|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Optional, Union |
|
|
|
import numpy as np |
|
|
|
from transformers.image_processing_utils import BatchFeature |
|
from transformers.image_utils import ImageInput, concatenate_list, make_flat_list_of_images |
|
from transformers.processing_utils import ImagesKwargs, MultiModalData, ProcessingKwargs, ProcessorMixin, Unpack |
|
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput |
|
from transformers.video_utils import VideoInput, make_batched_videos |
|
|
|
|
|
class InternS1ImagesKwargs(ImagesKwargs, total=False): |
|
crop_to_patches: Optional[bool] |
|
min_patches: Optional[int] |
|
max_patches: Optional[int] |
|
|
|
|
|
class InternS1ProcessorKwargs(ProcessingKwargs, total=False): |
|
images_kwargs: InternS1ImagesKwargs |
|
_defaults = { |
|
"text_kwargs": { |
|
"padding_side": "left", |
|
"return_mm_token_type_ids": False, |
|
}, |
|
"images_kwargs": { |
|
"crop_to_patches": True, |
|
}, |
|
"videos_kwargs": {}, |
|
} |
|
|
|
|
|
class InternS1Processor(ProcessorMixin): |
|
r""" |
|
Constructs a InternS1 processor which wraps a [`AutoImageProcessor`] and |
|
[`PretrainedTokenizerFast`] tokenizer into a single processor that inherits both the image processor and |
|
tokenizer functionalities. See the [`~InternS1Processor.__call__`] and [`~InternS1Processor.decode`] for more information. |
|
Args: |
|
image_processor ([`AutoImageProcessor`], *optional*): |
|
The image processor is a required input. |
|
tokenizer ([`PreTrainedTokenizer`, `PreTrainedTokenizerFast`], *optional*): |
|
The tokenizer is a required input. |
|
video_processor ([`AutoVideoProcessor`], *optional*): |
|
The video processor is a required input. |
|
image_seq_length (`int`, *optional*, defaults to 256): |
|
The number of image token to use per image patch. it should be set so that: |
|
image_seq_length = (config.image_size // config.patch_size) ** 2 * (config.scale_factor**2) |
|
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages |
|
in a chat into a tokenizable string. |
|
""" |
|
|
|
attributes = ["image_processor", "tokenizer", "video_processor"] |
|
image_processor_class = "AutoImageProcessor" |
|
video_processor_class = "AutoVideoProcessor" |
|
tokenizer_class = "AutoTokenizer" |
|
|
|
def __init__( |
|
self, |
|
image_processor=None, |
|
tokenizer=None, |
|
video_processor=None, |
|
image_seq_length: int = 256, |
|
chat_template=None, |
|
**kwargs, |
|
): |
|
self.image_seq_length = image_seq_length |
|
self.start_image_token = tokenizer.start_image_token |
|
self.end_image_token = tokenizer.end_image_token |
|
self.start_image_token_id = tokenizer.start_image_token_id |
|
self.end_image_token_id = tokenizer.end_image_token_id |
|
self.image_token = tokenizer.context_image_token |
|
self.video_token = tokenizer.video_token |
|
self.image_token_id = tokenizer.context_image_token_id |
|
self.image_ids = [self.image_token_id, self.start_image_token_id, self.end_image_token_id] |
|
|
|
super().__init__(image_processor, tokenizer, video_processor, chat_template=chat_template, **kwargs) |
|
|
|
def _insert_media_placeholders( |
|
self, |
|
text: list[str], |
|
image_pixel_values, |
|
video_pixel_values, |
|
image_num_patches: list[int], |
|
video_num_patches: list[int], |
|
image_num_patches_indices: np.ndarray, |
|
video_num_patches_indices: np.ndarray, |
|
video_patch_indices: np.ndarray, |
|
): |
|
""" |
|
Processes interleaved text with <image> and <video> placeholders, replacing them with appropriate |
|
image and video tokens while keeping track of the patches used. |
|
""" |
|
image_index = 0 |
|
video_index = 0 |
|
processed_text = [] |
|
image_video_patches = [] |
|
replace_strings = [] |
|
|
|
|
|
for prompt in text: |
|
new_prompt = prompt |
|
while self.image_token in new_prompt or self.video_token in new_prompt: |
|
if self.image_token in new_prompt and ( |
|
self.video_token not in new_prompt |
|
or new_prompt.index(self.image_token) < new_prompt.index(self.video_token) |
|
): |
|
|
|
start_index = image_num_patches_indices[image_index - 1] if image_index > 0 else 0 |
|
end_index = image_num_patches_indices[image_index] |
|
image_video_patches.append(image_pixel_values[start_index:end_index]) |
|
|
|
new_prompt = new_prompt.replace(self.image_token, "<placeholder>", 1) |
|
replace_strings.append( |
|
f"{self.start_image_token}{self.image_token * self.image_seq_length * image_num_patches[image_index]}{self.end_image_token}" |
|
) |
|
image_index += 1 |
|
else: |
|
|
|
|
|
|
|
current_patch_index = video_patch_indices[video_index - 1] if video_index > 0 else 0 |
|
end_patch_index = video_patch_indices[video_index] |
|
start_index = video_num_patches_indices[current_patch_index] if video_index > 0 else 0 |
|
end_index = video_num_patches_indices[end_patch_index - 1] |
|
image_video_patches.append(video_pixel_values[start_index:end_index]) |
|
|
|
num_patches = list(video_num_patches[current_patch_index:end_patch_index]) |
|
video_prompt = "\n".join( |
|
f"Frame{i + 1}: {self.start_image_token}{self.image_token * self.image_seq_length * num_patches[i]}{self.end_image_token}" |
|
for i in range(len(num_patches)) |
|
) |
|
replace_strings.append(video_prompt) |
|
new_prompt = new_prompt.replace(self.video_token, "<placeholder>", 1) |
|
video_index += 1 |
|
while "<placeholder>" in new_prompt: |
|
replace_str = replace_strings.pop(0) |
|
new_prompt = new_prompt.replace("<placeholder>", replace_str, 1) |
|
processed_text.append(new_prompt) |
|
|
|
return processed_text, image_video_patches, image_index, video_index |
|
|
|
def __call__( |
|
self, |
|
images: Optional[ImageInput] = None, |
|
text: Optional[Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]]] = None, |
|
audio=None, |
|
videos: Optional[VideoInput] = None, |
|
**kwargs: Unpack[InternS1ProcessorKwargs], |
|
) -> BatchFeature: |
|
""" |
|
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` |
|
and `kwargs` arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] to encode the text if `text` |
|
is not `None`, otherwise encode default OCR queries which depends on the `format`, `box`, `color`, `multi_page` and |
|
`crop_to_patches` arguments. To prepare the vision inputs, this method forwards the `images` and `kwrags` arguments to |
|
GotOcr2ImageProcessor's [`~GotOcr2ImageProcessor.__call__`] if `images` is not `None`. |
|
|
|
Args: |
|
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`): |
|
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch |
|
tensor. Both channels-first and channels-last formats are supported. |
|
text (`str`, `list[str]`, `list[list[str]]`): |
|
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings |
|
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set |
|
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). |
|
videos (`np.ndarray`, `torch.Tensor`, `list[np.ndarray]`, `list[torch.Tensor]`): |
|
The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch |
|
return_tensors (`str` or [`~utils.TensorType`], *optional*): |
|
If set, will return tensors of a particular framework. Acceptable values are: |
|
- `'tf'`: Return TensorFlow `tf.constant` objects. |
|
- `'pt'`: Return PyTorch `torch.Tensor` objects. |
|
- `'np'`: Return NumPy `np.ndarray` objects. |
|
- `'jax'`: Return JAX `jnp.ndarray` objects. |
|
|
|
Returns: |
|
[`BatchFeature`]: A [`BatchFeature`] with the following fields: |
|
|
|
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. |
|
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when |
|
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not |
|
`None`). |
|
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. |
|
""" |
|
if text is None: |
|
raise ValueError("You have to specify text.") |
|
|
|
output_kwargs = self._merge_kwargs( |
|
InternS1ProcessorKwargs, |
|
tokenizer_init_kwargs=self.tokenizer.init_kwargs, |
|
**kwargs, |
|
) |
|
|
|
if not isinstance(text, (list, tuple)): |
|
text = [text] |
|
|
|
|
|
image_num_patches = [] |
|
video_num_patches = [] |
|
image_videos_inputs = {} |
|
image_pixel_values = None |
|
video_pixel_values = None |
|
image_num_patches_indices = np.array([0]) |
|
video_patch_indices = np.array([0]) |
|
video_num_patches_indices = np.array([0]) |
|
if images is not None: |
|
images = make_flat_list_of_images(images) |
|
image_inputs = self.image_processor(images=images, **output_kwargs["images_kwargs"]) |
|
image_num_patches = image_inputs.pop("num_patches") |
|
image_pixel_values = image_inputs.pop("pixel_values") |
|
image_num_patches_indices = np.cumsum(image_num_patches) |
|
if videos is not None: |
|
videos = make_batched_videos(videos) |
|
video_inputs = self.video_processor(videos=videos, **output_kwargs["videos_kwargs"]) |
|
video_pixel_values = video_inputs.pop("pixel_values_videos") |
|
|
|
|
|
num_frames_per_video = [len(video) for video in video_pixel_values] |
|
video_num_patches = [1 for frames in num_frames_per_video for _ in range(frames)] |
|
video_patch_indices = np.cumsum(num_frames_per_video) |
|
video_num_patches_indices = np.cumsum(video_num_patches) |
|
video_pixel_values = video_pixel_values.flatten(0, 1) |
|
|
|
if images is not None or videos is not None: |
|
text, image_video_patches, image_index, video_index = self._insert_media_placeholders( |
|
text, |
|
image_pixel_values, |
|
video_pixel_values, |
|
image_num_patches, |
|
video_num_patches, |
|
image_num_patches_indices, |
|
video_num_patches_indices, |
|
video_patch_indices, |
|
) |
|
if images is not None and image_index != len(images): |
|
raise ValueError("Number of image placeholders in the prompt does not match the number of images.") |
|
if videos is not None and video_index != len(videos): |
|
raise ValueError("Number of video placeholders in the prompt does not match the number of videos.") |
|
|
|
|
|
image_videos_inputs = {"pixel_values": concatenate_list(image_video_patches)} |
|
|
|
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None) |
|
return_mm_token_type_ids = output_kwargs["text_kwargs"].pop("return_mm_token_type_ids", None) |
|
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"]) |
|
self._check_special_mm_tokens(text, text_inputs, modalities=["image"]) |
|
|
|
if return_mm_token_type_ids: |
|
array_ids = np.array(text_inputs["input_ids"]) |
|
mm_token_type_ids = np.zeros_like(text_inputs["input_ids"]) |
|
mm_token_type_ids[np.isin(array_ids, self.image_ids)] = 1 |
|
text_inputs["mm_token_type_ids"] = mm_token_type_ids.tolist() |
|
|
|
return BatchFeature(data={**text_inputs, **image_videos_inputs}, tensor_type=return_tensors) |
|
|
|
def _get_num_multimodal_tokens(self, image_sizes=None, **kwargs): |
|
""" |
|
Computes the number of placeholder tokens needed for multimodal inputs with the given sizes. |
|
|
|
Args: |
|
image_sizes (`list[list[int]]`, *optional*): |
|
The input sizes formatted as (height, width) per each image. |
|
|
|
Returns: |
|
`MultiModalData`: A `MultiModalData` object holding number of tokens per each of the provided |
|
input modalities, along with other useful data. |
|
""" |
|
|
|
vision_data = {} |
|
if image_sizes is not None: |
|
images_kwargs = InternS1ProcessorKwargs._defaults.get("images_kwargs", {}) |
|
images_kwargs.update(kwargs) |
|
|
|
num_image_patches = [ |
|
self.image_processor.get_number_of_image_tokens(*image_size, images_kwargs) |
|
for image_size in image_sizes |
|
] |
|
|
|
num_image_tokens = [2 + (self.image_seq_length * num_patches) for num_patches in num_image_patches] |
|
vision_data.update({"num_image_tokens": num_image_tokens, "num_image_patches": num_image_patches}) |
|
|
|
return MultiModalData(**vision_data) |
|
|
|
def batch_decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please |
|
refer to the docstring of this method for more information. |
|
""" |
|
return self.tokenizer.batch_decode(*args, **kwargs) |
|
|
|
def decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to |
|
the docstring of this method for more information. |
|
""" |
|
return self.tokenizer.decode(*args, **kwargs) |
|
|
|
@property |
|
def model_input_names(self): |
|
tokenizer_input_names = self.tokenizer.model_input_names |
|
image_processor_input_names = self.image_processor.model_input_names |
|
return list(tokenizer_input_names) + list(image_processor_input_names) |
|
|
|
|
|
__all__ = ["InternS1Processor"] |
|
|