|  | --- | 
					
						
						|  | library_name: sentence-transformers | 
					
						
						|  | pipeline_tag: sentence-similarity | 
					
						
						|  | tags: | 
					
						
						|  | - feature-extraction | 
					
						
						|  | - sentence-similarity | 
					
						
						|  | - mteb | 
					
						
						|  | - transformers | 
					
						
						|  | - transformers.js | 
					
						
						|  | model-index: | 
					
						
						|  | - name: epoch_0_model | 
					
						
						|  | results: | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_counterfactual | 
					
						
						|  | name: MTEB AmazonCounterfactualClassification (en) | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | revision: e8379541af4e31359cca9fbcf4b00f2671dba205 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 76.8507462686567 | 
					
						
						|  | - type: ap | 
					
						
						|  | value: 40.592189159090495 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 71.01634655512476 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_polarity | 
					
						
						|  | name: MTEB AmazonPolarityClassification | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: e2d317d38cd51312af73b3d32a06d1a08b442046 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 91.51892500000001 | 
					
						
						|  | - type: ap | 
					
						
						|  | value: 88.50346762975335 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 91.50342077459624 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_reviews_multi | 
					
						
						|  | name: MTEB AmazonReviewsClassification (en) | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | revision: 1399c76144fd37290681b995c656ef9b2e06e26d | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 47.364 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 46.72708080922794 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: arguana | 
					
						
						|  | name: MTEB ArguAna | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 25.178 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 40.244 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 41.321999999999996 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 41.331 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 35.016999999999996 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 37.99 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 25.605 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 40.422000000000004 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 41.507 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 41.516 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 35.23 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 38.15 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 25.178 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 49.258 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 53.776 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 53.995000000000005 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 38.429 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 43.803 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 25.178 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 7.831 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 0.979 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.1 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 16.121 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 12.29 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 25.178 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 78.307 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 97.866 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 99.57300000000001 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 48.364000000000004 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 61.451 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/arxiv-clustering-p2p | 
					
						
						|  | name: MTEB ArxivClusteringP2P | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 45.93034494751465 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/arxiv-clustering-s2s | 
					
						
						|  | name: MTEB ArxivClusteringS2S | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 36.64579480054327 | 
					
						
						|  | - task: | 
					
						
						|  | type: Reranking | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/askubuntudupquestions-reranking | 
					
						
						|  | name: MTEB AskUbuntuDupQuestions | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map | 
					
						
						|  | value: 60.601310529222054 | 
					
						
						|  | - type: mrr | 
					
						
						|  | value: 75.04484896451656 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/biosses-sts | 
					
						
						|  | name: MTEB BIOSSES | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: d3fb88f8f02e40887cd149695127462bbcf29b4a | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 88.57797718095814 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 86.47064499110101 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 87.4559602783142 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 86.47064499110101 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 87.7232764230245 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 86.91222131777742 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/banking77 | 
					
						
						|  | name: MTEB Banking77Classification | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 84.5422077922078 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 84.47657456950589 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/biorxiv-clustering-p2p | 
					
						
						|  | name: MTEB BiorxivClusteringP2P | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 38.48953561974464 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/biorxiv-clustering-s2s | 
					
						
						|  | name: MTEB BiorxivClusteringS2S | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 32.75995857510105 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: BeIR/cqadupstack | 
					
						
						|  | name: MTEB CQADupstackAndroidRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 30.008000000000003 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 39.51 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 40.841 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 40.973 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 36.248999999999995 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 38.096999999999994 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 36.481 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 44.818000000000005 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 45.64 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 45.687 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 42.036 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 43.782 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 36.481 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 45.152 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 50.449 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 52.76499999999999 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 40.161 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 42.577999999999996 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 36.481 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 8.369 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.373 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.186 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 18.693 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 13.533999999999999 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 30.008000000000003 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 56.108999999999995 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 78.55499999999999 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 93.659 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 41.754999999999995 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 48.296 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: BeIR/cqadupstack | 
					
						
						|  | name: MTEB CQADupstackEnglishRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 30.262 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 40.139 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 41.394 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 41.526 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 37.155 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 38.785 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 38.153 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 46.369 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 47.072 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 47.111999999999995 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 44.268 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 45.389 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 38.153 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 45.925 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 50.394000000000005 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 52.37500000000001 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 41.754000000000005 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 43.574 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 38.153 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 8.796 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.432 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.189 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 20.318 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 14.395 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 30.262 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 55.72200000000001 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 74.97500000000001 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 87.342 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 43.129 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 48.336 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: BeIR/cqadupstack | 
					
						
						|  | name: MTEB CQADupstackGamingRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 39.951 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 51.248000000000005 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 52.188 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 52.247 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 48.211 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 49.797000000000004 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 45.329 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 54.749 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 55.367999999999995 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 55.400000000000006 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 52.382 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 53.649 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 45.329 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 56.847 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 60.738 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 61.976 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 51.59 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 53.915 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 45.329 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 8.959 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.187 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.134 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 22.612 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 15.273 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 39.951 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 70.053 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 86.996 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 95.707 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 56.032000000000004 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 61.629999999999995 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: BeIR/cqadupstack | 
					
						
						|  | name: MTEB CQADupstackGisRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 25.566 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 33.207 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 34.166000000000004 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 34.245 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 30.94 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 32.01 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 27.345000000000002 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 35.193000000000005 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 35.965 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 36.028999999999996 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 32.806000000000004 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 34.021 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 27.345000000000002 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 37.891999999999996 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 42.664 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 44.757000000000005 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 33.123000000000005 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 35.035 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 27.345000000000002 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 5.763 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 0.859 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.108 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 13.71 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 9.401 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 25.566 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 50.563 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 72.86399999999999 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 88.68599999999999 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 37.43 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 41.894999999999996 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: BeIR/cqadupstack | 
					
						
						|  | name: MTEB CQADupstackMathematicaRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 16.663 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 23.552 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 24.538 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 24.661 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 21.085 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 22.391 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 20.025000000000002 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 27.643 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 28.499999999999996 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 28.582 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 25.083 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 26.544 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 20.025000000000002 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 28.272000000000002 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 33.353 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 36.454 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 23.579 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 25.685000000000002 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 20.025000000000002 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 5.187 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 0.897 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.13 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 10.987 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 8.06 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 16.663 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 38.808 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 61.305 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 83.571 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 25.907999999999998 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 31.214 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: BeIR/cqadupstack | 
					
						
						|  | name: MTEB CQADupstackPhysicsRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 27.695999999999998 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 37.018 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 38.263000000000005 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 38.371 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 34.226 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 35.809999999999995 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 32.916000000000004 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 42.067 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 42.925000000000004 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 42.978 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 39.637 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 41.134 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 32.916000000000004 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 42.539 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 47.873 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 50.08200000000001 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 37.852999999999994 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 40.201 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 32.916000000000004 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 7.5840000000000005 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.199 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.155 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 17.485 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 12.512 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 27.695999999999998 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 53.638 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 76.116 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 91.069 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 41.13 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 46.872 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: BeIR/cqadupstack | 
					
						
						|  | name: MTEB CQADupstackProgrammersRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 24.108 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 33.372 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 34.656 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 34.768 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 30.830999999999996 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 32.204 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 29.110000000000003 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 37.979 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 38.933 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 38.988 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 35.731 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 36.963 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 29.110000000000003 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 38.635000000000005 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 44.324999999999996 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 46.747 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 34.37 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 36.228 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 29.110000000000003 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 6.963 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.146 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.152 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 16.400000000000002 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 11.552999999999999 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 24.108 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 49.597 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 73.88900000000001 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 90.62400000000001 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 37.662 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 42.565 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: BeIR/cqadupstack | 
					
						
						|  | name: MTEB CQADupstackRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 25.00791666666667 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 33.287749999999996 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 34.41141666666667 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 34.52583333333333 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 30.734416666666668 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 32.137166666666666 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 29.305666666666664 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 37.22966666666666 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 38.066583333333334 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 38.12616666666667 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 34.92275 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 36.23333333333334 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 29.305666666666664 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 38.25533333333333 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 43.25266666666666 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 45.63583333333334 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 33.777166666666666 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 35.85 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 29.305666666666664 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 6.596416666666667 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.0784166666666668 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.14666666666666664 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 15.31075 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 10.830916666666667 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 25.00791666666667 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 49.10933333333333 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 71.09216666666667 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 87.77725000000001 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 36.660916666666665 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 41.94149999999999 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: BeIR/cqadupstack | 
					
						
						|  | name: MTEB CQADupstackStatsRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 23.521 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 30.043 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 30.936000000000003 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 31.022 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 27.926000000000002 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 29.076999999999998 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 26.227 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 32.822 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 33.61 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 33.672000000000004 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 30.776999999999997 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 31.866 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 26.227 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 34.041 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 38.394 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 40.732 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 30.037999999999997 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 31.845000000000002 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 26.227 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 5.244999999999999 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 0.808 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.107 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 12.679000000000002 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 8.773 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 23.521 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 43.633 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 63.126000000000005 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 80.765 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 32.614 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 37.15 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: BeIR/cqadupstack | 
					
						
						|  | name: MTEB CQADupstackTexRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 16.236 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 22.898 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 23.878 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 24.009 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 20.87 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 22.025 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 19.339000000000002 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 26.382 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 27.245 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 27.33 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 24.386 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 25.496000000000002 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 19.339000000000002 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 27.139999999999997 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 31.944 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 35.077999999999996 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 23.424 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 25.188 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 19.339000000000002 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 4.8309999999999995 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 0.845 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.128 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 10.874 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 7.825 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 16.236 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 36.513 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 57.999 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 80.512 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 26.179999999999996 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 30.712 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: BeIR/cqadupstack | 
					
						
						|  | name: MTEB CQADupstackUnixRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 24.11 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 31.566 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 32.647 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 32.753 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 29.24 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 30.564999999999998 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 28.265 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 35.504000000000005 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 36.436 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 36.503 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 33.349000000000004 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 34.622 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 28.265 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 36.192 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 41.388000000000005 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 43.948 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 31.959 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 33.998 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 28.265 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 5.989 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 0.9650000000000001 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.13 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 14.335 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 10.112 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 24.11 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 46.418 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 69.314 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 87.397 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 34.724 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 39.925 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: BeIR/cqadupstack | 
					
						
						|  | name: MTEB CQADupstackWebmastersRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 22.091 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 29.948999999999998 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 31.502000000000002 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 31.713 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 27.464 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 28.968 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 26.482 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 34.009 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 35.081 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 35.138000000000005 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 31.785000000000004 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 33.178999999999995 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 26.482 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 35.008 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 41.272999999999996 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 43.972 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 30.804 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 33.046 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 26.482 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 6.462 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.431 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.22899999999999998 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 14.360999999999999 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 10.474 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 22.091 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 45.125 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 72.313 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 89.503 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 33.158 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 39.086999999999996 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: BeIR/cqadupstack | 
					
						
						|  | name: MTEB CQADupstackWordpressRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 19.883 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 26.951000000000004 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 27.927999999999997 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 28.022000000000002 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 24.616 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 25.917 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 21.996 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 29.221000000000004 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 30.024 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 30.095 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 26.833000000000002 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 28.155 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 21.996 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 31.421 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 36.237 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 38.744 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 26.671 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 28.907 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 21.996 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 5.009 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 0.799 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.11199999999999999 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 11.275 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 8.059 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 19.883 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 43.132999999999996 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 65.654 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 84.492 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 30.209000000000003 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 35.616 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: climate-fever | 
					
						
						|  | name: MTEB ClimateFEVER | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 17.756 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 30.378 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 32.537 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 32.717 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 25.599 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 28.372999999999998 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 41.303 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 53.483999999999995 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 54.106 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 54.127 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 50.315 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 52.396 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 41.303 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 40.503 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 47.821000000000005 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 50.788 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 34.364 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 36.818 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 41.303 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 12.463000000000001 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 2.037 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.26 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 25.798 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 19.896 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 17.756 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 46.102 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 70.819 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 87.21799999999999 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 30.646 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 38.022 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: dbpedia-entity | 
					
						
						|  | name: MTEB DBPedia | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 9.033 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 20.584 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 29.518 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 31.186000000000003 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 14.468 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 17.177 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 69.75 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 77.025 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 77.36699999999999 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 77.373 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 75.583 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 76.396 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 58.5 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 45.033 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 49.071 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 56.056 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 49.936 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 47.471999999999994 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 69.75 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 35.775 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 11.594999999999999 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 2.062 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 52.5 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 45.300000000000004 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 9.033 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 26.596999999999998 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 54.607000000000006 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 76.961 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 15.754999999999999 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 20.033 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/emotion | 
					
						
						|  | name: MTEB EmotionClassification | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 48.345000000000006 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 43.4514918068706 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: fever | 
					
						
						|  | name: MTEB FEVER | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 71.29100000000001 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 81.059 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 81.341 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 81.355 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 79.74799999999999 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 80.612 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 76.40299999999999 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 84.615 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 84.745 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 84.748 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 83.776 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 84.343 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 76.40299999999999 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 84.981 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 86.00999999999999 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 86.252 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 82.97 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 84.152 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 76.40299999999999 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 10.446 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.1199999999999999 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.116 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 32.147999999999996 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 20.135 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 71.29100000000001 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 93.232 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 97.363 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 98.905 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 87.893 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 90.804 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: fiqa | 
					
						
						|  | name: MTEB FiQA2018 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 18.667 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 30.853 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 32.494 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 32.677 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 26.91 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 29.099000000000004 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 37.191 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 46.171 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 47.056 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 47.099000000000004 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 44.059 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 45.147 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 37.191 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 38.437 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 44.62 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 47.795 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 35.003 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 36.006 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 37.191 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 10.586 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.688 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.22699999999999998 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 23.302 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 17.006 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 18.667 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 45.367000000000004 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 68.207 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 87.072 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 32.129000000000005 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 37.719 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: hotpotqa | 
					
						
						|  | name: MTEB HotpotQA | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 39.494 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 66.223 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 67.062 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 67.11500000000001 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 62.867 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 64.994 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 78.987 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 84.585 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 84.773 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 84.77900000000001 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 83.592 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 84.235 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 78.987 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 73.64 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 76.519 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 77.51 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 68.893 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 71.585 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 78.987 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 15.529000000000002 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.7770000000000001 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.191 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 44.808 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 29.006999999999998 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 39.494 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 77.643 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 88.825 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 95.321 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 67.211 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 72.519 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/imdb | 
					
						
						|  | name: MTEB ImdbClassification | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 85.55959999999999 | 
					
						
						|  | - type: ap | 
					
						
						|  | value: 80.7246500384617 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 85.52336485065454 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: msmarco | 
					
						
						|  | name: MTEB MSMARCO | 
					
						
						|  | config: default | 
					
						
						|  | split: dev | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 23.631 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 36.264 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 37.428 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 37.472 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 32.537 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 34.746 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 24.312 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 36.858000000000004 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 37.966 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 38.004 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 33.188 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 35.367 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 24.312 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 43.126999999999995 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 48.642 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 49.741 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 35.589 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 39.515 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 24.312 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 6.699 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 0.9450000000000001 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.104 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 15.153 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 11.065999999999999 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 23.631 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 64.145 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 89.41 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 97.83500000000001 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 43.769000000000005 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 53.169 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/mtop_domain | 
					
						
						|  | name: MTEB MTOPDomainClassification (en) | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 93.4108527131783 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 93.1415880261038 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/mtop_intent | 
					
						
						|  | name: MTEB MTOPIntentClassification (en) | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 77.24806201550388 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 60.531916308197175 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (en) | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 73.71553463349024 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 71.70753174900791 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (en) | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 77.79757901815736 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 77.83719850433258 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/medrxiv-clustering-p2p | 
					
						
						|  | name: MTEB MedrxivClusteringP2P | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 33.74193296622113 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/medrxiv-clustering-s2s | 
					
						
						|  | name: MTEB MedrxivClusteringS2S | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 30.64257594108566 | 
					
						
						|  | - task: | 
					
						
						|  | type: Reranking | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/mind_small | 
					
						
						|  | name: MTEB MindSmallReranking | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map | 
					
						
						|  | value: 30.811018518883625 | 
					
						
						|  | - type: mrr | 
					
						
						|  | value: 31.910376577445003 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: nfcorpus | 
					
						
						|  | name: MTEB NFCorpus | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 5.409 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 13.093 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 16.256999999999998 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 17.617 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 9.555 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 11.428 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 45.201 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 54.179 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 54.812000000000005 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 54.840999999999994 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 51.909000000000006 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 53.519000000000005 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 43.189 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 35.028 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 31.226 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 39.678000000000004 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 40.596 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 38.75 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 44.582 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 25.974999999999998 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 7.793 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 2.036 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 38.493 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 33.994 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 5.409 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 16.875999999999998 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 30.316 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 60.891 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 10.688 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 13.832 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: nq | 
					
						
						|  | name: MTEB NQ | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 36.375 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 51.991 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 52.91400000000001 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 52.93600000000001 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 48.014 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 50.381 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 40.759 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 54.617000000000004 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 55.301 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 55.315000000000005 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 51.516 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 53.435 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 40.759 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 59.384 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 63.157 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 63.654999999999994 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 52.114000000000004 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 55.986000000000004 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 40.759 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 9.411999999999999 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.153 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.12 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 23.329 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 16.256999999999998 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 36.375 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 79.053 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 95.167 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 98.82 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 60.475 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 69.327 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: quora | 
					
						
						|  | name: MTEB QuoraRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 70.256 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 83.8 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 84.425 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 84.444 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 80.906 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 82.717 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 80.97999999999999 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 87.161 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 87.262 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 87.263 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 86.175 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 86.848 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 80.97999999999999 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 87.697 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 88.959 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 89.09899999999999 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 84.83800000000001 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 86.401 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 80.97999999999999 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 13.261000000000001 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.5150000000000001 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.156 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 37.01 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 24.298000000000002 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 70.256 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 94.935 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 99.274 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 99.928 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 86.602 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 91.133 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/reddit-clustering | 
					
						
						|  | name: MTEB RedditClustering | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 24640382cdbf8abc73003fb0fa6d111a705499eb | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 56.322692497613104 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/reddit-clustering-p2p | 
					
						
						|  | name: MTEB RedditClusteringP2P | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 282350215ef01743dc01b456c7f5241fa8937f16 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 61.895813503775074 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: scidocs | 
					
						
						|  | name: MTEB SCIDOCS | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 4.338 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 10.767 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 12.537999999999998 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 12.803999999999998 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 7.788 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 9.302000000000001 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 21.4 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 31.637999999999998 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 32.688 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 32.756 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 28.433000000000003 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 30.178 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 21.4 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 18.293 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 25.274 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 30.284 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 17.391000000000002 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 15.146999999999998 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 21.4 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 9.48 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.949 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.316 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 16.167 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 13.22 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 4.338 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 19.213 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 39.562999999999995 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 64.08 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 9.828000000000001 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 13.383000000000001 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sickr-sts | 
					
						
						|  | name: MTEB SICK-R | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: a6ea5a8cab320b040a23452cc28066d9beae2cee | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 82.42568163642142 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 78.5797159641342 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 80.22151260811604 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 78.5797151953878 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 80.21224215864788 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 78.55641478381344 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts12-sts | 
					
						
						|  | name: MTEB STS12 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: a0d554a64d88156834ff5ae9920b964011b16384 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 85.44020710812569 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 78.91631735081286 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 81.64188964182102 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 78.91633286881678 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 81.69294748512496 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 78.93438558002656 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts13-sts | 
					
						
						|  | name: MTEB STS13 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 84.27165426412311 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 85.40429140249618 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 84.7509580724893 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 85.40429140249618 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 84.76488289321308 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 85.4256793698708 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts14-sts | 
					
						
						|  | name: MTEB STS14 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 83.138851760732 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 81.64101363896586 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 82.55165038934942 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 81.64105257080502 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 82.52802949883335 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 81.61255430718158 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts15-sts | 
					
						
						|  | name: MTEB STS15 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 86.0654695484029 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 87.20408521902229 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 86.8110651362115 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 87.20408521902229 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 86.77984656478691 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 87.1719947099227 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts16-sts | 
					
						
						|  | name: MTEB STS16 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 83.77823915496512 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 85.43566325729779 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 84.5396956658821 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 85.43566325729779 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 84.5665398848169 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 85.44375870303232 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts17-crosslingual-sts | 
					
						
						|  | name: MTEB STS17 (en-en) | 
					
						
						|  | config: en-en | 
					
						
						|  | split: test | 
					
						
						|  | revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 87.20030208471798 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 87.20485505076539 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 88.10588324368722 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 87.20485505076539 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 87.92324770415183 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 87.0571314561877 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts22-crosslingual-sts | 
					
						
						|  | name: MTEB STS22 (en) | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 63.06093161604453 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 64.2163140357722 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 65.27589680994006 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 64.2163140357722 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 65.45904383711101 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 64.55404716679305 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/stsbenchmark-sts | 
					
						
						|  | name: MTEB STSBenchmark | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 84.32976164578706 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 85.54302197678368 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 85.26307149193056 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 85.54302197678368 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 85.26647282029371 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 85.5316135265568 | 
					
						
						|  | - task: | 
					
						
						|  | type: Reranking | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/scidocs-reranking | 
					
						
						|  | name: MTEB SciDocsRR | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map | 
					
						
						|  | value: 81.44675968318754 | 
					
						
						|  | - type: mrr | 
					
						
						|  | value: 94.92741826075158 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: scifact | 
					
						
						|  | name: MTEB SciFact | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 56.34400000000001 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 65.927 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 66.431 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 66.461 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 63.529 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 64.818 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 59.333000000000006 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 67.54599999999999 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 67.892 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 67.917 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 65.778 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 66.794 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 59.333000000000006 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 70.5 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 72.688 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 73.483 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 66.338 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 68.265 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 59.333000000000006 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 9.3 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.053 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.11199999999999999 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 25.889 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 16.866999999999997 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 56.34400000000001 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 82.789 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 92.767 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 99 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 71.64399999999999 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 76.322 | 
					
						
						|  | - task: | 
					
						
						|  | type: PairClassification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sprintduplicatequestions-pairclassification | 
					
						
						|  | name: MTEB SprintDuplicateQuestions | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_accuracy | 
					
						
						|  | value: 99.75742574257426 | 
					
						
						|  | - type: cos_sim_ap | 
					
						
						|  | value: 93.52081548447406 | 
					
						
						|  | - type: cos_sim_f1 | 
					
						
						|  | value: 87.33850129198966 | 
					
						
						|  | - type: cos_sim_precision | 
					
						
						|  | value: 90.37433155080214 | 
					
						
						|  | - type: cos_sim_recall | 
					
						
						|  | value: 84.5 | 
					
						
						|  | - type: dot_accuracy | 
					
						
						|  | value: 99.75742574257426 | 
					
						
						|  | - type: dot_ap | 
					
						
						|  | value: 93.52081548447406 | 
					
						
						|  | - type: dot_f1 | 
					
						
						|  | value: 87.33850129198966 | 
					
						
						|  | - type: dot_precision | 
					
						
						|  | value: 90.37433155080214 | 
					
						
						|  | - type: dot_recall | 
					
						
						|  | value: 84.5 | 
					
						
						|  | - type: euclidean_accuracy | 
					
						
						|  | value: 99.75742574257426 | 
					
						
						|  | - type: euclidean_ap | 
					
						
						|  | value: 93.52081548447406 | 
					
						
						|  | - type: euclidean_f1 | 
					
						
						|  | value: 87.33850129198966 | 
					
						
						|  | - type: euclidean_precision | 
					
						
						|  | value: 90.37433155080214 | 
					
						
						|  | - type: euclidean_recall | 
					
						
						|  | value: 84.5 | 
					
						
						|  | - type: manhattan_accuracy | 
					
						
						|  | value: 99.75841584158415 | 
					
						
						|  | - type: manhattan_ap | 
					
						
						|  | value: 93.4975678585854 | 
					
						
						|  | - type: manhattan_f1 | 
					
						
						|  | value: 87.26708074534162 | 
					
						
						|  | - type: manhattan_precision | 
					
						
						|  | value: 90.45064377682404 | 
					
						
						|  | - type: manhattan_recall | 
					
						
						|  | value: 84.3 | 
					
						
						|  | - type: max_accuracy | 
					
						
						|  | value: 99.75841584158415 | 
					
						
						|  | - type: max_ap | 
					
						
						|  | value: 93.52081548447406 | 
					
						
						|  | - type: max_f1 | 
					
						
						|  | value: 87.33850129198966 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/stackexchange-clustering | 
					
						
						|  | name: MTEB StackExchangeClustering | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 64.31437036686651 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/stackexchange-clustering-p2p | 
					
						
						|  | name: MTEB StackExchangeClusteringP2P | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 815ca46b2622cec33ccafc3735d572c266efdb44 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 33.25569319007206 | 
					
						
						|  | - task: | 
					
						
						|  | type: Reranking | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/stackoverflowdupquestions-reranking | 
					
						
						|  | name: MTEB StackOverflowDupQuestions | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map | 
					
						
						|  | value: 49.90474939720706 | 
					
						
						|  | - type: mrr | 
					
						
						|  | value: 50.568115503777264 | 
					
						
						|  | - task: | 
					
						
						|  | type: Summarization | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/summeval | 
					
						
						|  | name: MTEB SummEval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 29.866828641244712 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 30.077555055873866 | 
					
						
						|  | - type: dot_pearson | 
					
						
						|  | value: 29.866832988572266 | 
					
						
						|  | - type: dot_spearman | 
					
						
						|  | value: 30.077555055873866 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: trec-covid | 
					
						
						|  | name: MTEB TRECCOVID | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 0.232 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 2.094 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 11.971 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 28.158 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 0.688 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 1.114 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 88 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 93.4 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 93.4 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 93.4 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 93 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 93.4 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 84 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 79.923 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 61.17 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 53.03 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 84.592 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 82.821 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 88 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 85 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 63.019999999999996 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 23.554 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 89.333 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 87.2 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 0.232 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 2.255 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 14.823 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 49.456 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 0.718 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 1.175 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: webis-touche2020 | 
					
						
						|  | name: MTEB Touche2020 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 2.547 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 11.375 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 18.194 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 19.749 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 5.825 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 8.581 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 32.653 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 51.32 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 51.747 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 51.747 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 47.278999999999996 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 48.605 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 29.592000000000002 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 28.151 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 39.438 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 50.769 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 30.758999999999997 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 30.366 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 32.653 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 25.714 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 8.041 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 1.555 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 33.333 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 31.837 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 2.547 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 18.19 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 49.538 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 83.86 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 7.329 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 11.532 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/toxic_conversations_50k | 
					
						
						|  | name: MTEB ToxicConversationsClassification | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 71.4952 | 
					
						
						|  | - type: ap | 
					
						
						|  | value: 14.793362635531409 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 55.204635551516915 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tweet_sentiment_extraction | 
					
						
						|  | name: MTEB TweetSentimentExtractionClassification | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: d604517c81ca91fe16a244d1248fc021f9ecee7a | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 61.5365025466893 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 61.81742556334845 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/twentynewsgroups-clustering | 
					
						
						|  | name: MTEB TwentyNewsgroupsClustering | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 49.05531070301185 | 
					
						
						|  | - task: | 
					
						
						|  | type: PairClassification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/twittersemeval2015-pairclassification | 
					
						
						|  | name: MTEB TwitterSemEval2015 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_accuracy | 
					
						
						|  | value: 86.51725576682364 | 
					
						
						|  | - type: cos_sim_ap | 
					
						
						|  | value: 75.2292304265163 | 
					
						
						|  | - type: cos_sim_f1 | 
					
						
						|  | value: 69.54022988505749 | 
					
						
						|  | - type: cos_sim_precision | 
					
						
						|  | value: 63.65629110039457 | 
					
						
						|  | - type: cos_sim_recall | 
					
						
						|  | value: 76.62269129287598 | 
					
						
						|  | - type: dot_accuracy | 
					
						
						|  | value: 86.51725576682364 | 
					
						
						|  | - type: dot_ap | 
					
						
						|  | value: 75.22922386081054 | 
					
						
						|  | - type: dot_f1 | 
					
						
						|  | value: 69.54022988505749 | 
					
						
						|  | - type: dot_precision | 
					
						
						|  | value: 63.65629110039457 | 
					
						
						|  | - type: dot_recall | 
					
						
						|  | value: 76.62269129287598 | 
					
						
						|  | - type: euclidean_accuracy | 
					
						
						|  | value: 86.51725576682364 | 
					
						
						|  | - type: euclidean_ap | 
					
						
						|  | value: 75.22925730473472 | 
					
						
						|  | - type: euclidean_f1 | 
					
						
						|  | value: 69.54022988505749 | 
					
						
						|  | - type: euclidean_precision | 
					
						
						|  | value: 63.65629110039457 | 
					
						
						|  | - type: euclidean_recall | 
					
						
						|  | value: 76.62269129287598 | 
					
						
						|  | - type: manhattan_accuracy | 
					
						
						|  | value: 86.52321630804077 | 
					
						
						|  | - type: manhattan_ap | 
					
						
						|  | value: 75.20608115037336 | 
					
						
						|  | - type: manhattan_f1 | 
					
						
						|  | value: 69.60000000000001 | 
					
						
						|  | - type: manhattan_precision | 
					
						
						|  | value: 64.37219730941705 | 
					
						
						|  | - type: manhattan_recall | 
					
						
						|  | value: 75.75197889182058 | 
					
						
						|  | - type: max_accuracy | 
					
						
						|  | value: 86.52321630804077 | 
					
						
						|  | - type: max_ap | 
					
						
						|  | value: 75.22925730473472 | 
					
						
						|  | - type: max_f1 | 
					
						
						|  | value: 69.60000000000001 | 
					
						
						|  | - task: | 
					
						
						|  | type: PairClassification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/twitterurlcorpus-pairclassification | 
					
						
						|  | name: MTEB TwitterURLCorpus | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_accuracy | 
					
						
						|  | value: 89.34877944657896 | 
					
						
						|  | - type: cos_sim_ap | 
					
						
						|  | value: 86.71257569277373 | 
					
						
						|  | - type: cos_sim_f1 | 
					
						
						|  | value: 79.10386355986088 | 
					
						
						|  | - type: cos_sim_precision | 
					
						
						|  | value: 76.91468470434214 | 
					
						
						|  | - type: cos_sim_recall | 
					
						
						|  | value: 81.4213119802895 | 
					
						
						|  | - type: dot_accuracy | 
					
						
						|  | value: 89.34877944657896 | 
					
						
						|  | - type: dot_ap | 
					
						
						|  | value: 86.71257133133368 | 
					
						
						|  | - type: dot_f1 | 
					
						
						|  | value: 79.10386355986088 | 
					
						
						|  | - type: dot_precision | 
					
						
						|  | value: 76.91468470434214 | 
					
						
						|  | - type: dot_recall | 
					
						
						|  | value: 81.4213119802895 | 
					
						
						|  | - type: euclidean_accuracy | 
					
						
						|  | value: 89.34877944657896 | 
					
						
						|  | - type: euclidean_ap | 
					
						
						|  | value: 86.71257651501476 | 
					
						
						|  | - type: euclidean_f1 | 
					
						
						|  | value: 79.10386355986088 | 
					
						
						|  | - type: euclidean_precision | 
					
						
						|  | value: 76.91468470434214 | 
					
						
						|  | - type: euclidean_recall | 
					
						
						|  | value: 81.4213119802895 | 
					
						
						|  | - type: manhattan_accuracy | 
					
						
						|  | value: 89.35848177901967 | 
					
						
						|  | - type: manhattan_ap | 
					
						
						|  | value: 86.69330615469126 | 
					
						
						|  | - type: manhattan_f1 | 
					
						
						|  | value: 79.13867741453949 | 
					
						
						|  | - type: manhattan_precision | 
					
						
						|  | value: 76.78881807647741 | 
					
						
						|  | - type: manhattan_recall | 
					
						
						|  | value: 81.63689559593472 | 
					
						
						|  | - type: max_accuracy | 
					
						
						|  | value: 89.35848177901967 | 
					
						
						|  | - type: max_ap | 
					
						
						|  | value: 86.71257651501476 | 
					
						
						|  | - type: max_f1 | 
					
						
						|  | value: 79.13867741453949 | 
					
						
						|  | license: apache-2.0 | 
					
						
						|  | language: | 
					
						
						|  | - en | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | # nomic-embed-text-v1: A Reproducible Long Context (8192) Text Embedder | 
					
						
						|  |  | 
					
						
						|  | `nomic-embed-text-v1` is 8192 context length text encoder that surpasses OpenAI text-embedding-ada-002 and text-embedding-3-small performance on short and long context tasks. | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | | Name                             | SeqLen | MTEB      | LoCo     | Jina Long Context |  Open Weights | Open Training Code | Open Data   | | 
					
						
						|  | | :-------------------------------:| :----- | :-------- | :------: | :---------------: | :-----------: | :----------------: | :---------- | | 
					
						
						|  | | nomic-embed-text-v1              | 8192   | **62.39** |**85.53** | 54.16             | ✅            | ✅                  | ✅          | | 
					
						
						|  | | jina-embeddings-v2-base-en       | 8192   | 60.39     | 85.45    | 51.90             | ✅            | ❌                  | ❌          | | 
					
						
						|  | | text-embedding-3-small           | 8191   | 62.26     | 82.40    | **58.20**         | ❌            | ❌                  | ❌          | | 
					
						
						|  | | text-embedding-ada-002           | 8191   | 60.99     | 52.7     | 55.25             | ❌            | ❌                  | ❌          | | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ## Hosted Inference API | 
					
						
						|  |  | 
					
						
						|  | The easiest way to get started with Nomic Embed is through the Nomic Embedding API. | 
					
						
						|  |  | 
					
						
						|  | Generating embeddings with the `nomic` Python client is as easy as | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | from nomic import embed | 
					
						
						|  |  | 
					
						
						|  | output = embed.text( | 
					
						
						|  | texts=['Nomic Embedding API', '#keepAIOpen'], | 
					
						
						|  | model='nomic-embed-text-v1', | 
					
						
						|  | task_type='search_document' | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | print(output) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | For more information, see the [API reference](https://docs.nomic.ai/reference/endpoints/nomic-embed-text) | 
					
						
						|  |  | 
					
						
						|  | ## Data Visualization | 
					
						
						|  | Click the Nomic Atlas map below to visualize a 5M sample of our contrastive pretraining data! | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | [](https://atlas.nomic.ai/map/nomic-text-embed-v1-5m-sample) | 
					
						
						|  |  | 
					
						
						|  | ## Training Details | 
					
						
						|  |  | 
					
						
						|  | We train our embedder using a multi-stage training pipeline. Starting from a long-context [BERT model](https://huggingface.co/nomic-ai/nomic-bert-2048), | 
					
						
						|  | the first unsupervised contrastive stage trains on a dataset generated from weakly related text pairs, such as question-answer pairs from forums like StackExchange and Quora, title-body pairs from Amazon reviews, and summarizations from news articles. | 
					
						
						|  |  | 
					
						
						|  | In the second finetuning stage, higher quality labeled datasets such as search queries and answers from web searches are leveraged. Data curation and hard-example mining is crucial in this stage. | 
					
						
						|  |  | 
					
						
						|  | For more details, see the Nomic Embed [Technical Report](https://static.nomic.ai/reports/2024_Nomic_Embed_Text_Technical_Report.pdf) and corresponding [blog post](https://blog.nomic.ai/posts/nomic-embed-text-v1). | 
					
						
						|  |  | 
					
						
						|  | Training data to train the models is released in its entirety. For more details, see the `contrastors` [repository](https://github.com/nomic-ai/contrastors) | 
					
						
						|  |  | 
					
						
						|  | ## Usage | 
					
						
						|  |  | 
					
						
						|  | Note `nomic-embed-text` requires prefixes! We support the prefixes `[search_query, search_document, classification, clustering]`. | 
					
						
						|  | For retrieval applications, you should prepend `search_document` for all your documents and `search_query` for your queries. | 
					
						
						|  |  | 
					
						
						|  | ### Sentence Transformers | 
					
						
						|  | ```python | 
					
						
						|  | from sentence_transformers import SentenceTransformer | 
					
						
						|  |  | 
					
						
						|  | model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True) | 
					
						
						|  | sentences = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?'] | 
					
						
						|  | embeddings = model.encode(sentences) | 
					
						
						|  | print(embeddings) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ### Transformers | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | from transformers import AutoTokenizer, AutoModel | 
					
						
						|  |  | 
					
						
						|  | def mean_pooling(model_output, attention_mask): | 
					
						
						|  | token_embeddings = model_output[0] | 
					
						
						|  | input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() | 
					
						
						|  | return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) | 
					
						
						|  |  | 
					
						
						|  | sentences = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?'] | 
					
						
						|  |  | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') | 
					
						
						|  | model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True) | 
					
						
						|  | model.eval() | 
					
						
						|  |  | 
					
						
						|  | encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') | 
					
						
						|  |  | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | model_output = model(**encoded_input) | 
					
						
						|  |  | 
					
						
						|  | embeddings = mean_pooling(model_output, encoded_input['attention_mask']) | 
					
						
						|  | embeddings = F.normalize(embeddings, p=2, dim=1) | 
					
						
						|  | print(embeddings) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | The model natively supports scaling of the sequence length past 2048 tokens. To do so, | 
					
						
						|  |  | 
					
						
						|  | ```diff | 
					
						
						|  | - tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') | 
					
						
						|  | + tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased', model_max_length=8192) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | - model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True) | 
					
						
						|  | + model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True, rotary_scaling_factor=2) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ### Transformers.js | 
					
						
						|  |  | 
					
						
						|  | ```js | 
					
						
						|  | import { pipeline } from '@xenova/transformers'; | 
					
						
						|  |  | 
					
						
						|  | // Create a feature extraction pipeline | 
					
						
						|  | const extractor = await pipeline('feature-extraction', 'nomic-ai/nomic-embed-text-v1', { | 
					
						
						|  | quantized: false, // Comment out this line to use the quantized version | 
					
						
						|  | }); | 
					
						
						|  |  | 
					
						
						|  | // Compute sentence embeddings | 
					
						
						|  | const texts = ['What is TSNE?', 'Who is Laurens van der Maaten?']; | 
					
						
						|  | const embeddings = await extractor(texts, { pooling: 'mean', normalize: true }); | 
					
						
						|  | console.log(embeddings); | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | # Join the Nomic Community | 
					
						
						|  |  | 
					
						
						|  | - Nomic: [https://nomic.ai](https://nomic.ai) | 
					
						
						|  | - Discord: [https://discord.gg/myY5YDR8z8](https://discord.gg/myY5YDR8z8) | 
					
						
						|  | - Twitter: [https://twitter.com/nomic_ai](https://twitter.com/nomic_ai) |