|
--- |
|
license: mit |
|
base_model: HuggingFaceH4/zephyr-7b-beta |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: non-qa-sft-zephyr-7b-beta-v1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# non-qa-sft-zephyr-7b-beta-v1 |
|
|
|
This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5768 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- training_steps: 1000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 1.3178 | 0.03 | 50 | 1.0767 | |
|
| 0.7765 | 0.07 | 100 | 0.7130 | |
|
| 0.6491 | 0.1 | 150 | 0.6840 | |
|
| 0.6441 | 0.14 | 200 | 0.6829 | |
|
| 0.701 | 0.17 | 250 | 0.6642 | |
|
| 0.6936 | 0.21 | 300 | 0.6427 | |
|
| 0.6538 | 0.24 | 350 | 0.6175 | |
|
| 0.5927 | 0.27 | 400 | 0.6139 | |
|
| 0.6709 | 0.31 | 450 | 0.6129 | |
|
| 0.5961 | 0.34 | 500 | 0.6078 | |
|
| 0.6161 | 0.38 | 550 | 0.5956 | |
|
| 0.5999 | 0.41 | 600 | 0.5938 | |
|
| 0.6248 | 0.44 | 650 | 0.5824 | |
|
| 0.6494 | 0.48 | 700 | 0.5806 | |
|
| 0.6259 | 0.51 | 750 | 0.5767 | |
|
| 0.557 | 0.55 | 800 | 0.5762 | |
|
| 0.6215 | 0.58 | 850 | 0.5777 | |
|
| 0.5986 | 0.62 | 900 | 0.5770 | |
|
| 0.6224 | 0.65 | 950 | 0.5767 | |
|
| 0.6058 | 0.68 | 1000 | 0.5768 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|