huihui-ai/Qwen2.5-Code-3B-Instruct-abliterated
This is an uncensored version of Qwen/Qwen2.5-Coder-3B-Instruct created with abliteration (see remove-refusals-with-transformers to know more about it).
Qwen2.5-Coder uncensored version has covered six mainstream model sizes,
0.5,
1.5,
3,
7,
14,
32 billion parameters.
If the desired result is not achieved, you can clear the conversation and try again.
ollama
You can use huihui_ai/qwen2.5-coder-abliterate:3b directly,
ollama run huihui_ai/qwen2.5-coder-abliterate:3b
Usage
You can use this model in your applications by loading it with Hugging Face's transformers
library:
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "huihui-ai/Qwen2.5-Code-3B-Instruct-abliterated"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
initial_messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}
]
messages = initial_messages.copy()
while True:
user_input = input("User: ").strip()
if user_input.lower() == "/exit":
print("Exiting chat.")
break
if user_input.lower() == "/clean":
messages = initial_messages.copy()
print("Chat history cleared. Starting a new conversation.")
continue
if not user_input:
print("Input cannot be empty. Please enter something.")
continue
messages.append({"role": "user", "content": user_input})
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=8192
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
messages.append({"role": "assistant", "content": response})
print(f"Qwen: {response}")