helizac commited on
Commit
2b87f07
·
verified ·
1 Parent(s): e2b53a5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -1
README.md CHANGED
@@ -1,3 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import torch
2
  from transformers import AutoModelForCausalLM, AutoProcessor
3
  from PIL import Image
@@ -41,4 +91,9 @@ generated_ids = model.generate(**inputs, max_new_tokens=256, do_sample=True, tem
41
  generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
42
  output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
43
 
44
- print(output_text)
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ library_name: transformers
4
+ tags:
5
+ - dots_ocr
6
+ - image-to-text
7
+ - ocr
8
+ - document-parse
9
+ - layout
10
+ - table
11
+ - formula
12
+ - quantized
13
+ - 4-bit
14
+ base_model: rednote-hilab/dots.ocr
15
+ ---
16
+
17
+ <div align="center">
18
+ <img src="https://raw.githubusercontent.com/rednote-hilab/dots.ocr/master/assets/logo.png" width="300"/>
19
+ </div>
20
+
21
+ # dots.ocr-4bit: A 4-bit Quantized Version
22
+
23
+ This repository contains a 4-bit quantized version of the powerful `dots.ocr` model by the **Rednote HiLab**. The quantization was performed using `bitsandbytes` (NF4 precision), providing significant memory and speed improvements with minimal performance loss, making this state-of-the-art model accessible on consumer-grade GPUs.
24
+
25
+ This work is entirely a derivative of the original model. All credit for the model architecture, training, and groundbreaking research goes to the original authors. A huge thank you to them for open-sourcing their work.
26
+
27
+ * **Original Model:** [rednote-hilab/dots.ocr](https://huggingface.co/rednote-hilab/dots.ocr)
28
+ * **Original GitHub:** [https://github.com/rednote-hilab/dots.ocr](https://github.com/rednote-hilab/dots.ocr)
29
+ * **Live Demo (Original):** [https://dotsocr.xiaohongshu.com](https://dotsocr.xiaohongshu.com)
30
+
31
+ ## Model Description (from original authors)
32
+ > **dots.ocr** is a powerful, multilingual document parser that unifies layout detection and content recognition within a single vision-language model while maintaining good reading order. Despite its compact 1.7B-parameter LLM foundation, it achieves state-of-the-art(SOTA) performance.
33
+
34
+ ## How to Use This 4-bit Version
35
+
36
+ First, ensure you have the necessary dependencies installed. Because this model uses custom code, you **must** clone the original repository and install it.
37
+
38
+ ```bash
39
+ # It's recommended to clone the original repo to get all utility scripts
40
+ git clone https://github.com/rednote-hilab/dots.ocr.git
41
+ cd dots.ocr
42
+
43
+ # Install the custom code and dependencies
44
+ pip install -e .
45
+ pip install torch transformers accelerate bitsandbytes peft sentencepiece
46
+ ```
47
+
48
+ You can then use the 4-bit model with the following Python script. Note the inclusion of generation parameters (repetition_penalty, do_sample, etc.), which are recommended to prevent potential looping with the quantized model.
49
+
50
+ ```python
51
  import torch
52
  from transformers import AutoModelForCausalLM, AutoProcessor
53
  from PIL import Image
 
91
  generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
92
  output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
93
 
94
+ print(output_text)
95
+ ```
96
+
97
+ ## License
98
+
99
+ This model is released under the MIT License, same as the original model.