|
---
|
|
base_model: sentence-transformers/multi-qa-MiniLM-L6-cos-v1
|
|
tags:
|
|
- generated_from_trainer
|
|
metrics:
|
|
- accuracy
|
|
- precision
|
|
- recall
|
|
- f1
|
|
model-index:
|
|
- name: all_keywords_multi-qa-MiniLM-L6-cos-v1_another
|
|
results: []
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# all_keywords_multi-qa-MiniLM-L6-cos-v1_another
|
|
|
|
This model is a fine-tuned version of [sentence-transformers/multi-qa-MiniLM-L6-cos-v1](https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1) on the None dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 2.7780
|
|
- Accuracy: 0.5526
|
|
- Precision: 0.5526
|
|
- Recall: 0.5526
|
|
- F1: 0.5526
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 5e-05
|
|
- train_batch_size: 4
|
|
- eval_batch_size: 4
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- num_epochs: 15
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
|
| 2.3017 | 1.0 | 712 | 2.0180 | 0.4362 | 0.4362 | 0.4362 | 0.4362 |
|
|
| 2.09 | 2.0 | 1424 | 1.8306 | 0.4390 | 0.4390 | 0.4390 | 0.4390 |
|
|
| 1.775 | 3.0 | 2136 | 1.7843 | 0.4783 | 0.4783 | 0.4783 | 0.4783 |
|
|
| 1.5811 | 4.0 | 2848 | 1.7686 | 0.5175 | 0.5175 | 0.5175 | 0.5175 |
|
|
| 1.2665 | 5.0 | 3560 | 1.7257 | 0.5147 | 0.5147 | 0.5147 | 0.5147 |
|
|
| 1.0957 | 6.0 | 4272 | 1.8126 | 0.5568 | 0.5568 | 0.5568 | 0.5568 |
|
|
| 0.9661 | 7.0 | 4984 | 2.0472 | 0.5386 | 0.5386 | 0.5386 | 0.5386 |
|
|
| 0.7399 | 8.0 | 5696 | 2.1375 | 0.5428 | 0.5428 | 0.5428 | 0.5428 |
|
|
| 0.6533 | 9.0 | 6408 | 2.2761 | 0.5400 | 0.5400 | 0.5400 | 0.5400 |
|
|
| 0.5268 | 10.0 | 7120 | 2.4777 | 0.5400 | 0.5400 | 0.5400 | 0.5400 |
|
|
| 0.5067 | 11.0 | 7832 | 2.6160 | 0.5372 | 0.5372 | 0.5372 | 0.5372 |
|
|
| 0.4209 | 12.0 | 8544 | 2.6253 | 0.5512 | 0.5512 | 0.5512 | 0.5512 |
|
|
| 0.4102 | 13.0 | 9256 | 2.7287 | 0.5442 | 0.5442 | 0.5442 | 0.5442 |
|
|
| 0.3405 | 14.0 | 9968 | 2.7607 | 0.5470 | 0.5470 | 0.5470 | 0.5470 |
|
|
| 0.3278 | 15.0 | 10680 | 2.7780 | 0.5526 | 0.5526 | 0.5526 | 0.5526 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.39.3
|
|
- Pytorch 2.2.1+cu118
|
|
- Datasets 2.14.7
|
|
- Tokenizers 0.15.2
|
|
|