File size: 16,315 Bytes
22acd83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
# coding=utf-8
# Copyright 2025 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Union
import numpy as np
from transformers.image_processing_utils import BatchFeature
from transformers.image_utils import ImageInput, concatenate_list, make_flat_list_of_images
from transformers.processing_utils import ImagesKwargs, MultiModalData, ProcessingKwargs, ProcessorMixin, Unpack
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
from transformers.video_utils import VideoInput, make_batched_videos
class InternS1ImagesKwargs(ImagesKwargs, total=False):
crop_to_patches: Optional[bool]
min_patches: Optional[int]
max_patches: Optional[int]
class InternS1ProcessorKwargs(ProcessingKwargs, total=False):
images_kwargs: InternS1ImagesKwargs
_defaults = {
"text_kwargs": {
"padding_side": "left",
"return_mm_token_type_ids": False,
},
"images_kwargs": {
"crop_to_patches": True,
},
"videos_kwargs": {},
}
class InternS1Processor(ProcessorMixin):
r"""
Constructs a InternS1 processor which wraps a [`AutoImageProcessor`] and
[`PretrainedTokenizerFast`] tokenizer into a single processor that inherits both the image processor and
tokenizer functionalities. See the [`~InternS1Processor.__call__`] and [`~InternS1Processor.decode`] for more information.
Args:
image_processor ([`AutoImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`PreTrainedTokenizer`, `PreTrainedTokenizerFast`], *optional*):
The tokenizer is a required input.
video_processor ([`AutoVideoProcessor`], *optional*):
The video processor is a required input.
image_seq_length (`int`, *optional*, defaults to 256):
The number of image token to use per image patch. it should be set so that:
image_seq_length = (config.image_size // config.patch_size) ** 2 * (config.scale_factor**2)
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
"""
attributes = ["image_processor", "tokenizer", "video_processor"]
image_processor_class = "AutoImageProcessor"
video_processor_class = "AutoVideoProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(
self,
image_processor=None,
tokenizer=None,
video_processor=None,
image_seq_length: int = 256,
chat_template=None,
**kwargs,
):
self.image_seq_length = image_seq_length
self.start_image_token = tokenizer.start_image_token
self.end_image_token = tokenizer.end_image_token
self.start_image_token_id = tokenizer.start_image_token_id
self.end_image_token_id = tokenizer.end_image_token_id
self.image_token = tokenizer.context_image_token
self.video_token = tokenizer.video_token
self.image_token_id = tokenizer.context_image_token_id
self.image_ids = [self.image_token_id, self.start_image_token_id, self.end_image_token_id]
super().__init__(image_processor, tokenizer, video_processor, chat_template=chat_template, **kwargs)
def _insert_media_placeholders(
self,
text: list[str],
image_pixel_values,
video_pixel_values,
image_num_patches: list[int],
video_num_patches: list[int],
image_num_patches_indices: np.ndarray,
video_num_patches_indices: np.ndarray,
video_patch_indices: np.ndarray,
):
"""
Processes interleaved text with <image> and <video> placeholders, replacing them with appropriate
image and video tokens while keeping track of the patches used.
"""
image_index = 0
video_index = 0
processed_text = []
image_video_patches = []
replace_strings = []
# Support interleaved image and video in prompts:
# Processed patches of images and videos are inserted in `image_video_patches` in the order they appear in the prompts
for prompt in text:
new_prompt = prompt
while self.image_token in new_prompt or self.video_token in new_prompt:
if self.image_token in new_prompt and (
self.video_token not in new_prompt
or new_prompt.index(self.image_token) < new_prompt.index(self.video_token)
):
# Get the slice of patches corresponding to the current image
start_index = image_num_patches_indices[image_index - 1] if image_index > 0 else 0
end_index = image_num_patches_indices[image_index]
image_video_patches.append(image_pixel_values[start_index:end_index])
# Replace the corresponding image placeholder with the correct number of image tokens
new_prompt = new_prompt.replace(self.image_token, "<placeholder>", 1)
replace_strings.append(
f"{self.start_image_token}{self.image_token * self.image_seq_length * image_num_patches[image_index]}{self.end_image_token}"
)
image_index += 1
else:
# Get the slice of patches corresponding to the current video
# Here we need to account for both the multiple video frames and the potential multiple patches per frame
# As of now, InternS1 only supports one patch per frame, but we keep the code flexible for future updates
current_patch_index = video_patch_indices[video_index - 1] if video_index > 0 else 0
end_patch_index = video_patch_indices[video_index]
start_index = video_num_patches_indices[current_patch_index] if video_index > 0 else 0
end_index = video_num_patches_indices[end_patch_index - 1]
image_video_patches.append(video_pixel_values[start_index:end_index])
# Get the number of patches per frame and replace the video placeholder with the correct number of image tokens
num_patches = list(video_num_patches[current_patch_index:end_patch_index])
video_prompt = "\n".join(
f"Frame{i + 1}: {self.start_image_token}{self.image_token * self.image_seq_length * num_patches[i]}{self.end_image_token}"
for i in range(len(num_patches))
)
replace_strings.append(video_prompt)
new_prompt = new_prompt.replace(self.video_token, "<placeholder>", 1)
video_index += 1
while "<placeholder>" in new_prompt:
replace_str = replace_strings.pop(0)
new_prompt = new_prompt.replace("<placeholder>", replace_str, 1)
processed_text.append(new_prompt)
return processed_text, image_video_patches, image_index, video_index
def __call__(
self,
images: Optional[ImageInput] = None,
text: Optional[Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]]] = None,
audio=None,
videos: Optional[VideoInput] = None,
**kwargs: Unpack[InternS1ProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] to encode the text if `text`
is not `None`, otherwise encode default OCR queries which depends on the `format`, `box`, `color`, `multi_page` and
`crop_to_patches` arguments. To prepare the vision inputs, this method forwards the `images` and `kwrags` arguments to
GotOcr2ImageProcessor's [`~GotOcr2ImageProcessor.__call__`] if `images` is not `None`.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `list[str]`, `list[list[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
videos (`np.ndarray`, `torch.Tensor`, `list[np.ndarray]`, `list[torch.Tensor]`):
The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
if text is None:
raise ValueError("You have to specify text.")
output_kwargs = self._merge_kwargs(
InternS1ProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if not isinstance(text, (list, tuple)):
text = [text]
# Process images and videos separately, as videos don't support crop_to_patches
image_num_patches = []
video_num_patches = []
image_videos_inputs = {}
image_pixel_values = None
video_pixel_values = None
image_num_patches_indices = np.array([0])
video_patch_indices = np.array([0])
video_num_patches_indices = np.array([0])
if images is not None:
images = make_flat_list_of_images(images)
image_inputs = self.image_processor(images=images, **output_kwargs["images_kwargs"])
image_num_patches = image_inputs.pop("num_patches")
image_pixel_values = image_inputs.pop("pixel_values")
image_num_patches_indices = np.cumsum(image_num_patches)
if videos is not None:
videos = make_batched_videos(videos)
video_inputs = self.video_processor(videos=videos, **output_kwargs["videos_kwargs"])
video_pixel_values = video_inputs.pop("pixel_values_videos")
# Obtain per frame information first and then flatten to (BS * T, ...)
num_frames_per_video = [len(video) for video in video_pixel_values]
video_num_patches = [1 for frames in num_frames_per_video for _ in range(frames)]
video_patch_indices = np.cumsum(num_frames_per_video)
video_num_patches_indices = np.cumsum(video_num_patches)
video_pixel_values = video_pixel_values.flatten(0, 1)
if images is not None or videos is not None:
text, image_video_patches, image_index, video_index = self._insert_media_placeholders(
text,
image_pixel_values,
video_pixel_values,
image_num_patches,
video_num_patches,
image_num_patches_indices,
video_num_patches_indices,
video_patch_indices,
)
if images is not None and image_index != len(images):
raise ValueError("Number of image placeholders in the prompt does not match the number of images.")
if videos is not None and video_index != len(videos):
raise ValueError("Number of video placeholders in the prompt does not match the number of videos.")
# Concatenate the interleaved image and video patches (function agnostic to the patches type (list, numpy array, torch tensor))
image_videos_inputs = {"pixel_values": concatenate_list(image_video_patches)}
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
return_mm_token_type_ids = output_kwargs["text_kwargs"].pop("return_mm_token_type_ids", None)
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
self._check_special_mm_tokens(text, text_inputs, modalities=["image"])
if return_mm_token_type_ids:
array_ids = np.array(text_inputs["input_ids"])
mm_token_type_ids = np.zeros_like(text_inputs["input_ids"])
mm_token_type_ids[np.isin(array_ids, self.image_ids)] = 1
text_inputs["mm_token_type_ids"] = mm_token_type_ids.tolist()
return BatchFeature(data={**text_inputs, **image_videos_inputs}, tensor_type=return_tensors)
def _get_num_multimodal_tokens(self, image_sizes=None, **kwargs):
"""
Computes the number of placeholder tokens needed for multimodal inputs with the given sizes.
Args:
image_sizes (`list[list[int]]`, *optional*):
The input sizes formatted as (height, width) per each image.
Returns:
`MultiModalData`: A `MultiModalData` object holding number of tokens per each of the provided
input modalities, along with other useful data.
"""
vision_data = {}
if image_sizes is not None:
images_kwargs = InternS1ProcessorKwargs._defaults.get("images_kwargs", {})
images_kwargs.update(kwargs)
num_image_patches = [
self.image_processor.get_number_of_image_tokens(*image_size, images_kwargs)
for image_size in image_sizes
]
# Add 2 for BOI and EOI tokens
num_image_tokens = [2 + (self.image_seq_length * num_patches) for num_patches in num_image_patches]
vision_data.update({"num_image_tokens": num_image_tokens, "num_image_patches": num_image_patches})
return MultiModalData(**vision_data)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(tokenizer_input_names) + list(image_processor_input_names)
__all__ = ["InternS1Processor"]
|