|
---
|
|
tags:
|
|
- mteb
|
|
- Sentence Transformers
|
|
- sentence-similarity
|
|
- sentence-transformers
|
|
model-index:
|
|
- name: e5-large-v2
|
|
results:
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/amazon_counterfactual
|
|
name: MTEB AmazonCounterfactualClassification (en)
|
|
config: en
|
|
split: test
|
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
|
metrics:
|
|
- type: accuracy
|
|
value: 79.22388059701493
|
|
- type: ap
|
|
value: 43.20816505595132
|
|
- type: f1
|
|
value: 73.27811303522058
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/amazon_polarity
|
|
name: MTEB AmazonPolarityClassification
|
|
config: default
|
|
split: test
|
|
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
|
metrics:
|
|
- type: accuracy
|
|
value: 93.748325
|
|
- type: ap
|
|
value: 90.72534979701297
|
|
- type: f1
|
|
value: 93.73895874282185
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/amazon_reviews_multi
|
|
name: MTEB AmazonReviewsClassification (en)
|
|
config: en
|
|
split: test
|
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
|
metrics:
|
|
- type: accuracy
|
|
value: 48.612
|
|
- type: f1
|
|
value: 47.61157345898393
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: arguana
|
|
name: MTEB ArguAna
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 23.541999999999998
|
|
- type: map_at_10
|
|
value: 38.208
|
|
- type: map_at_100
|
|
value: 39.417
|
|
- type: map_at_1000
|
|
value: 39.428999999999995
|
|
- type: map_at_3
|
|
value: 33.95
|
|
- type: map_at_5
|
|
value: 36.329
|
|
- type: mrr_at_1
|
|
value: 23.755000000000003
|
|
- type: mrr_at_10
|
|
value: 38.288
|
|
- type: mrr_at_100
|
|
value: 39.511
|
|
- type: mrr_at_1000
|
|
value: 39.523
|
|
- type: mrr_at_3
|
|
value: 34.009
|
|
- type: mrr_at_5
|
|
value: 36.434
|
|
- type: ndcg_at_1
|
|
value: 23.541999999999998
|
|
- type: ndcg_at_10
|
|
value: 46.417
|
|
- type: ndcg_at_100
|
|
value: 51.812000000000005
|
|
- type: ndcg_at_1000
|
|
value: 52.137
|
|
- type: ndcg_at_3
|
|
value: 37.528
|
|
- type: ndcg_at_5
|
|
value: 41.81
|
|
- type: precision_at_1
|
|
value: 23.541999999999998
|
|
- type: precision_at_10
|
|
value: 7.269
|
|
- type: precision_at_100
|
|
value: 0.9690000000000001
|
|
- type: precision_at_1000
|
|
value: 0.099
|
|
- type: precision_at_3
|
|
value: 15.979
|
|
- type: precision_at_5
|
|
value: 11.664
|
|
- type: recall_at_1
|
|
value: 23.541999999999998
|
|
- type: recall_at_10
|
|
value: 72.688
|
|
- type: recall_at_100
|
|
value: 96.871
|
|
- type: recall_at_1000
|
|
value: 99.431
|
|
- type: recall_at_3
|
|
value: 47.937000000000005
|
|
- type: recall_at_5
|
|
value: 58.321
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/arxiv-clustering-p2p
|
|
name: MTEB ArxivClusteringP2P
|
|
config: default
|
|
split: test
|
|
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
|
metrics:
|
|
- type: v_measure
|
|
value: 45.546499570522094
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/arxiv-clustering-s2s
|
|
name: MTEB ArxivClusteringS2S
|
|
config: default
|
|
split: test
|
|
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
|
metrics:
|
|
- type: v_measure
|
|
value: 41.01607489943561
|
|
- task:
|
|
type: Reranking
|
|
dataset:
|
|
type: mteb/askubuntudupquestions-reranking
|
|
name: MTEB AskUbuntuDupQuestions
|
|
config: default
|
|
split: test
|
|
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
|
metrics:
|
|
- type: map
|
|
value: 59.616107510107774
|
|
- type: mrr
|
|
value: 72.75106626214661
|
|
- task:
|
|
type: STS
|
|
dataset:
|
|
type: mteb/biosses-sts
|
|
name: MTEB BIOSSES
|
|
config: default
|
|
split: test
|
|
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 84.33018094733868
|
|
- type: cos_sim_spearman
|
|
value: 83.60190492611737
|
|
- type: euclidean_pearson
|
|
value: 82.1492450218961
|
|
- type: euclidean_spearman
|
|
value: 82.70308926526991
|
|
- type: manhattan_pearson
|
|
value: 81.93959600076842
|
|
- type: manhattan_spearman
|
|
value: 82.73260801016369
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/banking77
|
|
name: MTEB Banking77Classification
|
|
config: default
|
|
split: test
|
|
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
|
metrics:
|
|
- type: accuracy
|
|
value: 84.54545454545455
|
|
- type: f1
|
|
value: 84.49582530928923
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/biorxiv-clustering-p2p
|
|
name: MTEB BiorxivClusteringP2P
|
|
config: default
|
|
split: test
|
|
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
|
metrics:
|
|
- type: v_measure
|
|
value: 37.362725540120096
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/biorxiv-clustering-s2s
|
|
name: MTEB BiorxivClusteringS2S
|
|
config: default
|
|
split: test
|
|
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
|
metrics:
|
|
- type: v_measure
|
|
value: 34.849509608178145
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackAndroidRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 31.502999999999997
|
|
- type: map_at_10
|
|
value: 43.323
|
|
- type: map_at_100
|
|
value: 44.708999999999996
|
|
- type: map_at_1000
|
|
value: 44.838
|
|
- type: map_at_3
|
|
value: 38.987
|
|
- type: map_at_5
|
|
value: 41.516999999999996
|
|
- type: mrr_at_1
|
|
value: 38.769999999999996
|
|
- type: mrr_at_10
|
|
value: 49.13
|
|
- type: mrr_at_100
|
|
value: 49.697
|
|
- type: mrr_at_1000
|
|
value: 49.741
|
|
- type: mrr_at_3
|
|
value: 45.804
|
|
- type: mrr_at_5
|
|
value: 47.842
|
|
- type: ndcg_at_1
|
|
value: 38.769999999999996
|
|
- type: ndcg_at_10
|
|
value: 50.266999999999996
|
|
- type: ndcg_at_100
|
|
value: 54.967
|
|
- type: ndcg_at_1000
|
|
value: 56.976000000000006
|
|
- type: ndcg_at_3
|
|
value: 43.823
|
|
- type: ndcg_at_5
|
|
value: 47.12
|
|
- type: precision_at_1
|
|
value: 38.769999999999996
|
|
- type: precision_at_10
|
|
value: 10.057
|
|
- type: precision_at_100
|
|
value: 1.554
|
|
- type: precision_at_1000
|
|
value: 0.202
|
|
- type: precision_at_3
|
|
value: 21.125
|
|
- type: precision_at_5
|
|
value: 15.851
|
|
- type: recall_at_1
|
|
value: 31.502999999999997
|
|
- type: recall_at_10
|
|
value: 63.715999999999994
|
|
- type: recall_at_100
|
|
value: 83.61800000000001
|
|
- type: recall_at_1000
|
|
value: 96.63199999999999
|
|
- type: recall_at_3
|
|
value: 45.403
|
|
- type: recall_at_5
|
|
value: 54.481
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackEnglishRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 27.833000000000002
|
|
- type: map_at_10
|
|
value: 37.330999999999996
|
|
- type: map_at_100
|
|
value: 38.580999999999996
|
|
- type: map_at_1000
|
|
value: 38.708
|
|
- type: map_at_3
|
|
value: 34.713
|
|
- type: map_at_5
|
|
value: 36.104
|
|
- type: mrr_at_1
|
|
value: 35.223
|
|
- type: mrr_at_10
|
|
value: 43.419000000000004
|
|
- type: mrr_at_100
|
|
value: 44.198
|
|
- type: mrr_at_1000
|
|
value: 44.249
|
|
- type: mrr_at_3
|
|
value: 41.614000000000004
|
|
- type: mrr_at_5
|
|
value: 42.553000000000004
|
|
- type: ndcg_at_1
|
|
value: 35.223
|
|
- type: ndcg_at_10
|
|
value: 42.687999999999995
|
|
- type: ndcg_at_100
|
|
value: 47.447
|
|
- type: ndcg_at_1000
|
|
value: 49.701
|
|
- type: ndcg_at_3
|
|
value: 39.162
|
|
- type: ndcg_at_5
|
|
value: 40.557
|
|
- type: precision_at_1
|
|
value: 35.223
|
|
- type: precision_at_10
|
|
value: 7.962
|
|
- type: precision_at_100
|
|
value: 1.304
|
|
- type: precision_at_1000
|
|
value: 0.18
|
|
- type: precision_at_3
|
|
value: 19.023
|
|
- type: precision_at_5
|
|
value: 13.184999999999999
|
|
- type: recall_at_1
|
|
value: 27.833000000000002
|
|
- type: recall_at_10
|
|
value: 51.881
|
|
- type: recall_at_100
|
|
value: 72.04
|
|
- type: recall_at_1000
|
|
value: 86.644
|
|
- type: recall_at_3
|
|
value: 40.778
|
|
- type: recall_at_5
|
|
value: 45.176
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackGamingRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 38.175
|
|
- type: map_at_10
|
|
value: 51.174
|
|
- type: map_at_100
|
|
value: 52.26499999999999
|
|
- type: map_at_1000
|
|
value: 52.315999999999995
|
|
- type: map_at_3
|
|
value: 47.897
|
|
- type: map_at_5
|
|
value: 49.703
|
|
- type: mrr_at_1
|
|
value: 43.448
|
|
- type: mrr_at_10
|
|
value: 54.505
|
|
- type: mrr_at_100
|
|
value: 55.216
|
|
- type: mrr_at_1000
|
|
value: 55.242000000000004
|
|
- type: mrr_at_3
|
|
value: 51.98500000000001
|
|
- type: mrr_at_5
|
|
value: 53.434000000000005
|
|
- type: ndcg_at_1
|
|
value: 43.448
|
|
- type: ndcg_at_10
|
|
value: 57.282
|
|
- type: ndcg_at_100
|
|
value: 61.537
|
|
- type: ndcg_at_1000
|
|
value: 62.546
|
|
- type: ndcg_at_3
|
|
value: 51.73799999999999
|
|
- type: ndcg_at_5
|
|
value: 54.324
|
|
- type: precision_at_1
|
|
value: 43.448
|
|
- type: precision_at_10
|
|
value: 9.292
|
|
- type: precision_at_100
|
|
value: 1.233
|
|
- type: precision_at_1000
|
|
value: 0.136
|
|
- type: precision_at_3
|
|
value: 23.218
|
|
- type: precision_at_5
|
|
value: 15.887
|
|
- type: recall_at_1
|
|
value: 38.175
|
|
- type: recall_at_10
|
|
value: 72.00999999999999
|
|
- type: recall_at_100
|
|
value: 90.155
|
|
- type: recall_at_1000
|
|
value: 97.257
|
|
- type: recall_at_3
|
|
value: 57.133
|
|
- type: recall_at_5
|
|
value: 63.424
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackGisRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 22.405
|
|
- type: map_at_10
|
|
value: 30.043
|
|
- type: map_at_100
|
|
value: 31.191000000000003
|
|
- type: map_at_1000
|
|
value: 31.275
|
|
- type: map_at_3
|
|
value: 27.034000000000002
|
|
- type: map_at_5
|
|
value: 28.688000000000002
|
|
- type: mrr_at_1
|
|
value: 24.068
|
|
- type: mrr_at_10
|
|
value: 31.993
|
|
- type: mrr_at_100
|
|
value: 32.992
|
|
- type: mrr_at_1000
|
|
value: 33.050000000000004
|
|
- type: mrr_at_3
|
|
value: 28.964000000000002
|
|
- type: mrr_at_5
|
|
value: 30.653000000000002
|
|
- type: ndcg_at_1
|
|
value: 24.068
|
|
- type: ndcg_at_10
|
|
value: 35.198
|
|
- type: ndcg_at_100
|
|
value: 40.709
|
|
- type: ndcg_at_1000
|
|
value: 42.855
|
|
- type: ndcg_at_3
|
|
value: 29.139
|
|
- type: ndcg_at_5
|
|
value: 32.045
|
|
- type: precision_at_1
|
|
value: 24.068
|
|
- type: precision_at_10
|
|
value: 5.65
|
|
- type: precision_at_100
|
|
value: 0.885
|
|
- type: precision_at_1000
|
|
value: 0.11199999999999999
|
|
- type: precision_at_3
|
|
value: 12.279
|
|
- type: precision_at_5
|
|
value: 8.994
|
|
- type: recall_at_1
|
|
value: 22.405
|
|
- type: recall_at_10
|
|
value: 49.391
|
|
- type: recall_at_100
|
|
value: 74.53699999999999
|
|
- type: recall_at_1000
|
|
value: 90.605
|
|
- type: recall_at_3
|
|
value: 33.126
|
|
- type: recall_at_5
|
|
value: 40.073
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackMathematicaRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 13.309999999999999
|
|
- type: map_at_10
|
|
value: 20.688000000000002
|
|
- type: map_at_100
|
|
value: 22.022
|
|
- type: map_at_1000
|
|
value: 22.152
|
|
- type: map_at_3
|
|
value: 17.954
|
|
- type: map_at_5
|
|
value: 19.439
|
|
- type: mrr_at_1
|
|
value: 16.294
|
|
- type: mrr_at_10
|
|
value: 24.479
|
|
- type: mrr_at_100
|
|
value: 25.515
|
|
- type: mrr_at_1000
|
|
value: 25.593
|
|
- type: mrr_at_3
|
|
value: 21.642
|
|
- type: mrr_at_5
|
|
value: 23.189999999999998
|
|
- type: ndcg_at_1
|
|
value: 16.294
|
|
- type: ndcg_at_10
|
|
value: 25.833000000000002
|
|
- type: ndcg_at_100
|
|
value: 32.074999999999996
|
|
- type: ndcg_at_1000
|
|
value: 35.083
|
|
- type: ndcg_at_3
|
|
value: 20.493
|
|
- type: ndcg_at_5
|
|
value: 22.949
|
|
- type: precision_at_1
|
|
value: 16.294
|
|
- type: precision_at_10
|
|
value: 5.112
|
|
- type: precision_at_100
|
|
value: 0.96
|
|
- type: precision_at_1000
|
|
value: 0.134
|
|
- type: precision_at_3
|
|
value: 9.908999999999999
|
|
- type: precision_at_5
|
|
value: 7.587000000000001
|
|
- type: recall_at_1
|
|
value: 13.309999999999999
|
|
- type: recall_at_10
|
|
value: 37.851
|
|
- type: recall_at_100
|
|
value: 64.835
|
|
- type: recall_at_1000
|
|
value: 86.334
|
|
- type: recall_at_3
|
|
value: 23.493
|
|
- type: recall_at_5
|
|
value: 29.528
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackPhysicsRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 25.857999999999997
|
|
- type: map_at_10
|
|
value: 35.503
|
|
- type: map_at_100
|
|
value: 36.957
|
|
- type: map_at_1000
|
|
value: 37.065
|
|
- type: map_at_3
|
|
value: 32.275999999999996
|
|
- type: map_at_5
|
|
value: 34.119
|
|
- type: mrr_at_1
|
|
value: 31.954
|
|
- type: mrr_at_10
|
|
value: 40.851
|
|
- type: mrr_at_100
|
|
value: 41.863
|
|
- type: mrr_at_1000
|
|
value: 41.900999999999996
|
|
- type: mrr_at_3
|
|
value: 38.129999999999995
|
|
- type: mrr_at_5
|
|
value: 39.737
|
|
- type: ndcg_at_1
|
|
value: 31.954
|
|
- type: ndcg_at_10
|
|
value: 41.343999999999994
|
|
- type: ndcg_at_100
|
|
value: 47.397
|
|
- type: ndcg_at_1000
|
|
value: 49.501
|
|
- type: ndcg_at_3
|
|
value: 36.047000000000004
|
|
- type: ndcg_at_5
|
|
value: 38.639
|
|
- type: precision_at_1
|
|
value: 31.954
|
|
- type: precision_at_10
|
|
value: 7.68
|
|
- type: precision_at_100
|
|
value: 1.247
|
|
- type: precision_at_1000
|
|
value: 0.16199999999999998
|
|
- type: precision_at_3
|
|
value: 17.132
|
|
- type: precision_at_5
|
|
value: 12.589
|
|
- type: recall_at_1
|
|
value: 25.857999999999997
|
|
- type: recall_at_10
|
|
value: 53.43599999999999
|
|
- type: recall_at_100
|
|
value: 78.82400000000001
|
|
- type: recall_at_1000
|
|
value: 92.78999999999999
|
|
- type: recall_at_3
|
|
value: 38.655
|
|
- type: recall_at_5
|
|
value: 45.216
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackProgrammersRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 24.709
|
|
- type: map_at_10
|
|
value: 34.318
|
|
- type: map_at_100
|
|
value: 35.657
|
|
- type: map_at_1000
|
|
value: 35.783
|
|
- type: map_at_3
|
|
value: 31.326999999999998
|
|
- type: map_at_5
|
|
value: 33.021
|
|
- type: mrr_at_1
|
|
value: 30.137000000000004
|
|
- type: mrr_at_10
|
|
value: 39.093
|
|
- type: mrr_at_100
|
|
value: 39.992
|
|
- type: mrr_at_1000
|
|
value: 40.056999999999995
|
|
- type: mrr_at_3
|
|
value: 36.606
|
|
- type: mrr_at_5
|
|
value: 37.861
|
|
- type: ndcg_at_1
|
|
value: 30.137000000000004
|
|
- type: ndcg_at_10
|
|
value: 39.974
|
|
- type: ndcg_at_100
|
|
value: 45.647999999999996
|
|
- type: ndcg_at_1000
|
|
value: 48.259
|
|
- type: ndcg_at_3
|
|
value: 35.028
|
|
- type: ndcg_at_5
|
|
value: 37.175999999999995
|
|
- type: precision_at_1
|
|
value: 30.137000000000004
|
|
- type: precision_at_10
|
|
value: 7.363
|
|
- type: precision_at_100
|
|
value: 1.184
|
|
- type: precision_at_1000
|
|
value: 0.161
|
|
- type: precision_at_3
|
|
value: 16.857
|
|
- type: precision_at_5
|
|
value: 11.963
|
|
- type: recall_at_1
|
|
value: 24.709
|
|
- type: recall_at_10
|
|
value: 52.087
|
|
- type: recall_at_100
|
|
value: 76.125
|
|
- type: recall_at_1000
|
|
value: 93.82300000000001
|
|
- type: recall_at_3
|
|
value: 38.149
|
|
- type: recall_at_5
|
|
value: 43.984
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 23.40791666666667
|
|
- type: map_at_10
|
|
value: 32.458083333333335
|
|
- type: map_at_100
|
|
value: 33.691916666666664
|
|
- type: map_at_1000
|
|
value: 33.81191666666666
|
|
- type: map_at_3
|
|
value: 29.51625
|
|
- type: map_at_5
|
|
value: 31.168083333333335
|
|
- type: mrr_at_1
|
|
value: 27.96591666666666
|
|
- type: mrr_at_10
|
|
value: 36.528583333333344
|
|
- type: mrr_at_100
|
|
value: 37.404
|
|
- type: mrr_at_1000
|
|
value: 37.464333333333336
|
|
- type: mrr_at_3
|
|
value: 33.92883333333333
|
|
- type: mrr_at_5
|
|
value: 35.41933333333333
|
|
- type: ndcg_at_1
|
|
value: 27.96591666666666
|
|
- type: ndcg_at_10
|
|
value: 37.89141666666666
|
|
- type: ndcg_at_100
|
|
value: 43.23066666666666
|
|
- type: ndcg_at_1000
|
|
value: 45.63258333333333
|
|
- type: ndcg_at_3
|
|
value: 32.811249999999994
|
|
- type: ndcg_at_5
|
|
value: 35.22566666666667
|
|
- type: precision_at_1
|
|
value: 27.96591666666666
|
|
- type: precision_at_10
|
|
value: 6.834083333333332
|
|
- type: precision_at_100
|
|
value: 1.12225
|
|
- type: precision_at_1000
|
|
value: 0.15241666666666667
|
|
- type: precision_at_3
|
|
value: 15.264333333333335
|
|
- type: precision_at_5
|
|
value: 11.039416666666666
|
|
- type: recall_at_1
|
|
value: 23.40791666666667
|
|
- type: recall_at_10
|
|
value: 49.927083333333336
|
|
- type: recall_at_100
|
|
value: 73.44641666666668
|
|
- type: recall_at_1000
|
|
value: 90.19950000000001
|
|
- type: recall_at_3
|
|
value: 35.88341666666667
|
|
- type: recall_at_5
|
|
value: 42.061249999999994
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackStatsRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 19.592000000000002
|
|
- type: map_at_10
|
|
value: 26.895999999999997
|
|
- type: map_at_100
|
|
value: 27.921000000000003
|
|
- type: map_at_1000
|
|
value: 28.02
|
|
- type: map_at_3
|
|
value: 24.883
|
|
- type: map_at_5
|
|
value: 25.812
|
|
- type: mrr_at_1
|
|
value: 22.698999999999998
|
|
- type: mrr_at_10
|
|
value: 29.520999999999997
|
|
- type: mrr_at_100
|
|
value: 30.458000000000002
|
|
- type: mrr_at_1000
|
|
value: 30.526999999999997
|
|
- type: mrr_at_3
|
|
value: 27.633000000000003
|
|
- type: mrr_at_5
|
|
value: 28.483999999999998
|
|
- type: ndcg_at_1
|
|
value: 22.698999999999998
|
|
- type: ndcg_at_10
|
|
value: 31.061
|
|
- type: ndcg_at_100
|
|
value: 36.398
|
|
- type: ndcg_at_1000
|
|
value: 38.89
|
|
- type: ndcg_at_3
|
|
value: 27.149
|
|
- type: ndcg_at_5
|
|
value: 28.627000000000002
|
|
- type: precision_at_1
|
|
value: 22.698999999999998
|
|
- type: precision_at_10
|
|
value: 5.106999999999999
|
|
- type: precision_at_100
|
|
value: 0.857
|
|
- type: precision_at_1000
|
|
value: 0.11499999999999999
|
|
- type: precision_at_3
|
|
value: 11.963
|
|
- type: precision_at_5
|
|
value: 8.221
|
|
- type: recall_at_1
|
|
value: 19.592000000000002
|
|
- type: recall_at_10
|
|
value: 41.329
|
|
- type: recall_at_100
|
|
value: 66.094
|
|
- type: recall_at_1000
|
|
value: 84.511
|
|
- type: recall_at_3
|
|
value: 30.61
|
|
- type: recall_at_5
|
|
value: 34.213
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackTexRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 14.71
|
|
- type: map_at_10
|
|
value: 20.965
|
|
- type: map_at_100
|
|
value: 21.994
|
|
- type: map_at_1000
|
|
value: 22.133
|
|
- type: map_at_3
|
|
value: 18.741
|
|
- type: map_at_5
|
|
value: 19.951
|
|
- type: mrr_at_1
|
|
value: 18.307000000000002
|
|
- type: mrr_at_10
|
|
value: 24.66
|
|
- type: mrr_at_100
|
|
value: 25.540000000000003
|
|
- type: mrr_at_1000
|
|
value: 25.629
|
|
- type: mrr_at_3
|
|
value: 22.511
|
|
- type: mrr_at_5
|
|
value: 23.72
|
|
- type: ndcg_at_1
|
|
value: 18.307000000000002
|
|
- type: ndcg_at_10
|
|
value: 25.153
|
|
- type: ndcg_at_100
|
|
value: 30.229
|
|
- type: ndcg_at_1000
|
|
value: 33.623
|
|
- type: ndcg_at_3
|
|
value: 21.203
|
|
- type: ndcg_at_5
|
|
value: 23.006999999999998
|
|
- type: precision_at_1
|
|
value: 18.307000000000002
|
|
- type: precision_at_10
|
|
value: 4.725
|
|
- type: precision_at_100
|
|
value: 0.8659999999999999
|
|
- type: precision_at_1000
|
|
value: 0.133
|
|
- type: precision_at_3
|
|
value: 10.14
|
|
- type: precision_at_5
|
|
value: 7.481
|
|
- type: recall_at_1
|
|
value: 14.71
|
|
- type: recall_at_10
|
|
value: 34.087
|
|
- type: recall_at_100
|
|
value: 57.147999999999996
|
|
- type: recall_at_1000
|
|
value: 81.777
|
|
- type: recall_at_3
|
|
value: 22.996
|
|
- type: recall_at_5
|
|
value: 27.73
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackUnixRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 23.472
|
|
- type: map_at_10
|
|
value: 32.699
|
|
- type: map_at_100
|
|
value: 33.867000000000004
|
|
- type: map_at_1000
|
|
value: 33.967000000000006
|
|
- type: map_at_3
|
|
value: 29.718
|
|
- type: map_at_5
|
|
value: 31.345
|
|
- type: mrr_at_1
|
|
value: 28.265
|
|
- type: mrr_at_10
|
|
value: 36.945
|
|
- type: mrr_at_100
|
|
value: 37.794
|
|
- type: mrr_at_1000
|
|
value: 37.857
|
|
- type: mrr_at_3
|
|
value: 34.266000000000005
|
|
- type: mrr_at_5
|
|
value: 35.768
|
|
- type: ndcg_at_1
|
|
value: 28.265
|
|
- type: ndcg_at_10
|
|
value: 38.35
|
|
- type: ndcg_at_100
|
|
value: 43.739
|
|
- type: ndcg_at_1000
|
|
value: 46.087
|
|
- type: ndcg_at_3
|
|
value: 33.004
|
|
- type: ndcg_at_5
|
|
value: 35.411
|
|
- type: precision_at_1
|
|
value: 28.265
|
|
- type: precision_at_10
|
|
value: 6.715999999999999
|
|
- type: precision_at_100
|
|
value: 1.059
|
|
- type: precision_at_1000
|
|
value: 0.13799999999999998
|
|
- type: precision_at_3
|
|
value: 15.299
|
|
- type: precision_at_5
|
|
value: 10.951
|
|
- type: recall_at_1
|
|
value: 23.472
|
|
- type: recall_at_10
|
|
value: 51.413
|
|
- type: recall_at_100
|
|
value: 75.17
|
|
- type: recall_at_1000
|
|
value: 91.577
|
|
- type: recall_at_3
|
|
value: 36.651
|
|
- type: recall_at_5
|
|
value: 42.814
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackWebmastersRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 23.666
|
|
- type: map_at_10
|
|
value: 32.963
|
|
- type: map_at_100
|
|
value: 34.544999999999995
|
|
- type: map_at_1000
|
|
value: 34.792
|
|
- type: map_at_3
|
|
value: 29.74
|
|
- type: map_at_5
|
|
value: 31.5
|
|
- type: mrr_at_1
|
|
value: 29.051
|
|
- type: mrr_at_10
|
|
value: 38.013000000000005
|
|
- type: mrr_at_100
|
|
value: 38.997
|
|
- type: mrr_at_1000
|
|
value: 39.055
|
|
- type: mrr_at_3
|
|
value: 34.947
|
|
- type: mrr_at_5
|
|
value: 36.815
|
|
- type: ndcg_at_1
|
|
value: 29.051
|
|
- type: ndcg_at_10
|
|
value: 39.361000000000004
|
|
- type: ndcg_at_100
|
|
value: 45.186
|
|
- type: ndcg_at_1000
|
|
value: 47.867
|
|
- type: ndcg_at_3
|
|
value: 33.797
|
|
- type: ndcg_at_5
|
|
value: 36.456
|
|
- type: precision_at_1
|
|
value: 29.051
|
|
- type: precision_at_10
|
|
value: 7.668
|
|
- type: precision_at_100
|
|
value: 1.532
|
|
- type: precision_at_1000
|
|
value: 0.247
|
|
- type: precision_at_3
|
|
value: 15.876000000000001
|
|
- type: precision_at_5
|
|
value: 11.779
|
|
- type: recall_at_1
|
|
value: 23.666
|
|
- type: recall_at_10
|
|
value: 51.858000000000004
|
|
- type: recall_at_100
|
|
value: 77.805
|
|
- type: recall_at_1000
|
|
value: 94.504
|
|
- type: recall_at_3
|
|
value: 36.207
|
|
- type: recall_at_5
|
|
value: 43.094
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackWordpressRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 15.662
|
|
- type: map_at_10
|
|
value: 23.594
|
|
- type: map_at_100
|
|
value: 24.593999999999998
|
|
- type: map_at_1000
|
|
value: 24.694
|
|
- type: map_at_3
|
|
value: 20.925
|
|
- type: map_at_5
|
|
value: 22.817999999999998
|
|
- type: mrr_at_1
|
|
value: 17.375
|
|
- type: mrr_at_10
|
|
value: 25.734
|
|
- type: mrr_at_100
|
|
value: 26.586
|
|
- type: mrr_at_1000
|
|
value: 26.671
|
|
- type: mrr_at_3
|
|
value: 23.044
|
|
- type: mrr_at_5
|
|
value: 24.975
|
|
- type: ndcg_at_1
|
|
value: 17.375
|
|
- type: ndcg_at_10
|
|
value: 28.186
|
|
- type: ndcg_at_100
|
|
value: 33.436
|
|
- type: ndcg_at_1000
|
|
value: 36.203
|
|
- type: ndcg_at_3
|
|
value: 23.152
|
|
- type: ndcg_at_5
|
|
value: 26.397
|
|
- type: precision_at_1
|
|
value: 17.375
|
|
- type: precision_at_10
|
|
value: 4.677
|
|
- type: precision_at_100
|
|
value: 0.786
|
|
- type: precision_at_1000
|
|
value: 0.109
|
|
- type: precision_at_3
|
|
value: 10.351
|
|
- type: precision_at_5
|
|
value: 7.985
|
|
- type: recall_at_1
|
|
value: 15.662
|
|
- type: recall_at_10
|
|
value: 40.066
|
|
- type: recall_at_100
|
|
value: 65.006
|
|
- type: recall_at_1000
|
|
value: 85.94000000000001
|
|
- type: recall_at_3
|
|
value: 27.400000000000002
|
|
- type: recall_at_5
|
|
value: 35.002
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: climate-fever
|
|
name: MTEB ClimateFEVER
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 8.853
|
|
- type: map_at_10
|
|
value: 15.568000000000001
|
|
- type: map_at_100
|
|
value: 17.383000000000003
|
|
- type: map_at_1000
|
|
value: 17.584
|
|
- type: map_at_3
|
|
value: 12.561
|
|
- type: map_at_5
|
|
value: 14.056
|
|
- type: mrr_at_1
|
|
value: 18.958
|
|
- type: mrr_at_10
|
|
value: 28.288000000000004
|
|
- type: mrr_at_100
|
|
value: 29.432000000000002
|
|
- type: mrr_at_1000
|
|
value: 29.498
|
|
- type: mrr_at_3
|
|
value: 25.049
|
|
- type: mrr_at_5
|
|
value: 26.857
|
|
- type: ndcg_at_1
|
|
value: 18.958
|
|
- type: ndcg_at_10
|
|
value: 22.21
|
|
- type: ndcg_at_100
|
|
value: 29.596
|
|
- type: ndcg_at_1000
|
|
value: 33.583
|
|
- type: ndcg_at_3
|
|
value: 16.994999999999997
|
|
- type: ndcg_at_5
|
|
value: 18.95
|
|
- type: precision_at_1
|
|
value: 18.958
|
|
- type: precision_at_10
|
|
value: 7.192
|
|
- type: precision_at_100
|
|
value: 1.5
|
|
- type: precision_at_1000
|
|
value: 0.22399999999999998
|
|
- type: precision_at_3
|
|
value: 12.573
|
|
- type: precision_at_5
|
|
value: 10.202
|
|
- type: recall_at_1
|
|
value: 8.853
|
|
- type: recall_at_10
|
|
value: 28.087
|
|
- type: recall_at_100
|
|
value: 53.701
|
|
- type: recall_at_1000
|
|
value: 76.29899999999999
|
|
- type: recall_at_3
|
|
value: 15.913
|
|
- type: recall_at_5
|
|
value: 20.658
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: dbpedia-entity
|
|
name: MTEB DBPedia
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 9.077
|
|
- type: map_at_10
|
|
value: 20.788999999999998
|
|
- type: map_at_100
|
|
value: 30.429000000000002
|
|
- type: map_at_1000
|
|
value: 32.143
|
|
- type: map_at_3
|
|
value: 14.692
|
|
- type: map_at_5
|
|
value: 17.139
|
|
- type: mrr_at_1
|
|
value: 70.75
|
|
- type: mrr_at_10
|
|
value: 78.036
|
|
- type: mrr_at_100
|
|
value: 78.401
|
|
- type: mrr_at_1000
|
|
value: 78.404
|
|
- type: mrr_at_3
|
|
value: 76.75
|
|
- type: mrr_at_5
|
|
value: 77.47500000000001
|
|
- type: ndcg_at_1
|
|
value: 58.12500000000001
|
|
- type: ndcg_at_10
|
|
value: 44.015
|
|
- type: ndcg_at_100
|
|
value: 49.247
|
|
- type: ndcg_at_1000
|
|
value: 56.211999999999996
|
|
- type: ndcg_at_3
|
|
value: 49.151
|
|
- type: ndcg_at_5
|
|
value: 46.195
|
|
- type: precision_at_1
|
|
value: 70.75
|
|
- type: precision_at_10
|
|
value: 35.5
|
|
- type: precision_at_100
|
|
value: 11.355
|
|
- type: precision_at_1000
|
|
value: 2.1950000000000003
|
|
- type: precision_at_3
|
|
value: 53.083000000000006
|
|
- type: precision_at_5
|
|
value: 44.800000000000004
|
|
- type: recall_at_1
|
|
value: 9.077
|
|
- type: recall_at_10
|
|
value: 26.259
|
|
- type: recall_at_100
|
|
value: 56.547000000000004
|
|
- type: recall_at_1000
|
|
value: 78.551
|
|
- type: recall_at_3
|
|
value: 16.162000000000003
|
|
- type: recall_at_5
|
|
value: 19.753999999999998
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/emotion
|
|
name: MTEB EmotionClassification
|
|
config: default
|
|
split: test
|
|
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
|
metrics:
|
|
- type: accuracy
|
|
value: 49.44500000000001
|
|
- type: f1
|
|
value: 44.67067691783401
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: fever
|
|
name: MTEB FEVER
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 68.182
|
|
- type: map_at_10
|
|
value: 78.223
|
|
- type: map_at_100
|
|
value: 78.498
|
|
- type: map_at_1000
|
|
value: 78.512
|
|
- type: map_at_3
|
|
value: 76.71
|
|
- type: map_at_5
|
|
value: 77.725
|
|
- type: mrr_at_1
|
|
value: 73.177
|
|
- type: mrr_at_10
|
|
value: 82.513
|
|
- type: mrr_at_100
|
|
value: 82.633
|
|
- type: mrr_at_1000
|
|
value: 82.635
|
|
- type: mrr_at_3
|
|
value: 81.376
|
|
- type: mrr_at_5
|
|
value: 82.182
|
|
- type: ndcg_at_1
|
|
value: 73.177
|
|
- type: ndcg_at_10
|
|
value: 82.829
|
|
- type: ndcg_at_100
|
|
value: 83.84
|
|
- type: ndcg_at_1000
|
|
value: 84.07900000000001
|
|
- type: ndcg_at_3
|
|
value: 80.303
|
|
- type: ndcg_at_5
|
|
value: 81.846
|
|
- type: precision_at_1
|
|
value: 73.177
|
|
- type: precision_at_10
|
|
value: 10.241999999999999
|
|
- type: precision_at_100
|
|
value: 1.099
|
|
- type: precision_at_1000
|
|
value: 0.11399999999999999
|
|
- type: precision_at_3
|
|
value: 31.247999999999998
|
|
- type: precision_at_5
|
|
value: 19.697
|
|
- type: recall_at_1
|
|
value: 68.182
|
|
- type: recall_at_10
|
|
value: 92.657
|
|
- type: recall_at_100
|
|
value: 96.709
|
|
- type: recall_at_1000
|
|
value: 98.184
|
|
- type: recall_at_3
|
|
value: 85.9
|
|
- type: recall_at_5
|
|
value: 89.755
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: fiqa
|
|
name: MTEB FiQA2018
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 21.108
|
|
- type: map_at_10
|
|
value: 33.342
|
|
- type: map_at_100
|
|
value: 35.281
|
|
- type: map_at_1000
|
|
value: 35.478
|
|
- type: map_at_3
|
|
value: 29.067
|
|
- type: map_at_5
|
|
value: 31.563000000000002
|
|
- type: mrr_at_1
|
|
value: 41.667
|
|
- type: mrr_at_10
|
|
value: 49.913000000000004
|
|
- type: mrr_at_100
|
|
value: 50.724000000000004
|
|
- type: mrr_at_1000
|
|
value: 50.766
|
|
- type: mrr_at_3
|
|
value: 47.504999999999995
|
|
- type: mrr_at_5
|
|
value: 49.033
|
|
- type: ndcg_at_1
|
|
value: 41.667
|
|
- type: ndcg_at_10
|
|
value: 41.144
|
|
- type: ndcg_at_100
|
|
value: 48.326
|
|
- type: ndcg_at_1000
|
|
value: 51.486
|
|
- type: ndcg_at_3
|
|
value: 37.486999999999995
|
|
- type: ndcg_at_5
|
|
value: 38.78
|
|
- type: precision_at_1
|
|
value: 41.667
|
|
- type: precision_at_10
|
|
value: 11.358
|
|
- type: precision_at_100
|
|
value: 1.873
|
|
- type: precision_at_1000
|
|
value: 0.244
|
|
- type: precision_at_3
|
|
value: 25
|
|
- type: precision_at_5
|
|
value: 18.519
|
|
- type: recall_at_1
|
|
value: 21.108
|
|
- type: recall_at_10
|
|
value: 47.249
|
|
- type: recall_at_100
|
|
value: 74.52
|
|
- type: recall_at_1000
|
|
value: 93.31
|
|
- type: recall_at_3
|
|
value: 33.271
|
|
- type: recall_at_5
|
|
value: 39.723000000000006
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: hotpotqa
|
|
name: MTEB HotpotQA
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 40.317
|
|
- type: map_at_10
|
|
value: 64.861
|
|
- type: map_at_100
|
|
value: 65.697
|
|
- type: map_at_1000
|
|
value: 65.755
|
|
- type: map_at_3
|
|
value: 61.258
|
|
- type: map_at_5
|
|
value: 63.590999999999994
|
|
- type: mrr_at_1
|
|
value: 80.635
|
|
- type: mrr_at_10
|
|
value: 86.528
|
|
- type: mrr_at_100
|
|
value: 86.66199999999999
|
|
- type: mrr_at_1000
|
|
value: 86.666
|
|
- type: mrr_at_3
|
|
value: 85.744
|
|
- type: mrr_at_5
|
|
value: 86.24300000000001
|
|
- type: ndcg_at_1
|
|
value: 80.635
|
|
- type: ndcg_at_10
|
|
value: 73.13199999999999
|
|
- type: ndcg_at_100
|
|
value: 75.927
|
|
- type: ndcg_at_1000
|
|
value: 76.976
|
|
- type: ndcg_at_3
|
|
value: 68.241
|
|
- type: ndcg_at_5
|
|
value: 71.071
|
|
- type: precision_at_1
|
|
value: 80.635
|
|
- type: precision_at_10
|
|
value: 15.326
|
|
- type: precision_at_100
|
|
value: 1.7500000000000002
|
|
- type: precision_at_1000
|
|
value: 0.189
|
|
- type: precision_at_3
|
|
value: 43.961
|
|
- type: precision_at_5
|
|
value: 28.599999999999998
|
|
- type: recall_at_1
|
|
value: 40.317
|
|
- type: recall_at_10
|
|
value: 76.631
|
|
- type: recall_at_100
|
|
value: 87.495
|
|
- type: recall_at_1000
|
|
value: 94.362
|
|
- type: recall_at_3
|
|
value: 65.94200000000001
|
|
- type: recall_at_5
|
|
value: 71.499
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/imdb
|
|
name: MTEB ImdbClassification
|
|
config: default
|
|
split: test
|
|
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
|
metrics:
|
|
- type: accuracy
|
|
value: 91.686
|
|
- type: ap
|
|
value: 87.5577120393173
|
|
- type: f1
|
|
value: 91.6629447355139
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: msmarco
|
|
name: MTEB MSMARCO
|
|
config: default
|
|
split: dev
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 23.702
|
|
- type: map_at_10
|
|
value: 36.414
|
|
- type: map_at_100
|
|
value: 37.561
|
|
- type: map_at_1000
|
|
value: 37.605
|
|
- type: map_at_3
|
|
value: 32.456
|
|
- type: map_at_5
|
|
value: 34.827000000000005
|
|
- type: mrr_at_1
|
|
value: 24.355
|
|
- type: mrr_at_10
|
|
value: 37.01
|
|
- type: mrr_at_100
|
|
value: 38.085
|
|
- type: mrr_at_1000
|
|
value: 38.123000000000005
|
|
- type: mrr_at_3
|
|
value: 33.117999999999995
|
|
- type: mrr_at_5
|
|
value: 35.452
|
|
- type: ndcg_at_1
|
|
value: 24.384
|
|
- type: ndcg_at_10
|
|
value: 43.456
|
|
- type: ndcg_at_100
|
|
value: 48.892
|
|
- type: ndcg_at_1000
|
|
value: 49.964
|
|
- type: ndcg_at_3
|
|
value: 35.475
|
|
- type: ndcg_at_5
|
|
value: 39.711
|
|
- type: precision_at_1
|
|
value: 24.384
|
|
- type: precision_at_10
|
|
value: 6.7940000000000005
|
|
- type: precision_at_100
|
|
value: 0.951
|
|
- type: precision_at_1000
|
|
value: 0.104
|
|
- type: precision_at_3
|
|
value: 15.052999999999999
|
|
- type: precision_at_5
|
|
value: 11.189
|
|
- type: recall_at_1
|
|
value: 23.702
|
|
- type: recall_at_10
|
|
value: 65.057
|
|
- type: recall_at_100
|
|
value: 90.021
|
|
- type: recall_at_1000
|
|
value: 98.142
|
|
- type: recall_at_3
|
|
value: 43.551
|
|
- type: recall_at_5
|
|
value: 53.738
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/mtop_domain
|
|
name: MTEB MTOPDomainClassification (en)
|
|
config: en
|
|
split: test
|
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
|
metrics:
|
|
- type: accuracy
|
|
value: 94.62380300957591
|
|
- type: f1
|
|
value: 94.49871222100734
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/mtop_intent
|
|
name: MTEB MTOPIntentClassification (en)
|
|
config: en
|
|
split: test
|
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
|
metrics:
|
|
- type: accuracy
|
|
value: 77.14090287277702
|
|
- type: f1
|
|
value: 60.32101258220515
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/amazon_massive_intent
|
|
name: MTEB MassiveIntentClassification (en)
|
|
config: en
|
|
split: test
|
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
|
metrics:
|
|
- type: accuracy
|
|
value: 73.84330867518494
|
|
- type: f1
|
|
value: 71.92248688515255
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/amazon_massive_scenario
|
|
name: MTEB MassiveScenarioClassification (en)
|
|
config: en
|
|
split: test
|
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
|
metrics:
|
|
- type: accuracy
|
|
value: 78.10692669804976
|
|
- type: f1
|
|
value: 77.9904839122866
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/medrxiv-clustering-p2p
|
|
name: MTEB MedrxivClusteringP2P
|
|
config: default
|
|
split: test
|
|
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
|
metrics:
|
|
- type: v_measure
|
|
value: 31.822988923078444
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/medrxiv-clustering-s2s
|
|
name: MTEB MedrxivClusteringS2S
|
|
config: default
|
|
split: test
|
|
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
|
metrics:
|
|
- type: v_measure
|
|
value: 30.38394880253403
|
|
- task:
|
|
type: Reranking
|
|
dataset:
|
|
type: mteb/mind_small
|
|
name: MTEB MindSmallReranking
|
|
config: default
|
|
split: test
|
|
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
|
metrics:
|
|
- type: map
|
|
value: 31.82504612539082
|
|
- type: mrr
|
|
value: 32.84462298174977
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: nfcorpus
|
|
name: MTEB NFCorpus
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 6.029
|
|
- type: map_at_10
|
|
value: 14.088999999999999
|
|
- type: map_at_100
|
|
value: 17.601
|
|
- type: map_at_1000
|
|
value: 19.144
|
|
- type: map_at_3
|
|
value: 10.156
|
|
- type: map_at_5
|
|
value: 11.892
|
|
- type: mrr_at_1
|
|
value: 46.44
|
|
- type: mrr_at_10
|
|
value: 56.596999999999994
|
|
- type: mrr_at_100
|
|
value: 57.11000000000001
|
|
- type: mrr_at_1000
|
|
value: 57.14
|
|
- type: mrr_at_3
|
|
value: 54.334
|
|
- type: mrr_at_5
|
|
value: 55.774
|
|
- type: ndcg_at_1
|
|
value: 44.891999999999996
|
|
- type: ndcg_at_10
|
|
value: 37.134
|
|
- type: ndcg_at_100
|
|
value: 33.652
|
|
- type: ndcg_at_1000
|
|
value: 42.548
|
|
- type: ndcg_at_3
|
|
value: 41.851
|
|
- type: ndcg_at_5
|
|
value: 39.842
|
|
- type: precision_at_1
|
|
value: 46.44
|
|
- type: precision_at_10
|
|
value: 27.647
|
|
- type: precision_at_100
|
|
value: 8.309999999999999
|
|
- type: precision_at_1000
|
|
value: 2.146
|
|
- type: precision_at_3
|
|
value: 39.422000000000004
|
|
- type: precision_at_5
|
|
value: 34.675
|
|
- type: recall_at_1
|
|
value: 6.029
|
|
- type: recall_at_10
|
|
value: 18.907
|
|
- type: recall_at_100
|
|
value: 33.76
|
|
- type: recall_at_1000
|
|
value: 65.14999999999999
|
|
- type: recall_at_3
|
|
value: 11.584999999999999
|
|
- type: recall_at_5
|
|
value: 14.626
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: nq
|
|
name: MTEB NQ
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 39.373000000000005
|
|
- type: map_at_10
|
|
value: 55.836
|
|
- type: map_at_100
|
|
value: 56.611999999999995
|
|
- type: map_at_1000
|
|
value: 56.63
|
|
- type: map_at_3
|
|
value: 51.747
|
|
- type: map_at_5
|
|
value: 54.337999999999994
|
|
- type: mrr_at_1
|
|
value: 44.147999999999996
|
|
- type: mrr_at_10
|
|
value: 58.42699999999999
|
|
- type: mrr_at_100
|
|
value: 58.902
|
|
- type: mrr_at_1000
|
|
value: 58.914
|
|
- type: mrr_at_3
|
|
value: 55.156000000000006
|
|
- type: mrr_at_5
|
|
value: 57.291000000000004
|
|
- type: ndcg_at_1
|
|
value: 44.119
|
|
- type: ndcg_at_10
|
|
value: 63.444
|
|
- type: ndcg_at_100
|
|
value: 66.40599999999999
|
|
- type: ndcg_at_1000
|
|
value: 66.822
|
|
- type: ndcg_at_3
|
|
value: 55.962
|
|
- type: ndcg_at_5
|
|
value: 60.228
|
|
- type: precision_at_1
|
|
value: 44.119
|
|
- type: precision_at_10
|
|
value: 10.006
|
|
- type: precision_at_100
|
|
value: 1.17
|
|
- type: precision_at_1000
|
|
value: 0.121
|
|
- type: precision_at_3
|
|
value: 25.135
|
|
- type: precision_at_5
|
|
value: 17.59
|
|
- type: recall_at_1
|
|
value: 39.373000000000005
|
|
- type: recall_at_10
|
|
value: 83.78999999999999
|
|
- type: recall_at_100
|
|
value: 96.246
|
|
- type: recall_at_1000
|
|
value: 99.324
|
|
- type: recall_at_3
|
|
value: 64.71900000000001
|
|
- type: recall_at_5
|
|
value: 74.508
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: quora
|
|
name: MTEB QuoraRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 69.199
|
|
- type: map_at_10
|
|
value: 82.892
|
|
- type: map_at_100
|
|
value: 83.578
|
|
- type: map_at_1000
|
|
value: 83.598
|
|
- type: map_at_3
|
|
value: 79.948
|
|
- type: map_at_5
|
|
value: 81.779
|
|
- type: mrr_at_1
|
|
value: 79.67
|
|
- type: mrr_at_10
|
|
value: 86.115
|
|
- type: mrr_at_100
|
|
value: 86.249
|
|
- type: mrr_at_1000
|
|
value: 86.251
|
|
- type: mrr_at_3
|
|
value: 85.08200000000001
|
|
- type: mrr_at_5
|
|
value: 85.783
|
|
- type: ndcg_at_1
|
|
value: 79.67
|
|
- type: ndcg_at_10
|
|
value: 86.839
|
|
- type: ndcg_at_100
|
|
value: 88.252
|
|
- type: ndcg_at_1000
|
|
value: 88.401
|
|
- type: ndcg_at_3
|
|
value: 83.86200000000001
|
|
- type: ndcg_at_5
|
|
value: 85.473
|
|
- type: precision_at_1
|
|
value: 79.67
|
|
- type: precision_at_10
|
|
value: 13.19
|
|
- type: precision_at_100
|
|
value: 1.521
|
|
- type: precision_at_1000
|
|
value: 0.157
|
|
- type: precision_at_3
|
|
value: 36.677
|
|
- type: precision_at_5
|
|
value: 24.118000000000002
|
|
- type: recall_at_1
|
|
value: 69.199
|
|
- type: recall_at_10
|
|
value: 94.321
|
|
- type: recall_at_100
|
|
value: 99.20400000000001
|
|
- type: recall_at_1000
|
|
value: 99.947
|
|
- type: recall_at_3
|
|
value: 85.787
|
|
- type: recall_at_5
|
|
value: 90.365
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/reddit-clustering
|
|
name: MTEB RedditClustering
|
|
config: default
|
|
split: test
|
|
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
|
metrics:
|
|
- type: v_measure
|
|
value: 55.82810046856353
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/reddit-clustering-p2p
|
|
name: MTEB RedditClusteringP2P
|
|
config: default
|
|
split: test
|
|
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
|
metrics:
|
|
- type: v_measure
|
|
value: 63.38132611783628
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: scidocs
|
|
name: MTEB SCIDOCS
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 5.127000000000001
|
|
- type: map_at_10
|
|
value: 12.235
|
|
- type: map_at_100
|
|
value: 14.417
|
|
- type: map_at_1000
|
|
value: 14.75
|
|
- type: map_at_3
|
|
value: 8.906
|
|
- type: map_at_5
|
|
value: 10.591000000000001
|
|
- type: mrr_at_1
|
|
value: 25.2
|
|
- type: mrr_at_10
|
|
value: 35.879
|
|
- type: mrr_at_100
|
|
value: 36.935
|
|
- type: mrr_at_1000
|
|
value: 36.997
|
|
- type: mrr_at_3
|
|
value: 32.783
|
|
- type: mrr_at_5
|
|
value: 34.367999999999995
|
|
- type: ndcg_at_1
|
|
value: 25.2
|
|
- type: ndcg_at_10
|
|
value: 20.509
|
|
- type: ndcg_at_100
|
|
value: 28.67
|
|
- type: ndcg_at_1000
|
|
value: 34.42
|
|
- type: ndcg_at_3
|
|
value: 19.948
|
|
- type: ndcg_at_5
|
|
value: 17.166
|
|
- type: precision_at_1
|
|
value: 25.2
|
|
- type: precision_at_10
|
|
value: 10.440000000000001
|
|
- type: precision_at_100
|
|
value: 2.214
|
|
- type: precision_at_1000
|
|
value: 0.359
|
|
- type: precision_at_3
|
|
value: 18.533
|
|
- type: precision_at_5
|
|
value: 14.860000000000001
|
|
- type: recall_at_1
|
|
value: 5.127000000000001
|
|
- type: recall_at_10
|
|
value: 21.147
|
|
- type: recall_at_100
|
|
value: 44.946999999999996
|
|
- type: recall_at_1000
|
|
value: 72.89
|
|
- type: recall_at_3
|
|
value: 11.277
|
|
- type: recall_at_5
|
|
value: 15.042
|
|
- task:
|
|
type: STS
|
|
dataset:
|
|
type: mteb/sickr-sts
|
|
name: MTEB SICK-R
|
|
config: default
|
|
split: test
|
|
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 83.0373011786213
|
|
- type: cos_sim_spearman
|
|
value: 79.27889560856613
|
|
- type: euclidean_pearson
|
|
value: 80.31186315495655
|
|
- type: euclidean_spearman
|
|
value: 79.41630415280811
|
|
- type: manhattan_pearson
|
|
value: 80.31755140442013
|
|
- type: manhattan_spearman
|
|
value: 79.43069870027611
|
|
- task:
|
|
type: STS
|
|
dataset:
|
|
type: mteb/sts12-sts
|
|
name: MTEB STS12
|
|
config: default
|
|
split: test
|
|
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 84.8659751342045
|
|
- type: cos_sim_spearman
|
|
value: 76.95377612997667
|
|
- type: euclidean_pearson
|
|
value: 81.24552945497848
|
|
- type: euclidean_spearman
|
|
value: 77.18236963555253
|
|
- type: manhattan_pearson
|
|
value: 81.26477607759037
|
|
- type: manhattan_spearman
|
|
value: 77.13821753062756
|
|
- task:
|
|
type: STS
|
|
dataset:
|
|
type: mteb/sts13-sts
|
|
name: MTEB STS13
|
|
config: default
|
|
split: test
|
|
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 83.34597139044875
|
|
- type: cos_sim_spearman
|
|
value: 84.124169425592
|
|
- type: euclidean_pearson
|
|
value: 83.68590721511401
|
|
- type: euclidean_spearman
|
|
value: 84.18846190846398
|
|
- type: manhattan_pearson
|
|
value: 83.57630235061498
|
|
- type: manhattan_spearman
|
|
value: 84.10244043726902
|
|
- task:
|
|
type: STS
|
|
dataset:
|
|
type: mteb/sts14-sts
|
|
name: MTEB STS14
|
|
config: default
|
|
split: test
|
|
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 82.67641885599572
|
|
- type: cos_sim_spearman
|
|
value: 80.46450725650428
|
|
- type: euclidean_pearson
|
|
value: 81.61645042715865
|
|
- type: euclidean_spearman
|
|
value: 80.61418394236874
|
|
- type: manhattan_pearson
|
|
value: 81.55712034928871
|
|
- type: manhattan_spearman
|
|
value: 80.57905670523951
|
|
- task:
|
|
type: STS
|
|
dataset:
|
|
type: mteb/sts15-sts
|
|
name: MTEB STS15
|
|
config: default
|
|
split: test
|
|
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 88.86650310886782
|
|
- type: cos_sim_spearman
|
|
value: 89.76081629222328
|
|
- type: euclidean_pearson
|
|
value: 89.1530747029954
|
|
- type: euclidean_spearman
|
|
value: 89.80990657280248
|
|
- type: manhattan_pearson
|
|
value: 89.10640563278132
|
|
- type: manhattan_spearman
|
|
value: 89.76282108434047
|
|
- task:
|
|
type: STS
|
|
dataset:
|
|
type: mteb/sts16-sts
|
|
name: MTEB STS16
|
|
config: default
|
|
split: test
|
|
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 83.93864027911118
|
|
- type: cos_sim_spearman
|
|
value: 85.47096193999023
|
|
- type: euclidean_pearson
|
|
value: 85.03141840870533
|
|
- type: euclidean_spearman
|
|
value: 85.43124029598181
|
|
- type: manhattan_pearson
|
|
value: 84.99002664393512
|
|
- type: manhattan_spearman
|
|
value: 85.39169195120834
|
|
- task:
|
|
type: STS
|
|
dataset:
|
|
type: mteb/sts17-crosslingual-sts
|
|
name: MTEB STS17 (en-en)
|
|
config: en-en
|
|
split: test
|
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 88.7045343749832
|
|
- type: cos_sim_spearman
|
|
value: 89.03262221146677
|
|
- type: euclidean_pearson
|
|
value: 89.56078218264365
|
|
- type: euclidean_spearman
|
|
value: 89.17827006466868
|
|
- type: manhattan_pearson
|
|
value: 89.52717595468582
|
|
- type: manhattan_spearman
|
|
value: 89.15878115952923
|
|
- task:
|
|
type: STS
|
|
dataset:
|
|
type: mteb/sts22-crosslingual-sts
|
|
name: MTEB STS22 (en)
|
|
config: en
|
|
split: test
|
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 64.20191302875551
|
|
- type: cos_sim_spearman
|
|
value: 64.11446552557646
|
|
- type: euclidean_pearson
|
|
value: 64.6918197393619
|
|
- type: euclidean_spearman
|
|
value: 63.440182631197764
|
|
- type: manhattan_pearson
|
|
value: 64.55692904121835
|
|
- type: manhattan_spearman
|
|
value: 63.424877742756266
|
|
- task:
|
|
type: STS
|
|
dataset:
|
|
type: mteb/stsbenchmark-sts
|
|
name: MTEB STSBenchmark
|
|
config: default
|
|
split: test
|
|
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 86.37793104662344
|
|
- type: cos_sim_spearman
|
|
value: 87.7357802629067
|
|
- type: euclidean_pearson
|
|
value: 87.4286301545109
|
|
- type: euclidean_spearman
|
|
value: 87.78452920777421
|
|
- type: manhattan_pearson
|
|
value: 87.42445169331255
|
|
- type: manhattan_spearman
|
|
value: 87.78537677249598
|
|
- task:
|
|
type: Reranking
|
|
dataset:
|
|
type: mteb/scidocs-reranking
|
|
name: MTEB SciDocsRR
|
|
config: default
|
|
split: test
|
|
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
|
metrics:
|
|
- type: map
|
|
value: 84.31465405081792
|
|
- type: mrr
|
|
value: 95.7173781193389
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: scifact
|
|
name: MTEB SciFact
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 57.760999999999996
|
|
- type: map_at_10
|
|
value: 67.904
|
|
- type: map_at_100
|
|
value: 68.539
|
|
- type: map_at_1000
|
|
value: 68.562
|
|
- type: map_at_3
|
|
value: 65.415
|
|
- type: map_at_5
|
|
value: 66.788
|
|
- type: mrr_at_1
|
|
value: 60.333000000000006
|
|
- type: mrr_at_10
|
|
value: 68.797
|
|
- type: mrr_at_100
|
|
value: 69.236
|
|
- type: mrr_at_1000
|
|
value: 69.257
|
|
- type: mrr_at_3
|
|
value: 66.667
|
|
- type: mrr_at_5
|
|
value: 67.967
|
|
- type: ndcg_at_1
|
|
value: 60.333000000000006
|
|
- type: ndcg_at_10
|
|
value: 72.24199999999999
|
|
- type: ndcg_at_100
|
|
value: 74.86
|
|
- type: ndcg_at_1000
|
|
value: 75.354
|
|
- type: ndcg_at_3
|
|
value: 67.93400000000001
|
|
- type: ndcg_at_5
|
|
value: 70.02199999999999
|
|
- type: precision_at_1
|
|
value: 60.333000000000006
|
|
- type: precision_at_10
|
|
value: 9.533
|
|
- type: precision_at_100
|
|
value: 1.09
|
|
- type: precision_at_1000
|
|
value: 0.11299999999999999
|
|
- type: precision_at_3
|
|
value: 26.778000000000002
|
|
- type: precision_at_5
|
|
value: 17.467
|
|
- type: recall_at_1
|
|
value: 57.760999999999996
|
|
- type: recall_at_10
|
|
value: 84.383
|
|
- type: recall_at_100
|
|
value: 96.267
|
|
- type: recall_at_1000
|
|
value: 100
|
|
- type: recall_at_3
|
|
value: 72.628
|
|
- type: recall_at_5
|
|
value: 78.094
|
|
- task:
|
|
type: PairClassification
|
|
dataset:
|
|
type: mteb/sprintduplicatequestions-pairclassification
|
|
name: MTEB SprintDuplicateQuestions
|
|
config: default
|
|
split: test
|
|
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
|
metrics:
|
|
- type: cos_sim_accuracy
|
|
value: 99.8029702970297
|
|
- type: cos_sim_ap
|
|
value: 94.9210324173411
|
|
- type: cos_sim_f1
|
|
value: 89.8521162672106
|
|
- type: cos_sim_precision
|
|
value: 91.67533818938605
|
|
- type: cos_sim_recall
|
|
value: 88.1
|
|
- type: dot_accuracy
|
|
value: 99.69504950495049
|
|
- type: dot_ap
|
|
value: 90.4919719146181
|
|
- type: dot_f1
|
|
value: 84.72289156626506
|
|
- type: dot_precision
|
|
value: 81.76744186046511
|
|
- type: dot_recall
|
|
value: 87.9
|
|
- type: euclidean_accuracy
|
|
value: 99.79702970297029
|
|
- type: euclidean_ap
|
|
value: 94.87827463795753
|
|
- type: euclidean_f1
|
|
value: 89.55680081507896
|
|
- type: euclidean_precision
|
|
value: 91.27725856697819
|
|
- type: euclidean_recall
|
|
value: 87.9
|
|
- type: manhattan_accuracy
|
|
value: 99.7990099009901
|
|
- type: manhattan_ap
|
|
value: 94.87587025149682
|
|
- type: manhattan_f1
|
|
value: 89.76298537569339
|
|
- type: manhattan_precision
|
|
value: 90.53916581892166
|
|
- type: manhattan_recall
|
|
value: 89
|
|
- type: max_accuracy
|
|
value: 99.8029702970297
|
|
- type: max_ap
|
|
value: 94.9210324173411
|
|
- type: max_f1
|
|
value: 89.8521162672106
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/stackexchange-clustering
|
|
name: MTEB StackExchangeClustering
|
|
config: default
|
|
split: test
|
|
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
|
metrics:
|
|
- type: v_measure
|
|
value: 65.92385753948724
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/stackexchange-clustering-p2p
|
|
name: MTEB StackExchangeClusteringP2P
|
|
config: default
|
|
split: test
|
|
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
|
metrics:
|
|
- type: v_measure
|
|
value: 33.671756975431144
|
|
- task:
|
|
type: Reranking
|
|
dataset:
|
|
type: mteb/stackoverflowdupquestions-reranking
|
|
name: MTEB StackOverflowDupQuestions
|
|
config: default
|
|
split: test
|
|
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
|
metrics:
|
|
- type: map
|
|
value: 50.677928036739004
|
|
- type: mrr
|
|
value: 51.56413133435193
|
|
- task:
|
|
type: Summarization
|
|
dataset:
|
|
type: mteb/summeval
|
|
name: MTEB SummEval
|
|
config: default
|
|
split: test
|
|
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 30.523589340819683
|
|
- type: cos_sim_spearman
|
|
value: 30.187407518823235
|
|
- type: dot_pearson
|
|
value: 29.039713969699015
|
|
- type: dot_spearman
|
|
value: 29.114740651155508
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: trec-covid
|
|
name: MTEB TRECCOVID
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 0.211
|
|
- type: map_at_10
|
|
value: 1.6199999999999999
|
|
- type: map_at_100
|
|
value: 8.658000000000001
|
|
- type: map_at_1000
|
|
value: 21.538
|
|
- type: map_at_3
|
|
value: 0.575
|
|
- type: map_at_5
|
|
value: 0.919
|
|
- type: mrr_at_1
|
|
value: 78
|
|
- type: mrr_at_10
|
|
value: 86.18599999999999
|
|
- type: mrr_at_100
|
|
value: 86.18599999999999
|
|
- type: mrr_at_1000
|
|
value: 86.18599999999999
|
|
- type: mrr_at_3
|
|
value: 85
|
|
- type: mrr_at_5
|
|
value: 85.9
|
|
- type: ndcg_at_1
|
|
value: 74
|
|
- type: ndcg_at_10
|
|
value: 66.542
|
|
- type: ndcg_at_100
|
|
value: 50.163999999999994
|
|
- type: ndcg_at_1000
|
|
value: 45.696999999999996
|
|
- type: ndcg_at_3
|
|
value: 71.531
|
|
- type: ndcg_at_5
|
|
value: 70.45
|
|
- type: precision_at_1
|
|
value: 78
|
|
- type: precision_at_10
|
|
value: 69.39999999999999
|
|
- type: precision_at_100
|
|
value: 51.06
|
|
- type: precision_at_1000
|
|
value: 20.022000000000002
|
|
- type: precision_at_3
|
|
value: 76
|
|
- type: precision_at_5
|
|
value: 74.8
|
|
- type: recall_at_1
|
|
value: 0.211
|
|
- type: recall_at_10
|
|
value: 1.813
|
|
- type: recall_at_100
|
|
value: 12.098
|
|
- type: recall_at_1000
|
|
value: 42.618
|
|
- type: recall_at_3
|
|
value: 0.603
|
|
- type: recall_at_5
|
|
value: 0.987
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: webis-touche2020
|
|
name: MTEB Touche2020
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 2.2079999999999997
|
|
- type: map_at_10
|
|
value: 7.777000000000001
|
|
- type: map_at_100
|
|
value: 12.825000000000001
|
|
- type: map_at_1000
|
|
value: 14.196
|
|
- type: map_at_3
|
|
value: 4.285
|
|
- type: map_at_5
|
|
value: 6.177
|
|
- type: mrr_at_1
|
|
value: 30.612000000000002
|
|
- type: mrr_at_10
|
|
value: 42.635
|
|
- type: mrr_at_100
|
|
value: 43.955
|
|
- type: mrr_at_1000
|
|
value: 43.955
|
|
- type: mrr_at_3
|
|
value: 38.435
|
|
- type: mrr_at_5
|
|
value: 41.088
|
|
- type: ndcg_at_1
|
|
value: 28.571
|
|
- type: ndcg_at_10
|
|
value: 20.666999999999998
|
|
- type: ndcg_at_100
|
|
value: 31.840000000000003
|
|
- type: ndcg_at_1000
|
|
value: 43.191
|
|
- type: ndcg_at_3
|
|
value: 23.45
|
|
- type: ndcg_at_5
|
|
value: 22.994
|
|
- type: precision_at_1
|
|
value: 30.612000000000002
|
|
- type: precision_at_10
|
|
value: 17.959
|
|
- type: precision_at_100
|
|
value: 6.755
|
|
- type: precision_at_1000
|
|
value: 1.4200000000000002
|
|
- type: precision_at_3
|
|
value: 23.810000000000002
|
|
- type: precision_at_5
|
|
value: 23.673
|
|
- type: recall_at_1
|
|
value: 2.2079999999999997
|
|
- type: recall_at_10
|
|
value: 13.144
|
|
- type: recall_at_100
|
|
value: 42.491
|
|
- type: recall_at_1000
|
|
value: 77.04299999999999
|
|
- type: recall_at_3
|
|
value: 5.3469999999999995
|
|
- type: recall_at_5
|
|
value: 9.139
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/toxic_conversations_50k
|
|
name: MTEB ToxicConversationsClassification
|
|
config: default
|
|
split: test
|
|
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
|
metrics:
|
|
- type: accuracy
|
|
value: 70.9044
|
|
- type: ap
|
|
value: 14.625783489340755
|
|
- type: f1
|
|
value: 54.814936562590546
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/tweet_sentiment_extraction
|
|
name: MTEB TweetSentimentExtractionClassification
|
|
config: default
|
|
split: test
|
|
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
|
metrics:
|
|
- type: accuracy
|
|
value: 60.94227504244483
|
|
- type: f1
|
|
value: 61.22516038508854
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/twentynewsgroups-clustering
|
|
name: MTEB TwentyNewsgroupsClustering
|
|
config: default
|
|
split: test
|
|
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
|
metrics:
|
|
- type: v_measure
|
|
value: 49.602409155145864
|
|
- task:
|
|
type: PairClassification
|
|
dataset:
|
|
type: mteb/twittersemeval2015-pairclassification
|
|
name: MTEB TwitterSemEval2015
|
|
config: default
|
|
split: test
|
|
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
|
metrics:
|
|
- type: cos_sim_accuracy
|
|
value: 86.94641473445789
|
|
- type: cos_sim_ap
|
|
value: 76.91572747061197
|
|
- type: cos_sim_f1
|
|
value: 70.14348097317529
|
|
- type: cos_sim_precision
|
|
value: 66.53254437869822
|
|
- type: cos_sim_recall
|
|
value: 74.1688654353562
|
|
- type: dot_accuracy
|
|
value: 84.80061989628658
|
|
- type: dot_ap
|
|
value: 70.7952548895177
|
|
- type: dot_f1
|
|
value: 65.44780728844965
|
|
- type: dot_precision
|
|
value: 61.53310104529617
|
|
- type: dot_recall
|
|
value: 69.89445910290237
|
|
- type: euclidean_accuracy
|
|
value: 86.94641473445789
|
|
- type: euclidean_ap
|
|
value: 76.80774009393652
|
|
- type: euclidean_f1
|
|
value: 70.30522503879979
|
|
- type: euclidean_precision
|
|
value: 68.94977168949772
|
|
- type: euclidean_recall
|
|
value: 71.71503957783642
|
|
- type: manhattan_accuracy
|
|
value: 86.8629671574179
|
|
- type: manhattan_ap
|
|
value: 76.76518632600317
|
|
- type: manhattan_f1
|
|
value: 70.16056518946692
|
|
- type: manhattan_precision
|
|
value: 68.360450563204
|
|
- type: manhattan_recall
|
|
value: 72.0580474934037
|
|
- type: max_accuracy
|
|
value: 86.94641473445789
|
|
- type: max_ap
|
|
value: 76.91572747061197
|
|
- type: max_f1
|
|
value: 70.30522503879979
|
|
- task:
|
|
type: PairClassification
|
|
dataset:
|
|
type: mteb/twitterurlcorpus-pairclassification
|
|
name: MTEB TwitterURLCorpus
|
|
config: default
|
|
split: test
|
|
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
|
metrics:
|
|
- type: cos_sim_accuracy
|
|
value: 89.10428066907285
|
|
- type: cos_sim_ap
|
|
value: 86.25114759921435
|
|
- type: cos_sim_f1
|
|
value: 78.37857884586856
|
|
- type: cos_sim_precision
|
|
value: 75.60818546078993
|
|
- type: cos_sim_recall
|
|
value: 81.35971666153372
|
|
- type: dot_accuracy
|
|
value: 87.41995575736406
|
|
- type: dot_ap
|
|
value: 81.51838010086782
|
|
- type: dot_f1
|
|
value: 74.77398015435503
|
|
- type: dot_precision
|
|
value: 71.53002390662354
|
|
- type: dot_recall
|
|
value: 78.32614721281182
|
|
- type: euclidean_accuracy
|
|
value: 89.12368533395428
|
|
- type: euclidean_ap
|
|
value: 86.33456799874504
|
|
- type: euclidean_f1
|
|
value: 78.45496750232127
|
|
- type: euclidean_precision
|
|
value: 75.78388462366364
|
|
- type: euclidean_recall
|
|
value: 81.32121958731136
|
|
- type: manhattan_accuracy
|
|
value: 89.10622113556099
|
|
- type: manhattan_ap
|
|
value: 86.31215061745333
|
|
- type: manhattan_f1
|
|
value: 78.40684906011539
|
|
- type: manhattan_precision
|
|
value: 75.89536643366722
|
|
- type: manhattan_recall
|
|
value: 81.09023714197721
|
|
- type: max_accuracy
|
|
value: 89.12368533395428
|
|
- type: max_ap
|
|
value: 86.33456799874504
|
|
- type: max_f1
|
|
value: 78.45496750232127
|
|
language:
|
|
- en
|
|
license: mit
|
|
---
|
|
|
|
# E5-large-v2
|
|
|
|
[Text Embeddings by Weakly-Supervised Contrastive Pre-training](https://arxiv.org/pdf/2212.03533.pdf).
|
|
Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022
|
|
|
|
This model has 24 layers and the embedding size is 1024.
|
|
|
|
## Usage
|
|
|
|
Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset.
|
|
|
|
```python
|
|
import torch.nn.functional as F
|
|
|
|
from torch import Tensor
|
|
from transformers import AutoTokenizer, AutoModel
|
|
|
|
|
|
def average_pool(last_hidden_states: Tensor,
|
|
attention_mask: Tensor) -> Tensor:
|
|
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
|
|
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
|
|
|
|
|
|
# Each input text should start with "query: " or "passage: ".
|
|
# For tasks other than retrieval, you can simply use the "query: " prefix.
|
|
input_texts = ['query: how much protein should a female eat',
|
|
'query: summit define',
|
|
"passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
|
|
"passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."]
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-large-v2')
|
|
model = AutoModel.from_pretrained('intfloat/e5-large-v2')
|
|
|
|
# Tokenize the input texts
|
|
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
|
|
|
|
outputs = model(**batch_dict)
|
|
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
|
|
|
# normalize embeddings
|
|
embeddings = F.normalize(embeddings, p=2, dim=1)
|
|
scores = (embeddings[:2] @ embeddings[2:].T) * 100
|
|
print(scores.tolist())
|
|
```
|
|
|
|
## Training Details
|
|
|
|
Please refer to our paper at [https://arxiv.org/pdf/2212.03533.pdf](https://arxiv.org/pdf/2212.03533.pdf).
|
|
|
|
## Benchmark Evaluation
|
|
|
|
Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results
|
|
on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB benchmark](https://arxiv.org/abs/2210.07316).
|
|
|
|
## Support for Sentence Transformers
|
|
|
|
Below is an example for usage with sentence_transformers.
|
|
```python
|
|
from sentence_transformers import SentenceTransformer
|
|
model = SentenceTransformer('intfloat/e5-large-v2')
|
|
input_texts = [
|
|
'query: how much protein should a female eat',
|
|
'query: summit define',
|
|
"passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
|
|
"passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."
|
|
]
|
|
embeddings = model.encode(input_texts, normalize_embeddings=True)
|
|
```
|
|
|
|
Package requirements
|
|
|
|
`pip install sentence_transformers~=2.2.2`
|
|
|
|
Contributors: [michaelfeil](https://huggingface.co/michaelfeil)
|
|
|
|
## FAQ
|
|
|
|
**1. Do I need to add the prefix "query: " and "passage: " to input texts?**
|
|
|
|
Yes, this is how the model is trained, otherwise you will see a performance degradation.
|
|
|
|
Here are some rules of thumb:
|
|
- Use "query: " and "passage: " correspondingly for asymmetric tasks such as passage retrieval in open QA, ad-hoc information retrieval.
|
|
|
|
- Use "query: " prefix for symmetric tasks such as semantic similarity, paraphrase retrieval.
|
|
|
|
- Use "query: " prefix if you want to use embeddings as features, such as linear probing classification, clustering.
|
|
|
|
**2. Why are my reproduced results slightly different from reported in the model card?**
|
|
|
|
Different versions of `transformers` and `pytorch` could cause negligible but non-zero performance differences.
|
|
|
|
**3. Why does the cosine similarity scores distribute around 0.7 to 1.0?**
|
|
|
|
This is a known and expected behavior as we use a low temperature 0.01 for InfoNCE contrastive loss.
|
|
|
|
For text embedding tasks like text retrieval or semantic similarity,
|
|
what matters is the relative order of the scores instead of the absolute values,
|
|
so this should not be an issue.
|
|
|
|
## Citation
|
|
|
|
If you find our paper or models helpful, please consider cite as follows:
|
|
|
|
```
|
|
@article{wang2022text,
|
|
title={Text Embeddings by Weakly-Supervised Contrastive Pre-training},
|
|
author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Jiao, Binxing and Yang, Linjun and Jiang, Daxin and Majumder, Rangan and Wei, Furu},
|
|
journal={arXiv preprint arXiv:2212.03533},
|
|
year={2022}
|
|
}
|
|
```
|
|
|
|
## Limitations
|
|
|
|
This model only works for English texts. Long texts will be truncated to at most 512 tokens.
|
|
|