444 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 82.788 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 84.313 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 78.63 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 12.977 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.503 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.156 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 36.113 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 23.71 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 68.232 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 93.30199999999999 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 98.799 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 99.885 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 84.827 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 89.188 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/reddit-clustering | 
					
						
						|  | name: MTEB RedditClustering | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 24640382cdbf8abc73003fb0fa6d111a705499eb | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 45.71879170816294 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/reddit-clustering-p2p | 
					
						
						|  | name: MTEB RedditClusteringP2P | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 282350215ef01743dc01b456c7f5241fa8937f16 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 59.65866311751794 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: scidocs | 
					
						
						|  | name: MTEB SCIDOCS | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 4.218 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 10.337 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 12.131 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 12.411 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 7.4270000000000005 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 8.913 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 20.8 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 30.868000000000002 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 31.903 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 31.972 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 27.367 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 29.372 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 20.8 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 17.765 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 24.914 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 30.206 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 16.64 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 14.712 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 20.8 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 9.24 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.9560000000000002 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.32299999999999995 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 15.467 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 12.94 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 4.218 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 18.752 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 39.7 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 65.57300000000001 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 9.428 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 13.133000000000001 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sickr-sts | 
					
						
						|  | name: MTEB SICK-R | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: a6ea5a8cab320b040a23452cc28066d9beae2cee | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 83.04338850207233 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 78.5054651430423 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 80.30739451228612 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 78.48377464299097 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 80.40795049052781 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 78.49506205443114 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts12-sts | 
					
						
						|  | name: MTEB STS12 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: a0d554a64d88156834ff5ae9920b964011b16384 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 84.11596224442962 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 76.20997388935461 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 80.56858451349109 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 75.92659183871186 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 80.60246102203844 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 76.03018971432664 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts13-sts | 
					
						
						|  | name: MTEB STS13 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 81.34691640755737 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 82.4018369631579 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 81.87673092245366 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 82.3671489960678 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 81.88222387719948 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 82.3816590344736 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts14-sts | 
					
						
						|  | name: MTEB STS14 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 81.2836092579524 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 78.99982781772064 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 80.5184271010527 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 78.89777392101904 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 80.53585705018664 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 78.92898405472994 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts15-sts | 
					
						
						|  | name: MTEB STS15 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 86.7349907750784 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 87.7611234446225 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 86.98759326731624 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 87.58321319424618 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 87.03483090370842 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 87.63278333060288 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts16-sts | 
					
						
						|  | name: MTEB STS16 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 81.75873694924825 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 83.80237999094724 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 83.55023725861537 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 84.12744338577744 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 83.58816983036232 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 84.18520748676501 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts17-crosslingual-sts | 
					
						
						|  | name: MTEB STS17 (en-en) | 
					
						
						|  | config: en-en | 
					
						
						|  | split: test | 
					
						
						|  | revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 87.21630882940174 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 87.72382883437031 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 88.69933350930333 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 88.24660814383081 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 88.77331018833499 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 88.26109989380632 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts22-crosslingual-sts | 
					
						
						|  | name: MTEB STS22 (en) | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 61.11854063060489 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 63.14678634195072 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 61.679090067000864 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 62.28876589509653 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 62.082324165511004 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 62.56030932816679 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/stsbenchmark-sts | 
					
						
						|  | name: MTEB STSBenchmark | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 84.00319882832645 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 85.94529772647257 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 85.6661390122756 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 85.97747815545827 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 85.58422770541893 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 85.9237139181532 | 
					
						
						|  | - task: | 
					
						
						|  | type: Reranking | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/scidocs-reranking | 
					
						
						|  | name: MTEB SciDocsRR | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map | 
					
						
						|  | value: 79.16198731863916 | 
					
						
						|  | - type: mrr | 
					
						
						|  | value: 94.25202702163487 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: scifact | 
					
						
						|  | name: MTEB SciFact | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 54.761 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 64.396 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 65.07 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 65.09899999999999 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 61.846000000000004 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 63.284 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 57.667 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 65.83099999999999 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 66.36800000000001 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 66.39399999999999 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 64.056 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 65.206 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 57.667 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 68.854 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 71.59100000000001 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 72.383 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 64.671 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 66.796 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 57.667 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 9.167 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.053 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.11199999999999999 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 25.444 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 16.667 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 54.761 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 80.9 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 92.767 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 99 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 69.672 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 75.083 | 
					
						
						|  | - task: | 
					
						
						|  | type: PairClassification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sprintduplicatequestions-pairclassification | 
					
						
						|  | name: MTEB SprintDuplicateQuestions | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_accuracy | 
					
						
						|  | value: 99.8079207920792 | 
					
						
						|  | - type: cos_sim_ap | 
					
						
						|  | value: 94.88470927617445 | 
					
						
						|  | - type: cos_sim_f1 | 
					
						
						|  | value: 90.08179959100204 | 
					
						
						|  | - type: cos_sim_precision | 
					
						
						|  | value: 92.15481171548117 | 
					
						
						|  | - type: cos_sim_recall | 
					
						
						|  | value: 88.1 | 
					
						
						|  | - type: dot_accuracy | 
					
						
						|  | value: 99.58613861386138 | 
					
						
						|  | - type: dot_ap | 
					
						
						|  | value: 82.94822578881316 | 
					
						
						|  | - type: dot_f1 | 
					
						
						|  | value: 77.33333333333333 | 
					
						
						|  | - type: dot_precision | 
					
						
						|  | value: 79.36842105263158 | 
					
						
						|  | - type: dot_recall | 
					
						
						|  | value: 75.4 | 
					
						
						|  | - type: euclidean_accuracy | 
					
						
						|  | value: 99.8069306930693 | 
					
						
						|  | - type: euclidean_ap | 
					
						
						|  | value: 94.81367858031837 | 
					
						
						|  | - type: euclidean_f1 | 
					
						
						|  | value: 90.01009081735621 | 
					
						
						|  | - type: euclidean_precision | 
					
						
						|  | value: 90.83503054989816 | 
					
						
						|  | - type: euclidean_recall | 
					
						
						|  | value: 89.2 | 
					
						
						|  | - type: manhattan_accuracy | 
					
						
						|  | value: 99.81188118811882 | 
					
						
						|  | - type: manhattan_ap | 
					
						
						|  | value: 94.91405337220161 | 
					
						
						|  | - type: manhattan_f1 | 
					
						
						|  | value: 90.2763561924258 | 
					
						
						|  | - type: manhattan_precision | 
					
						
						|  | value: 92.45283018867924 | 
					
						
						|  | - type: manhattan_recall | 
					
						
						|  | value: 88.2 | 
					
						
						|  | - type: max_accuracy | 
					
						
						|  | value: 99.81188118811882 | 
					
						
						|  | - type: max_ap | 
					
						
						|  | value: 94.91405337220161 | 
					
						
						|  | - type: max_f1 | 
					
						
						|  | value: 90.2763561924258 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/stackexchange-clustering | 
					
						
						|  | name: MTEB StackExchangeClustering | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 58.511599500053094 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/stackexchange-clustering-p2p | 
					
						
						|  | name: MTEB StackExchangeClusteringP2P | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 815ca46b2622cec33ccafc3735d572c266efdb44 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 31.984728147814707 | 
					
						
						|  | - task: | 
					
						
						|  | type: Reranking | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/stackoverflowdupquestions-reranking | 
					
						
						|  | name: MTEB StackOverflowDupQuestions | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map | 
					
						
						|  | value: 49.93428193939015 | 
					
						
						|  | - type: mrr | 
					
						
						|  | value: 50.916557911043206 | 
					
						
						|  | - task: | 
					
						
						|  | type: Summarization | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/summeval | 
					
						
						|  | name: MTEB SummEval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 31.562500894537145 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 31.162587976726307 | 
					
						
						|  | - type: dot_pearson | 
					
						
						|  | value: 22.633662187735762 | 
					
						
						|  | - type: dot_spearman | 
					
						
						|  | value: 22.723000282378962 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: trec-covid | 
					
						
						|  | name: MTEB TRECCOVID | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 0.219 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 1.871 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 10.487 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 25.122 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 0.657 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 1.0699999999999998 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 84 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 89.567 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 89.748 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 89.748 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 88.667 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 89.567 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 80 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 74.533 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 55.839000000000006 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 49.748 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 79.53099999999999 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 78.245 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 84 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 78.4 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 56.99999999999999 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 21.98 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 85.333 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 84.8 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 0.219 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 2.02 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 13.555 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 46.739999999999995 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 0.685 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 1.13 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: webis-touche2020 | 
					
						
						|  | name: MTEB Touche2020 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 3.5029999999999997 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 11.042 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 16.326999999999998 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 17.836 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 6.174 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 7.979 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 42.857 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 52.617000000000004 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 53.351000000000006 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 53.351000000000006 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 46.939 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 50.714000000000006 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 38.775999999999996 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 27.125 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 35.845 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 47.377 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 29.633 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 28.378999999999998 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 42.857 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 24.082 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 6.877999999999999 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 1.463 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 29.932 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 28.571 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 3.5029999999999997 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 17.068 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 43.361 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 78.835 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 6.821000000000001 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 10.357 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/toxic_conversations_50k | 
					
						
						|  | name: MTEB ToxicConversationsClassification | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 71.0954 | 
					
						
						|  | - type: ap | 
					
						
						|  | value: 14.216844153511959 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 54.63687418565117 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tweet_sentiment_extraction | 
					
						
						|  | name: MTEB TweetSentimentExtractionClassification | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: d604517c81ca91fe16a244d1248fc021f9ecee7a | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 61.46293152235427 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 61.744177921638645 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/twentynewsgroups-clustering | 
					
						
						|  | name: MTEB TwentyNewsgroupsClustering | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 41.12708617788644 | 
					
						
						|  | - task: | 
					
						
						|  | type: PairClassification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/twittersemeval2015-pairclassification | 
					
						
						|  | name: MTEB TwitterSemEval2015 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_accuracy | 
					
						
						|  | value: 85.75430649102938 | 
					
						
						|  | - type: cos_sim_ap | 
					
						
						|  | value: 73.34252536948081 | 
					
						
						|  | - type: cos_sim_f1 | 
					
						
						|  | value: 67.53758935173774 | 
					
						
						|  | - type: cos_sim_precision | 
					
						
						|  | value: 63.3672525439408 | 
					
						
						|  | - type: cos_sim_recall | 
					
						
						|  | value: 72.29551451187335 | 
					
						
						|  | - type: dot_accuracy | 
					
						
						|  | value: 81.71305954580676 | 
					
						
						|  | - type: dot_ap | 
					
						
						|  | value: 59.5532209082386 | 
					
						
						|  | - type: dot_f1 | 
					
						
						|  | value: 56.18466898954705 | 
					
						
						|  | - type: dot_precision | 
					
						
						|  | value: 47.830923248053395 | 
					
						
						|  | - type: dot_recall | 
					
						
						|  | value: 68.07387862796834 | 
					
						
						|  | - type: euclidean_accuracy | 
					
						
						|  | value: 85.81987244441795 | 
					
						
						|  | - type: euclidean_ap | 
					
						
						|  | value: 73.34325409809446 | 
					
						
						|  | - type: euclidean_f1 | 
					
						
						|  | value: 67.83451360417443 | 
					
						
						|  | - type: euclidean_precision | 
					
						
						|  | value: 64.09955388588871 | 
					
						
						|  | - type: euclidean_recall | 
					
						
						|  | value: 72.0316622691293 | 
					
						
						|  | - type: manhattan_accuracy | 
					
						
						|  | value: 85.68277999642368 | 
					
						
						|  | - type: manhattan_ap | 
					
						
						|  | value: 73.1535450121903 | 
					
						
						|  | - type: manhattan_f1 | 
					
						
						|  | value: 67.928237896289 | 
					
						
						|  | - type: manhattan_precision | 
					
						
						|  | value: 63.56945722171113 | 
					
						
						|  | - type: manhattan_recall | 
					
						
						|  | value: 72.9287598944591 | 
					
						
						|  | - type: max_accuracy | 
					
						
						|  | value: 85.81987244441795 | 
					
						
						|  | - type: max_ap | 
					
						
						|  | value: 73.34325409809446 | 
					
						
						|  | - type: max_f1 | 
					
						
						|  | value: 67.928237896289 | 
					
						
						|  | - task: | 
					
						
						|  | type: PairClassification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/twitterurlcorpus-pairclassification | 
					
						
						|  | name: MTEB TwitterURLCorpus | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_accuracy | 
					
						
						|  | value: 88.90441262079403 | 
					
						
						|  | - type: cos_sim_ap | 
					
						
						|  | value: 85.79331880741438 | 
					
						
						|  | - type: cos_sim_f1 | 
					
						
						|  | value: 78.31563529842548 | 
					
						
						|  | - type: cos_sim_precision | 
					
						
						|  | value: 74.6683424102779 | 
					
						
						|  | - type: cos_sim_recall | 
					
						
						|  | value: 82.33754234678165 | 
					
						
						|  | - type: dot_accuracy | 
					
						
						|  | value: 84.89928978926534 | 
					
						
						|  | - type: dot_ap | 
					
						
						|  | value: 75.25819218316 | 
					
						
						|  | - type: dot_f1 | 
					
						
						|  | value: 69.88730119720536 | 
					
						
						|  | - type: dot_precision | 
					
						
						|  | value: 64.23362374959665 | 
					
						
						|  | - type: dot_recall | 
					
						
						|  | value: 76.63227594702803 | 
					
						
						|  | - type: euclidean_accuracy | 
					
						
						|  | value: 89.01695967710637 | 
					
						
						|  | - type: euclidean_ap | 
					
						
						|  | value: 85.98986606038852 | 
					
						
						|  | - type: euclidean_f1 | 
					
						
						|  | value: 78.5277880014722 | 
					
						
						|  | - type: euclidean_precision | 
					
						
						|  | value: 75.22211253701876 | 
					
						
						|  | - type: euclidean_recall | 
					
						
						|  | value: 82.13735756082538 | 
					
						
						|  | - type: manhattan_accuracy | 
					
						
						|  | value: 88.99561454573679 | 
					
						
						|  | - type: manhattan_ap | 
					
						
						|  | value: 85.92262421793953 | 
					
						
						|  | - type: manhattan_f1 | 
					
						
						|  | value: 78.38866094740769 | 
					
						
						|  | - type: manhattan_precision | 
					
						
						|  | value: 76.02373028505282 | 
					
						
						|  | - type: manhattan_recall | 
					
						
						|  | value: 80.9054511857099 | 
					
						
						|  | - type: max_accuracy | 
					
						
						|  | value: 89.01695967710637 | 
					
						
						|  | - type: max_ap | 
					
						
						|  | value: 85.98986606038852 | 
					
						
						|  | - type: max_f1 | 
					
						
						|  | value: 78.5277880014722 | 
					
						
						|  | language: | 
					
						
						|  | - en | 
					
						
						|  | license: mit | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | # E5-small-v2 | 
					
						
						|  |  | 
					
						
						|  | [Text Embeddings by Weakly-Supervised Contrastive Pre-training](https://arxiv.org/pdf/2212.03533.pdf). | 
					
						
						|  | Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022 | 
					
						
						|  |  | 
					
						
						|  | This model has 12 layers and the embedding size is 384. | 
					
						
						|  |  | 
					
						
						|  | ## Usage | 
					
						
						|  |  | 
					
						
						|  | Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset. | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  |  | 
					
						
						|  | from torch import Tensor | 
					
						
						|  | from transformers import AutoTokenizer, AutoModel | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def average_pool(last_hidden_states: Tensor, | 
					
						
						|  | attention_mask: Tensor) -> Tensor: | 
					
						
						|  | last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) | 
					
						
						|  | return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | # Each input text should start with "query: " or "passage: ". | 
					
						
						|  | # For tasks other than retrieval, you can simply use the "query: " prefix. | 
					
						
						|  | input_texts = ['query: how much protein should a female eat', | 
					
						
						|  | 'query: summit define', | 
					
						
						|  | "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", | 
					
						
						|  | "passage: Definition of summit for English Language Learners. : 1  the highest point of a mountain : the top of a mountain. : 2  the highest level. : 3  a meeting or series of meetings between the leaders of two or more governments."] | 
					
						
						|  |  | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-small-v2') | 
					
						
						|  | model = AutoModel.from_pretrained('intfloat/e5-small-v2') | 
					
						
						|  |  | 
					
						
						|  | # Tokenize the input texts | 
					
						
						|  | batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt') | 
					
						
						|  |  | 
					
						
						|  | outputs = model(**batch_dict) | 
					
						
						|  | embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask']) | 
					
						
						|  |  | 
					
						
						|  | # normalize embeddings | 
					
						
						|  | embeddings = F.normalize(embeddings, p=2, dim=1) | 
					
						
						|  | scores = (embeddings[:2] @ embeddings[2:].T) * 100 | 
					
						
						|  | print(scores.tolist()) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ## Training Details | 
					
						
						|  |  | 
					
						
						|  | Please refer to our paper at [https://arxiv.org/pdf/2212.03533.pdf](https://arxiv.org/pdf/2212.03533.pdf). | 
					
						
						|  |  | 
					
						
						|  | ## Benchmark Evaluation | 
					
						
						|  |  | 
					
						
						|  | Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results | 
					
						
						|  | on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB benchmark](https://arxiv.org/abs/2210.07316). | 
					
						
						|  |  | 
					
						
						|  | ## Support for Sentence Transformers | 
					
						
						|  |  | 
					
						
						|  | Below is an example for usage with sentence_transformers. | 
					
						
						|  | ```python | 
					
						
						|  | from sentence_transformers import SentenceTransformer | 
					
						
						|  | model = SentenceTransformer('intfloat/e5-small-v2') | 
					
						
						|  | input_texts = [ | 
					
						
						|  | 'query: how much protein should a female eat', | 
					
						
						|  | 'query: summit define', | 
					
						
						|  | "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", | 
					
						
						|  | "passage: Definition of summit for English Language Learners. : 1  the highest point of a mountain : the top of a mountain. : 2  the highest level. : 3  a meeting or series of meetings between the leaders of two or more governments." | 
					
						
						|  | ] | 
					
						
						|  | embeddings = model.encode(input_texts, normalize_embeddings=True) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | Package requirements | 
					
						
						|  |  | 
					
						
						|  | `pip install sentence_transformers~=2.2.2` | 
					
						
						|  |  | 
					
						
						|  | Contributors: [michaelfeil](https://huggingface.co/michaelfeil) | 
					
						
						|  |  | 
					
						
						|  | ## FAQ | 
					
						
						|  |  | 
					
						
						|  | **1. Do I need to add the prefix "query: " and "passage: " to input texts?** | 
					
						
						|  |  | 
					
						
						|  | Yes, this is how the model is trained, otherwise you will see a performance degradation. | 
					
						
						|  |  | 
					
						
						|  | Here are some rules of thumb: | 
					
						
						|  | - Use "query: " and "passage: " correspondingly for asymmetric tasks such as passage retrieval in open QA, ad-hoc information retrieval. | 
					
						
						|  |  | 
					
						
						|  | - Use "query: " prefix for symmetric tasks such as semantic similarity, paraphrase retrieval. | 
					
						
						|  |  | 
					
						
						|  | - Use "query: " prefix if you want to use embeddings as features, such as linear probing classification, clustering. | 
					
						
						|  |  | 
					
						
						|  | **2. Why are my reproduced results slightly different from reported in the model card?** | 
					
						
						|  |  | 
					
						
						|  | Different versions of `transformers` and `pytorch` could cause negligible but non-zero performance differences. | 
					
						
						|  |  | 
					
						
						|  | **3. Why does the cosine similarity scores distribute around 0.7 to 1.0?** | 
					
						
						|  |  | 
					
						
						|  | This is a known and expected behavior as we use a low temperature 0.01 for InfoNCE contrastive loss. | 
					
						
						|  |  | 
					
						
						|  | For text embedding tasks like text retrieval or semantic similarity, | 
					
						
						|  | what matters is the relative order of the scores instead of the absolute values, | 
					
						
						|  | so this should not be an issue. | 
					
						
						|  |  | 
					
						
						|  | ## Citation | 
					
						
						|  |  | 
					
						
						|  | If you find our paper or models helpful, please consider cite as follows: | 
					
						
						|  |  | 
					
						
						|  | ``` | 
					
						
						|  | @article{wang2022text, | 
					
						
						|  | title={Text Embeddings by Weakly-Supervised Contrastive Pre-training}, | 
					
						
						|  | author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Jiao, Binxing and Yang, Linjun and Jiang, Daxin and Majumder, Rangan and Wei, Furu}, | 
					
						
						|  | journal={arXiv preprint arXiv:2212.03533}, | 
					
						
						|  | year={2022} | 
					
						
						|  | } | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ## Limitations | 
					
						
						|  |  | 
					
						
						|  | This model only works for English texts. Long texts will be truncated to at most 512 tokens. | 
					
						
						|  |  | 
					
						
						|  |  |