Update README.md
Browse files
README.md
CHANGED
@@ -1,49 +1,3 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
library_name: transformers
|
4 |
-
tags:
|
5 |
-
- dots_ocr
|
6 |
-
- image-to-text
|
7 |
-
- ocr
|
8 |
-
- document-parse
|
9 |
-
- layout
|
10 |
-
- table
|
11 |
-
- formula
|
12 |
-
- quantized
|
13 |
-
- 4-bit
|
14 |
-
base_model: rednote-hilab/dots.ocr
|
15 |
-
---
|
16 |
-
|
17 |
-
# dots.ocr-4bit: A 4-bit Quantized Version
|
18 |
-
|
19 |
-
This repository contains a 4-bit quantized version of the powerful `dots.ocr` model by the **Rednote HiLab**. The quantization was performed using `bitsandbytes` (NF4 precision), providing significant memory and speed improvements with minimal performance loss, making this state-of-the-art model accessible on consumer-grade GPUs.
|
20 |
-
|
21 |
-
This work is entirely a derivative of the original model. All credit for the model architecture, training, and groundbreaking research goes to the original authors. A huge thank you to them for open-sourcing their work.
|
22 |
-
|
23 |
-
* **Original Model:** [rednote-hilab/dots.ocr](https://huggingface.co/rednote-hilab/dots.ocr)
|
24 |
-
* **Original GitHub:** [https://github.com/rednote-hilab/dots.ocr](https://github.com/rednote-hilab/dots.ocr)
|
25 |
-
* **Live Demo (Original):** [https://dotsocr.xiaohongshu.com](https://dotsocr.xiaohongshu.com)
|
26 |
-
|
27 |
-
## Model Description (from original authors)
|
28 |
-
> **dots.ocr** is a powerful, multilingual document parser that unifies layout detection and content recognition within a single vision-language model while maintaining good reading order. Despite its compact 1.7B-parameter LLM foundation, it achieves state-of-the-art(SOTA) performance.
|
29 |
-
|
30 |
-
## How to Use This 4-bit Version
|
31 |
-
|
32 |
-
First, ensure you have the necessary dependencies installed. Because this model uses custom code, you **must** clone the original repository and install it.
|
33 |
-
|
34 |
-
```bash
|
35 |
-
# It's recommended to clone the original repo to get all utility scripts
|
36 |
-
git clone https://github.com/rednote-hilab/dots.ocr.git
|
37 |
-
cd dots.ocr
|
38 |
-
|
39 |
-
# Install the custom code and dependencies
|
40 |
-
pip install -e .
|
41 |
-
pip install torch transformers accelerate bitsandbytes peft sentencepiece
|
42 |
-
```
|
43 |
-
|
44 |
-
You can then use the 4-bit model with the following Python script. Note the inclusion of generation parameters (repetition_penalty, do_sample, etc.), which are recommended to prevent potential looping with the quantized model.
|
45 |
-
|
46 |
-
```python
|
47 |
import torch
|
48 |
from transformers import AutoModelForCausalLM, AutoProcessor
|
49 |
from PIL import Image
|
@@ -55,8 +9,8 @@ MODEL_ID = "helizac/dots.ocr-4bit"
|
|
55 |
|
56 |
local_model_path = snapshot_download(repo_id=MODEL_ID)
|
57 |
|
58 |
-
model = AutoModelForCausalLM.from_pretrained(local_model_path, device_map="auto", trust_remote_code=True, torch_dtype=torch.bfloat16)
|
59 |
-
processor = AutoProcessor.from_pretrained(local_model_path, trust_remote_code=True)
|
60 |
|
61 |
image_path = "test.jpg"
|
62 |
image = Image.open(image_path)
|
@@ -82,14 +36,9 @@ text = processor.apply_chat_template(messages, tokenize=False, add_generation_pr
|
|
82 |
image_inputs, _ = process_vision_info(messages)
|
83 |
inputs = processor(text=[text], images=image_inputs, padding=True, return_tensors="pt").to(model.device)
|
84 |
|
85 |
-
generated_ids = model.generate(**inputs, max_new_tokens=
|
86 |
|
87 |
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
|
88 |
output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
89 |
|
90 |
-
print(output_text)
|
91 |
-
```
|
92 |
-
|
93 |
-
## License
|
94 |
-
|
95 |
-
This model is released under the MIT License, same as the original model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
from transformers import AutoModelForCausalLM, AutoProcessor
|
3 |
from PIL import Image
|
|
|
9 |
|
10 |
local_model_path = snapshot_download(repo_id=MODEL_ID)
|
11 |
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(local_model_path, device_map="auto", trust_remote_code=True, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2")
|
13 |
+
processor = AutoProcessor.from_pretrained(local_model_path, trust_remote_code=True, use_fast=True)
|
14 |
|
15 |
image_path = "test.jpg"
|
16 |
image = Image.open(image_path)
|
|
|
36 |
image_inputs, _ = process_vision_info(messages)
|
37 |
inputs = processor(text=[text], images=image_inputs, padding=True, return_tensors="pt").to(model.device)
|
38 |
|
39 |
+
generated_ids = model.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=0.6, top_p=0.9, repetition_penalty=1.15)
|
40 |
|
41 |
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
|
42 |
output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
43 |
|
44 |
+
print(output_text)
|
|
|
|
|
|
|
|
|
|