Upload folder using huggingface_hub
Browse files- .gitattributes +2 -0
- README.md +1 -1
- s1_seg_finetune/xsam_sam_large_m2f_e36_gpu16_seg_finetune/pytorch_model.bin +3 -0
- s2_align_pretrain/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_e1_gpu16_align_pretrain/pytorch_model.bin +3 -0
- s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/pytorch_model.bin +3 -0
- s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/llm/added_tokens.json +13 -0
- s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/llm/config.json +36 -0
- s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/llm/generation_config.json +11 -0
- s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/llm/pytorch_model-00001-of-00004.bin +3 -0
- s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/llm/pytorch_model-00002-of-00004.bin +3 -0
- s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/llm/pytorch_model-00003-of-00004.bin +3 -0
- s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/llm/pytorch_model-00004-of-00004.bin +3 -0
- s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/llm/pytorch_model.bin.index.json +202 -0
- s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/llm/special_tokens_map.json +30 -0
- s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/llm/tokenizer.json +0 -0
- s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/llm/tokenizer.model +3 -0
- s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/llm/tokenizer_config.json +132 -0
- s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/segmentor_encoder/config.json +33 -0
- s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/segmentor_encoder/preprocessor_config.json +44 -0
- s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/segmentor_encoder/pytorch_model.bin +3 -0
- s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/segmentor_projector/config.json +18 -0
- s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/segmentor_projector/configuration_projector.py +25 -0
- s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/segmentor_projector/modeling_projector.py +48 -0
- s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/segmentor_projector/pytorch_model.bin +3 -0
- s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/visual_encoder/config.json +19 -0
- s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/visual_encoder/preprocessor_config.json +24 -0
- s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/visual_encoder/pytorch_model.bin +3 -0
- s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/visual_projector/config.json +18 -0
- s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/visual_projector/configuration_projector.py +25 -0
- s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/visual_projector/modeling_projector.py +48 -0
- s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/visual_projector/pytorch_model.bin +3 -0
- s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/xtuner_config.py +703 -0
- vgdseg_annotations/coco_vgdseg_train.json +3 -0
- vgdseg_annotations/coco_vgdseg_val.json +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
vgdseg_annotations/coco_vgdseg_train.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
vgdseg_annotations/coco_vgdseg_val.json filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -16,7 +16,7 @@ tags:
|
|
16 |
|
17 |
<sup>1</sup> Sun Yat-sen University, <sup>2</sup> Peng Cheng Laboratory, <sup>3</sup> Meituan Inc.
|
18 |
|
19 |
-
<sup>📧</sup>
|
20 |
</div>
|
21 |
|
22 |
<div align="center" style="display: flex; justify-content: center; align-items: center;">
|
|
|
16 |
|
17 |
<sup>1</sup> Sun Yat-sen University, <sup>2</sup> Peng Cheng Laboratory, <sup>3</sup> Meituan Inc.
|
18 |
|
19 |
+
<sup>📧</sup> Corresponding author
|
20 |
</div>
|
21 |
|
22 |
<div align="center" style="display: flex; justify-content: center; align-items: center;">
|
s1_seg_finetune/xsam_sam_large_m2f_e36_gpu16_seg_finetune/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8f0ea6912951c1a31e409e331be35471953190f31f38efd519c10f02e9b11da
|
3 |
+
size 679089406
|
s2_align_pretrain/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_e1_gpu16_align_pretrain/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:202d131ebb09b6d068c56c668bcb95780059021bbf5b506a13c3785261c66389
|
3 |
+
size 70019002
|
s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1036e611890bd8af8e73e368b97bddd3bcbfc8abdcbb257f05226ac4e8ff1ec
|
3 |
+
size 9248986190
|
s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/llm/added_tokens.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|assistant|>": 32001,
|
3 |
+
"<|endoftext|>": 32000,
|
4 |
+
"<|end|>": 32007,
|
5 |
+
"<|placeholder1|>": 32002,
|
6 |
+
"<|placeholder2|>": 32003,
|
7 |
+
"<|placeholder3|>": 32004,
|
8 |
+
"<|placeholder4|>": 32005,
|
9 |
+
"<|placeholder5|>": 32008,
|
10 |
+
"<|placeholder6|>": 32009,
|
11 |
+
"<|system|>": 32006,
|
12 |
+
"<|user|>": 32010
|
13 |
+
}
|
s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/llm/config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Phi-3-mini-4k-instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Phi3ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_phi3.Phi3Config",
|
10 |
+
"AutoModelForCausalLM": "modeling_phi3.Phi3ForCausalLM"
|
11 |
+
},
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"embd_pdrop": 0.0,
|
14 |
+
"eos_token_id": 32000,
|
15 |
+
"hidden_act": "silu",
|
16 |
+
"hidden_size": 3072,
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 8192,
|
19 |
+
"max_position_embeddings": 4096,
|
20 |
+
"model_type": "phi3",
|
21 |
+
"num_attention_heads": 32,
|
22 |
+
"num_hidden_layers": 32,
|
23 |
+
"num_key_value_heads": 32,
|
24 |
+
"original_max_position_embeddings": 4096,
|
25 |
+
"pad_token_id": 32000,
|
26 |
+
"resid_pdrop": 0.0,
|
27 |
+
"rms_norm_eps": 1e-05,
|
28 |
+
"rope_scaling": null,
|
29 |
+
"rope_theta": 10000.0,
|
30 |
+
"sliding_window": 2047,
|
31 |
+
"tie_word_embeddings": false,
|
32 |
+
"torch_dtype": "float16",
|
33 |
+
"transformers_version": "4.48.0",
|
34 |
+
"use_cache": true,
|
35 |
+
"vocab_size": 32014
|
36 |
+
}
|
s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/llm/generation_config.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": [
|
5 |
+
32000,
|
6 |
+
32001,
|
7 |
+
32007
|
8 |
+
],
|
9 |
+
"pad_token_id": 32000,
|
10 |
+
"transformers_version": "4.48.0"
|
11 |
+
}
|
s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/llm/pytorch_model-00001-of-00004.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1398fdd95dd16597366a564b7fdef4f928faa12fe2ac4b80b7f4511502abbc0
|
3 |
+
size 1958403558
|
s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/llm/pytorch_model-00002-of-00004.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ff085f4f962fe5ca14769b7d8a8235cfc2a58c80a2532da2ce31f21838141ac
|
3 |
+
size 1937897316
|
s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/llm/pytorch_model-00003-of-00004.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69b499b2a723e8ed2bdfb0213f75d5c2ece2ddb2830b26f8856b4dfe74968138
|
3 |
+
size 1981937508
|
s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/llm/pytorch_model-00004-of-00004.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac56ea2ec260c0f149361d5ffd1eced953727eee36b94094b47b376e606f249e
|
3 |
+
size 1763373552
|
s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/llm/pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 7641544704
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00004-of-00004.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00004.bin",
|
8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
10 |
+
"model.layers.0.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
11 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
12 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
13 |
+
"model.layers.0.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00004.bin",
|
14 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
15 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
16 |
+
"model.layers.1.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
17 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
18 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
19 |
+
"model.layers.1.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00004.bin",
|
20 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
21 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
22 |
+
"model.layers.10.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
23 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
24 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
25 |
+
"model.layers.10.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00004.bin",
|
26 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
27 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
28 |
+
"model.layers.11.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
29 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
30 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
31 |
+
"model.layers.11.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00004.bin",
|
32 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
33 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
34 |
+
"model.layers.12.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
35 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
36 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
37 |
+
"model.layers.12.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00004.bin",
|
38 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
39 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
40 |
+
"model.layers.13.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
41 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
42 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
43 |
+
"model.layers.13.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00004.bin",
|
44 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
45 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
46 |
+
"model.layers.14.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
47 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
48 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
49 |
+
"model.layers.14.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00004.bin",
|
50 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
51 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
52 |
+
"model.layers.15.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
53 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
54 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
55 |
+
"model.layers.15.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00004.bin",
|
56 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
57 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
58 |
+
"model.layers.16.mlp.gate_up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
59 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
60 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
61 |
+
"model.layers.16.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00004.bin",
|
62 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
63 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
64 |
+
"model.layers.17.mlp.gate_up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
65 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
66 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
67 |
+
"model.layers.17.self_attn.qkv_proj.weight": "pytorch_model-00003-of-00004.bin",
|
68 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
69 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
70 |
+
"model.layers.18.mlp.gate_up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
71 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
72 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
73 |
+
"model.layers.18.self_attn.qkv_proj.weight": "pytorch_model-00003-of-00004.bin",
|
74 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
75 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
76 |
+
"model.layers.19.mlp.gate_up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
77 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
78 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
79 |
+
"model.layers.19.self_attn.qkv_proj.weight": "pytorch_model-00003-of-00004.bin",
|
80 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
81 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
82 |
+
"model.layers.2.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
83 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
84 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
85 |
+
"model.layers.2.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00004.bin",
|
86 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
87 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
88 |
+
"model.layers.20.mlp.gate_up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
89 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
90 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
91 |
+
"model.layers.20.self_attn.qkv_proj.weight": "pytorch_model-00003-of-00004.bin",
|
92 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
93 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
94 |
+
"model.layers.21.mlp.gate_up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
95 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
96 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
97 |
+
"model.layers.21.self_attn.qkv_proj.weight": "pytorch_model-00003-of-00004.bin",
|
98 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
99 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
100 |
+
"model.layers.22.mlp.gate_up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
101 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
102 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
103 |
+
"model.layers.22.self_attn.qkv_proj.weight": "pytorch_model-00003-of-00004.bin",
|
104 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
105 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
106 |
+
"model.layers.23.mlp.gate_up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
107 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
108 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
109 |
+
"model.layers.23.self_attn.qkv_proj.weight": "pytorch_model-00003-of-00004.bin",
|
110 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
111 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
112 |
+
"model.layers.24.mlp.gate_up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
113 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
114 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
115 |
+
"model.layers.24.self_attn.qkv_proj.weight": "pytorch_model-00003-of-00004.bin",
|
116 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
117 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00004-of-00004.bin",
|
118 |
+
"model.layers.25.mlp.gate_up_proj.weight": "pytorch_model-00004-of-00004.bin",
|
119 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
120 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
121 |
+
"model.layers.25.self_attn.qkv_proj.weight": "pytorch_model-00004-of-00004.bin",
|
122 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
123 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00004-of-00004.bin",
|
124 |
+
"model.layers.26.mlp.gate_up_proj.weight": "pytorch_model-00004-of-00004.bin",
|
125 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
126 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00004-of-00004.bin",
|
127 |
+
"model.layers.26.self_attn.qkv_proj.weight": "pytorch_model-00004-of-00004.bin",
|
128 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
129 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00004-of-00004.bin",
|
130 |
+
"model.layers.27.mlp.gate_up_proj.weight": "pytorch_model-00004-of-00004.bin",
|
131 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
132 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00004-of-00004.bin",
|
133 |
+
"model.layers.27.self_attn.qkv_proj.weight": "pytorch_model-00004-of-00004.bin",
|
134 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
135 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00004-of-00004.bin",
|
136 |
+
"model.layers.28.mlp.gate_up_proj.weight": "pytorch_model-00004-of-00004.bin",
|
137 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
138 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00004-of-00004.bin",
|
139 |
+
"model.layers.28.self_attn.qkv_proj.weight": "pytorch_model-00004-of-00004.bin",
|
140 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
141 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00004-of-00004.bin",
|
142 |
+
"model.layers.29.mlp.gate_up_proj.weight": "pytorch_model-00004-of-00004.bin",
|
143 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
144 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00004-of-00004.bin",
|
145 |
+
"model.layers.29.self_attn.qkv_proj.weight": "pytorch_model-00004-of-00004.bin",
|
146 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
147 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
148 |
+
"model.layers.3.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
149 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
150 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
151 |
+
"model.layers.3.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00004.bin",
|
152 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
153 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00004-of-00004.bin",
|
154 |
+
"model.layers.30.mlp.gate_up_proj.weight": "pytorch_model-00004-of-00004.bin",
|
155 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
156 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00004-of-00004.bin",
|
157 |
+
"model.layers.30.self_attn.qkv_proj.weight": "pytorch_model-00004-of-00004.bin",
|
158 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
159 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00004-of-00004.bin",
|
160 |
+
"model.layers.31.mlp.gate_up_proj.weight": "pytorch_model-00004-of-00004.bin",
|
161 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
162 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00004-of-00004.bin",
|
163 |
+
"model.layers.31.self_attn.qkv_proj.weight": "pytorch_model-00004-of-00004.bin",
|
164 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
165 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
166 |
+
"model.layers.4.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
167 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
168 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
169 |
+
"model.layers.4.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00004.bin",
|
170 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
171 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
172 |
+
"model.layers.5.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
173 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
174 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
175 |
+
"model.layers.5.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00004.bin",
|
176 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
177 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
178 |
+
"model.layers.6.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
179 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
180 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
181 |
+
"model.layers.6.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00004.bin",
|
182 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
183 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
184 |
+
"model.layers.7.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
185 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
186 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
187 |
+
"model.layers.7.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00004.bin",
|
188 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
189 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
190 |
+
"model.layers.8.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
191 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
192 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
193 |
+
"model.layers.8.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00004.bin",
|
194 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
195 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
196 |
+
"model.layers.9.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
197 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
198 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
199 |
+
"model.layers.9.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00004.bin",
|
200 |
+
"model.norm.weight": "pytorch_model-00004-of-00004.bin"
|
201 |
+
}
|
202 |
+
}
|
s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/llm/special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/llm/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/llm/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/llm/tokenizer_config.json
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": null,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": true,
|
27 |
+
"single_word": false,
|
28 |
+
"special": false
|
29 |
+
},
|
30 |
+
"32000": {
|
31 |
+
"content": "<|endoftext|>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false,
|
36 |
+
"special": true
|
37 |
+
},
|
38 |
+
"32001": {
|
39 |
+
"content": "<|assistant|>",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": false,
|
42 |
+
"rstrip": true,
|
43 |
+
"single_word": false,
|
44 |
+
"special": true
|
45 |
+
},
|
46 |
+
"32002": {
|
47 |
+
"content": "<|placeholder1|>",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": false,
|
50 |
+
"rstrip": true,
|
51 |
+
"single_word": false,
|
52 |
+
"special": true
|
53 |
+
},
|
54 |
+
"32003": {
|
55 |
+
"content": "<|placeholder2|>",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": false,
|
58 |
+
"rstrip": true,
|
59 |
+
"single_word": false,
|
60 |
+
"special": true
|
61 |
+
},
|
62 |
+
"32004": {
|
63 |
+
"content": "<|placeholder3|>",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": false,
|
66 |
+
"rstrip": true,
|
67 |
+
"single_word": false,
|
68 |
+
"special": true
|
69 |
+
},
|
70 |
+
"32005": {
|
71 |
+
"content": "<|placeholder4|>",
|
72 |
+
"lstrip": false,
|
73 |
+
"normalized": false,
|
74 |
+
"rstrip": true,
|
75 |
+
"single_word": false,
|
76 |
+
"special": true
|
77 |
+
},
|
78 |
+
"32006": {
|
79 |
+
"content": "<|system|>",
|
80 |
+
"lstrip": false,
|
81 |
+
"normalized": false,
|
82 |
+
"rstrip": true,
|
83 |
+
"single_word": false,
|
84 |
+
"special": true
|
85 |
+
},
|
86 |
+
"32007": {
|
87 |
+
"content": "<|end|>",
|
88 |
+
"lstrip": false,
|
89 |
+
"normalized": false,
|
90 |
+
"rstrip": true,
|
91 |
+
"single_word": false,
|
92 |
+
"special": true
|
93 |
+
},
|
94 |
+
"32008": {
|
95 |
+
"content": "<|placeholder5|>",
|
96 |
+
"lstrip": false,
|
97 |
+
"normalized": false,
|
98 |
+
"rstrip": true,
|
99 |
+
"single_word": false,
|
100 |
+
"special": true
|
101 |
+
},
|
102 |
+
"32009": {
|
103 |
+
"content": "<|placeholder6|>",
|
104 |
+
"lstrip": false,
|
105 |
+
"normalized": false,
|
106 |
+
"rstrip": true,
|
107 |
+
"single_word": false,
|
108 |
+
"special": true
|
109 |
+
},
|
110 |
+
"32010": {
|
111 |
+
"content": "<|user|>",
|
112 |
+
"lstrip": false,
|
113 |
+
"normalized": false,
|
114 |
+
"rstrip": true,
|
115 |
+
"single_word": false,
|
116 |
+
"special": true
|
117 |
+
}
|
118 |
+
},
|
119 |
+
"bos_token": "<s>",
|
120 |
+
"chat_template": "{% for message in messages %}{% if message['role'] == 'system' %}{{'<|system|>\n' + message['content'] + '<|end|>\n'}}{% elif message['role'] == 'user' %}{{'<|user|>\n' + message['content'] + '<|end|>\n'}}{% elif message['role'] == 'assistant' %}{{'<|assistant|>\n' + message['content'] + '<|end|>\n'}}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>\n' }}{% else %}{{ eos_token }}{% endif %}",
|
121 |
+
"clean_up_tokenization_spaces": false,
|
122 |
+
"eos_token": "<|endoftext|>",
|
123 |
+
"extra_special_tokens": {},
|
124 |
+
"legacy": false,
|
125 |
+
"model_max_length": 4096,
|
126 |
+
"pad_token": "<|endoftext|>",
|
127 |
+
"padding_side": "right",
|
128 |
+
"sp_model_kwargs": {},
|
129 |
+
"tokenizer_class": "LlamaTokenizer",
|
130 |
+
"unk_token": "<unk>",
|
131 |
+
"use_default_system_prompt": false
|
132 |
+
}
|
s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/segmentor_encoder/config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sam-vit-large",
|
3 |
+
"architectures": [
|
4 |
+
"XSegmentor"
|
5 |
+
],
|
6 |
+
"initializer_range": 0.02,
|
7 |
+
"mask_decoder_config": {
|
8 |
+
"model_type": ""
|
9 |
+
},
|
10 |
+
"model_type": "sam",
|
11 |
+
"prompt_encoder_config": {
|
12 |
+
"model_type": ""
|
13 |
+
},
|
14 |
+
"torch_dtype": "bfloat16",
|
15 |
+
"transformers_version": "4.48.0",
|
16 |
+
"vision_config": {
|
17 |
+
"dropout": 0.0,
|
18 |
+
"global_attn_indexes": [
|
19 |
+
5,
|
20 |
+
11,
|
21 |
+
17,
|
22 |
+
23
|
23 |
+
],
|
24 |
+
"hidden_size": 1024,
|
25 |
+
"initializer_factor": 1.0,
|
26 |
+
"intermediate_size": 6144,
|
27 |
+
"mlp_dim": 4096,
|
28 |
+
"model_type": "",
|
29 |
+
"num_attention_heads": 16,
|
30 |
+
"num_hidden_layers": 24,
|
31 |
+
"projection_dim": 512
|
32 |
+
}
|
33 |
+
}
|
s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/segmentor_encoder/preprocessor_config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": {
|
3 |
+
"height": 1024,
|
4 |
+
"width": 1024
|
5 |
+
},
|
6 |
+
"do_convert_rgb": true,
|
7 |
+
"do_crop": false,
|
8 |
+
"do_flip": false,
|
9 |
+
"do_normalize": true,
|
10 |
+
"do_pad": true,
|
11 |
+
"do_rescale": true,
|
12 |
+
"do_resize": true,
|
13 |
+
"flip_direction": "horizontal",
|
14 |
+
"flip_ratio": 0.5,
|
15 |
+
"ignore_index": 0,
|
16 |
+
"image_mean": [
|
17 |
+
0.485,
|
18 |
+
0.456,
|
19 |
+
0.406
|
20 |
+
],
|
21 |
+
"image_processor_type": "SamImageProcessor",
|
22 |
+
"image_std": [
|
23 |
+
0.229,
|
24 |
+
0.224,
|
25 |
+
0.225
|
26 |
+
],
|
27 |
+
"mask_pad_size": {
|
28 |
+
"height": 1024,
|
29 |
+
"width": 1024
|
30 |
+
},
|
31 |
+
"mask_size": {
|
32 |
+
"longest_edge": 1024
|
33 |
+
},
|
34 |
+
"pad_size": {
|
35 |
+
"height": 1024,
|
36 |
+
"width": 1024
|
37 |
+
},
|
38 |
+
"processor_class": "SamProcessor",
|
39 |
+
"resample": 2,
|
40 |
+
"rescale_factor": 0.00392156862745098,
|
41 |
+
"size": {
|
42 |
+
"longest_edge": 1024
|
43 |
+
}
|
44 |
+
}
|
s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/segmentor_encoder/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:73ee1f35874aba42b79cf385e9e7f8bbbf619e3bb8f3ad27955c41cbf3e8dcb3
|
3 |
+
size 616667758
|
s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/segmentor_projector/config.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"DynamicProjectorModel"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_projector.DynamicProjectorConfig",
|
7 |
+
"AutoModel": "modeling_projector.DynamicProjectorModel"
|
8 |
+
},
|
9 |
+
"bias": true,
|
10 |
+
"depth": 2,
|
11 |
+
"downsample_ratio": 0.5,
|
12 |
+
"hidden_act": "gelu",
|
13 |
+
"llm_hidden_size": 3072,
|
14 |
+
"model_type": "dynamic_projector",
|
15 |
+
"torch_dtype": "bfloat16",
|
16 |
+
"transformers_version": "4.48.0",
|
17 |
+
"visual_hidden_size": 1024
|
18 |
+
}
|
s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/segmentor_projector/configuration_projector.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from transformers import PretrainedConfig
|
3 |
+
|
4 |
+
|
5 |
+
class DynamicProjectorConfig(PretrainedConfig):
|
6 |
+
model_type = "dynamic_projector"
|
7 |
+
_auto_class = "AutoConfig"
|
8 |
+
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
visual_hidden_size=4096,
|
12 |
+
llm_hidden_size=4096,
|
13 |
+
downsample_ratio=1.0,
|
14 |
+
depth=2,
|
15 |
+
hidden_act="gelu",
|
16 |
+
bias=True,
|
17 |
+
**kwargs,
|
18 |
+
):
|
19 |
+
self.visual_hidden_size = visual_hidden_size
|
20 |
+
self.llm_hidden_size = llm_hidden_size
|
21 |
+
self.downsample_ratio = downsample_ratio
|
22 |
+
self.depth = depth
|
23 |
+
self.hidden_act = hidden_act
|
24 |
+
self.bias = bias
|
25 |
+
super().__init__(**kwargs)
|
s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/segmentor_projector/modeling_projector.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch.nn as nn
|
3 |
+
from transformers import PreTrainedModel
|
4 |
+
from transformers.activations import ACT2FN
|
5 |
+
|
6 |
+
from xsam.model.utils import pixel_shuffle
|
7 |
+
|
8 |
+
from .configuration_projector import DynamicProjectorConfig
|
9 |
+
|
10 |
+
|
11 |
+
class DynamicProjectorModel(PreTrainedModel):
|
12 |
+
_auto_class = "AutoModel"
|
13 |
+
config_class = DynamicProjectorConfig
|
14 |
+
base_model_prefix = "model"
|
15 |
+
supports_gradient_checkpointing = True
|
16 |
+
_no_split_modules = ["model"]
|
17 |
+
|
18 |
+
def __init__(self, config: DynamicProjectorConfig) -> None:
|
19 |
+
super().__init__(config)
|
20 |
+
self.gradient_checkpointing = False
|
21 |
+
|
22 |
+
visual_hidden_size = config.visual_hidden_size * int(1 / config.downsample_ratio) ** 2
|
23 |
+
modules = [
|
24 |
+
nn.Linear(visual_hidden_size, config.llm_hidden_size, bias=config.bias),
|
25 |
+
]
|
26 |
+
for _ in range(1, config.depth):
|
27 |
+
modules.append(ACT2FN[config.hidden_act])
|
28 |
+
modules.append(nn.Linear(config.llm_hidden_size, config.llm_hidden_size, bias=config.bias))
|
29 |
+
self.model = nn.Sequential(*modules)
|
30 |
+
|
31 |
+
def enable_input_require_grads(self):
|
32 |
+
def make_inputs_require_grad(module, input, output):
|
33 |
+
output.requires_grad_(True)
|
34 |
+
|
35 |
+
self.model.register_forward_hook(make_inputs_require_grad)
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
if x.ndim == 4:
|
39 |
+
if self.config.downsample_ratio != 1:
|
40 |
+
x = pixel_shuffle(x, self.config.downsample_ratio)
|
41 |
+
x = x.view(x.shape[0], -1, x.shape[-1])
|
42 |
+
|
43 |
+
if self.gradient_checkpointing and self.training:
|
44 |
+
layer_outputs = self._gradient_checkpointing_func(self.model, x)
|
45 |
+
else:
|
46 |
+
layer_outputs = self.model(x)
|
47 |
+
|
48 |
+
return layer_outputs
|
s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/segmentor_projector/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51a2a66f2a0cd1b54c160916a628821da09f366256b7d5c9f73a05b261c9f71e
|
3 |
+
size 44054528
|
s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/visual_encoder/config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "siglip2-so400m-patch14-384",
|
3 |
+
"architectures": [
|
4 |
+
"SiglipVisionModel"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"hidden_act": "gelu_pytorch_tanh",
|
8 |
+
"hidden_size": 1152,
|
9 |
+
"image_size": 384,
|
10 |
+
"intermediate_size": 4304,
|
11 |
+
"layer_norm_eps": 1e-06,
|
12 |
+
"model_type": "siglip_vision_model",
|
13 |
+
"num_attention_heads": 16,
|
14 |
+
"num_channels": 3,
|
15 |
+
"num_hidden_layers": 27,
|
16 |
+
"patch_size": 14,
|
17 |
+
"torch_dtype": "bfloat16",
|
18 |
+
"transformers_version": "4.48.0"
|
19 |
+
}
|
s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/visual_encoder/preprocessor_config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_convert_rgb": null,
|
3 |
+
"do_normalize": true,
|
4 |
+
"do_rescale": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"image_mean": [
|
7 |
+
0.5,
|
8 |
+
0.5,
|
9 |
+
0.5
|
10 |
+
],
|
11 |
+
"image_processor_type": "SiglipImageProcessor",
|
12 |
+
"image_std": [
|
13 |
+
0.5,
|
14 |
+
0.5,
|
15 |
+
0.5
|
16 |
+
],
|
17 |
+
"processor_class": "SiglipProcessor",
|
18 |
+
"resample": 2,
|
19 |
+
"rescale_factor": 0.00392156862745098,
|
20 |
+
"size": {
|
21 |
+
"height": 384,
|
22 |
+
"width": 384
|
23 |
+
}
|
24 |
+
}
|
s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/visual_encoder/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d20f0e3b88fb7a553165f32ec37684da2d51f36e87ded7420d7ea3375b015e3
|
3 |
+
size 856600842
|
s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/visual_projector/config.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"DynamicProjectorModel"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_projector.DynamicProjectorConfig",
|
7 |
+
"AutoModel": "modeling_projector.DynamicProjectorModel"
|
8 |
+
},
|
9 |
+
"bias": true,
|
10 |
+
"depth": 2,
|
11 |
+
"downsample_ratio": 1.0,
|
12 |
+
"hidden_act": "gelu",
|
13 |
+
"llm_hidden_size": 3072,
|
14 |
+
"model_type": "dynamic_projector",
|
15 |
+
"torch_dtype": "bfloat16",
|
16 |
+
"transformers_version": "4.48.0",
|
17 |
+
"visual_hidden_size": 1152
|
18 |
+
}
|
s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/visual_projector/configuration_projector.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from transformers import PretrainedConfig
|
3 |
+
|
4 |
+
|
5 |
+
class DynamicProjectorConfig(PretrainedConfig):
|
6 |
+
model_type = "dynamic_projector"
|
7 |
+
_auto_class = "AutoConfig"
|
8 |
+
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
visual_hidden_size=4096,
|
12 |
+
llm_hidden_size=4096,
|
13 |
+
downsample_ratio=1.0,
|
14 |
+
depth=2,
|
15 |
+
hidden_act="gelu",
|
16 |
+
bias=True,
|
17 |
+
**kwargs,
|
18 |
+
):
|
19 |
+
self.visual_hidden_size = visual_hidden_size
|
20 |
+
self.llm_hidden_size = llm_hidden_size
|
21 |
+
self.downsample_ratio = downsample_ratio
|
22 |
+
self.depth = depth
|
23 |
+
self.hidden_act = hidden_act
|
24 |
+
self.bias = bias
|
25 |
+
super().__init__(**kwargs)
|
s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/visual_projector/modeling_projector.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch.nn as nn
|
3 |
+
from transformers import PreTrainedModel
|
4 |
+
from transformers.activations import ACT2FN
|
5 |
+
|
6 |
+
from xsam.model.utils import pixel_shuffle
|
7 |
+
|
8 |
+
from .configuration_projector import DynamicProjectorConfig
|
9 |
+
|
10 |
+
|
11 |
+
class DynamicProjectorModel(PreTrainedModel):
|
12 |
+
_auto_class = "AutoModel"
|
13 |
+
config_class = DynamicProjectorConfig
|
14 |
+
base_model_prefix = "model"
|
15 |
+
supports_gradient_checkpointing = True
|
16 |
+
_no_split_modules = ["model"]
|
17 |
+
|
18 |
+
def __init__(self, config: DynamicProjectorConfig) -> None:
|
19 |
+
super().__init__(config)
|
20 |
+
self.gradient_checkpointing = False
|
21 |
+
|
22 |
+
visual_hidden_size = config.visual_hidden_size * int(1 / config.downsample_ratio) ** 2
|
23 |
+
modules = [
|
24 |
+
nn.Linear(visual_hidden_size, config.llm_hidden_size, bias=config.bias),
|
25 |
+
]
|
26 |
+
for _ in range(1, config.depth):
|
27 |
+
modules.append(ACT2FN[config.hidden_act])
|
28 |
+
modules.append(nn.Linear(config.llm_hidden_size, config.llm_hidden_size, bias=config.bias))
|
29 |
+
self.model = nn.Sequential(*modules)
|
30 |
+
|
31 |
+
def enable_input_require_grads(self):
|
32 |
+
def make_inputs_require_grad(module, input, output):
|
33 |
+
output.requires_grad_(True)
|
34 |
+
|
35 |
+
self.model.register_forward_hook(make_inputs_require_grad)
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
if x.ndim == 4:
|
39 |
+
if self.config.downsample_ratio != 1:
|
40 |
+
x = pixel_shuffle(x, self.config.downsample_ratio)
|
41 |
+
x = x.view(x.shape[0], -1, x.shape[-1])
|
42 |
+
|
43 |
+
if self.gradient_checkpointing and self.training:
|
44 |
+
layer_outputs = self._gradient_checkpointing_func(self.model, x)
|
45 |
+
else:
|
46 |
+
layer_outputs = self.model(x)
|
47 |
+
|
48 |
+
return layer_outputs
|
s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/visual_projector/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:509d21776557ab6566a4b2163e29df9de3299e5c7af9b2e906f6fdf447d91795
|
3 |
+
size 25966592
|
s3_mixed_finetune/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_m2f_gpu16_mixed_finetune/xtuner_model/xtuner_config.py
ADDED
@@ -0,0 +1,703 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from copy import deepcopy
|
3 |
+
from os import getenv
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from mmengine.hooks import CheckpointHook, DistSamplerSeedHook, IterTimerHook, LoggerHook, ParamSchedulerHook
|
7 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
8 |
+
from torch.optim import AdamW
|
9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, SiglipImageProcessor, SiglipVisionModel
|
10 |
+
from xsam.dataset import GenericSegDataset, VGDSegDataset
|
11 |
+
from xsam.dataset.map_fns import dataset_map_fn_factory, generic_seg_map_fn, template_map_fn_factory, vgd_seg_map_fn
|
12 |
+
from xsam.dataset.process_fns import (
|
13 |
+
gcg_seg_postprocess_fn,
|
14 |
+
generic_seg_postprocess_fn,
|
15 |
+
inter_seg_postprocess_fn,
|
16 |
+
process_map_fn_factory,
|
17 |
+
reason_seg_postprocess_fn,
|
18 |
+
refer_seg_postprocess_fn,
|
19 |
+
vgd_seg_postprocess_fn,
|
20 |
+
)
|
21 |
+
from xsam.dataset.processors import SamImageProcessor
|
22 |
+
from xsam.engine.hooks import DatasetInfoHook, EvaluateChatHook, ModelInfoHook, PTCheckpointHook
|
23 |
+
from xsam.engine.runners import TrainLoop
|
24 |
+
from xsam.evaluation.evaluators import GenericSegEvaluator, VGDSegEvaluator
|
25 |
+
from xsam.model import XSamModel
|
26 |
+
from xsam.model.segmentors import XSegmentor
|
27 |
+
from xsam.model.segmentors.mask2former import Mask2FormerConfig, Mask2FormerModel
|
28 |
+
from xsam.model.segmentors.sam import SamModel
|
29 |
+
from xsam.utils.visualizer import Visualizer
|
30 |
+
from xtuner.utils import PROMPT_TEMPLATE
|
31 |
+
|
32 |
+
#######################################################################
|
33 |
+
# PART 1 Settings #
|
34 |
+
#######################################################################
|
35 |
+
# Directories
|
36 |
+
code_dir = getenv("CODE_DIR", "./xsam/")
|
37 |
+
data_dir = getenv("DATA_DIR", "./datas/")
|
38 |
+
init_dir = getenv("INIT_DIR", "./inits/")
|
39 |
+
work_dir = getenv("WORK_DIR", "./wkdrs/")
|
40 |
+
|
41 |
+
# Model
|
42 |
+
llm_name_or_path = init_dir + "Phi-3-mini-4k-instruct"
|
43 |
+
visual_encoder_name_or_path = init_dir + "siglip2-so400m-patch14-384"
|
44 |
+
seg_encoder_name_or_path = init_dir + "sam-vit-large"
|
45 |
+
seg_decoder_name_or_path = init_dir + "mask2former-swin-large-coco-panoptic"
|
46 |
+
|
47 |
+
# Specify the pretrained pth
|
48 |
+
s1_pretrained_pth = work_dir + "s1_seg_finetune/xsam_sam_large_m2f_e36_gpu16_seg_finetune/pytorch_model.bin"
|
49 |
+
s2_pretrained_pth = (
|
50 |
+
work_dir
|
51 |
+
+ "s2_align_pretrain/xsam_phi3_mini_4k_instruct_siglip2_so400m_p14_384_sam_large_e1_gpu16_align_pretrain/pytorch_model.bin"
|
52 |
+
) # noqa: E501
|
53 |
+
|
54 |
+
# Prompt
|
55 |
+
prompt_template = PROMPT_TEMPLATE.phi3_chat
|
56 |
+
max_length = int(4096 - (384 / 14) ** 2 - 1024)
|
57 |
+
|
58 |
+
# Scheduler & Optimizer
|
59 |
+
batch_size = 4 # per_device
|
60 |
+
accumulative_counts = 1
|
61 |
+
dataloader_num_workers = 4
|
62 |
+
max_epochs = 1
|
63 |
+
optim_type = AdamW
|
64 |
+
lr = 4e-5
|
65 |
+
betas = (0.9, 0.999)
|
66 |
+
weight_decay = 0.05
|
67 |
+
max_norm = 1 # grad clip
|
68 |
+
warmup_ratio = 0.03
|
69 |
+
|
70 |
+
# Save
|
71 |
+
save_steps = 2000
|
72 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
73 |
+
|
74 |
+
# Logging
|
75 |
+
logging_interval = 10
|
76 |
+
|
77 |
+
# Evaluate the generation performance during the training
|
78 |
+
evaluation_freq = 2000
|
79 |
+
SYSTEM = ""
|
80 |
+
evaluation_images = [
|
81 |
+
code_dir + "xsam/configs/xsam/images/llava_imgconv.jpg",
|
82 |
+
code_dir + "xsam/configs/xsam/images/panoptic_genseg.jpg",
|
83 |
+
code_dir + "xsam/configs/xsam/images/refcoco_refseg.jpg",
|
84 |
+
code_dir + "xsam/configs/xsam/images/lisa_reaseg.jpg",
|
85 |
+
code_dir + "xsam/configs/xsam/images/refcocog_gcgseg.jpg",
|
86 |
+
code_dir + "xsam/configs/xsam/images/coco_interseg.jpg",
|
87 |
+
code_dir + "xsam/configs/xsam/images/coco_interseg.jpg",
|
88 |
+
code_dir + "xsam/configs/xsam/images/coco_interseg.jpg",
|
89 |
+
code_dir + "xsam/configs/xsam/images/coco_interseg.jpg",
|
90 |
+
code_dir + "xsam/configs/xsam/images/coco_vgdseg.jpg",
|
91 |
+
code_dir + "xsam/configs/xsam/images/coco_vgdseg.jpg",
|
92 |
+
code_dir + "xsam/configs/xsam/images/coco_vgdseg.jpg",
|
93 |
+
code_dir + "xsam/configs/xsam/images/coco_vgdseg.jpg",
|
94 |
+
code_dir + "xsam/configs/xsam/images/coco_vgdseg.jpg",
|
95 |
+
]
|
96 |
+
evaluation_inputs = [
|
97 |
+
"Can you describe this image in detail? Please elaborate in your response.",
|
98 |
+
"Can you generate segmentation masks for this image based on the specified categories: <p>person</p>, <p>bicycle</p>, <p>car</p>, <p>motorcycle</p>, <p>airplane</p>, <p>bus</p>, <p>train</p>, <p>truck</p>, <p>boat</p>, <p>traffic light</p>, <p>fire hydrant</p>, <p>stop sign</p>, <p>parking meter</p>, <p>bench</p>, <p>bird</p>, <p>cat</p>, <p>dog</p>, <p>horse</p>, <p>sheep</p>, <p>cow</p>, <p>elephant</p>, <p>bear</p>, <p>zebra</p>, <p>giraffe</p>, <p>backpack</p>, <p>umbrella</p>, <p>handbag</p>, <p>tie</p>, <p>suitcase</p>, <p>frisbee</p>, <p>skis</p>, <p>snowboard</p>, <p>sports ball</p>, <p>kite</p>, <p>baseball bat</p>, <p>baseball glove</p>, <p>skateboard</p>, <p>surfboard</p>, <p>tennis racket</p>, <p>bottle</p>, <p>wine glass</p>, <p>cup</p>, <p>fork</p>, <p>knife</p>, <p>spoon</p>, <p>bowl</p>, <p>banana</p>, <p>apple</p>, <p>sandwich</p>, <p>orange</p>, <p>broccoli</p>, <p>carrot</p>, <p>hot dog</p>, <p>pizza</p>, <p>donut</p>, <p>cake</p>, <p>chair</p>, <p>couch</p>, <p>potted plant</p>, <p>bed</p>, <p>dining table</p>, <p>toilet</p>, <p>tv</p>, <p>laptop</p>, <p>mouse</p>, <p>remote</p>, <p>keyboard</p>, <p>cell phone</p>, <p>microwave</p>, <p>oven</p>, <p>toaster</p>, <p>sink</p>, <p>refrigerator</p>, <p>book</p>, <p>clock</p>, <p>vase</p>, <p>scissors</p>, <p>teddy bear</p>, <p>hair drier</p>, <p>toothbrush</p>, <p>banner</p>, <p>blanket</p>, <p>bridge</p>, <p>cardboard</p>, <p>counter</p>, <p>curtain</p>, <p>door</p>, <p>floor wood</p>, <p>flower</p>, <p>fruit</p>, <p>gravel</p>, <p>house</p>, <p>light</p>, <p>mirror</p>, <p>net</p>, <p>pillow</p>, <p>platform</p>, <p>playingfield</p>, <p>railroad</p>, <p>river</p>, <p>road</p>, <p>roof</p>, <p>sand</p>, <p>sea</p>, <p>shelf</p>, <p>snow</p>, <p>stairs</p>, <p>tent</p>, <p>towel</p>, <p>wall brick</p>, <p>wall stone</p>, <p>wall tile</p>, <p>wall wood</p>, <p>water</p>, <p>window blind</p>, <p>window</p>, <p>tree</p>, <p>fence</p>, <p>ceiling</p>, <p>sky</p>, <p>cabinet</p>, <p>table</p>, <p>floor</p>, <p>pavement</p>, <p>mountain</p>, <p>grass</p>, <p>dirt</p>, <p>paper</p>, <p>food</p>, <p>building</p>, <p>rock</p>, <p>wall</p>, <p>rug</p>? Please output the segmentation mask.",
|
99 |
+
"Can you segment <p>the women with red coat</p> in this image? Please output the corresponding segmentation mask.",
|
100 |
+
"<p>when enjoying an ice cream sundae, what can we use to scoop up the whipped cream and place it on top of the ice cream?</p> Please output the corresponding segmentation mask.",
|
101 |
+
"Can you provide a brief description of the this image? Respond with interleaved segmentation masks for the corresponding phrases.",
|
102 |
+
"Can you segment the <p><region></p> in this image? Please output the corresponding segmentation mask.",
|
103 |
+
"Can you segment the <p><region></p> in this image? Please output the corresponding segmentation mask.",
|
104 |
+
"Can you segment the <p><region></p> in this image? Please output the corresponding segmentation mask.",
|
105 |
+
"Can you segment the <p><region></p> in this image? Please output the corresponding segmentation mask.",
|
106 |
+
"Can you segment the image based on the following regions: <p><region></p>? Please output the segmentation mask.",
|
107 |
+
"Can you segment the image based on the following regions: <p><region></p>? Please output the segmentation mask.",
|
108 |
+
"Can you segment the image based on the following regions: <p><region></p>? Please output the segmentation mask.",
|
109 |
+
"Can you segment the image based on the following regions: <p><region></p>, <p><region></p>? Please output the segmentation mask.",
|
110 |
+
"Can you segment the image based on the following regions: <p><region></p>, <p><region></p>? Please output the segmentation mask.",
|
111 |
+
]
|
112 |
+
vprompt_masks = [
|
113 |
+
(None,),
|
114 |
+
(None,),
|
115 |
+
(None,),
|
116 |
+
(None,),
|
117 |
+
(None,),
|
118 |
+
(code_dir + "xsam/configs/xsam/images/vprompt_masks/coco_interseg_point0.png",),
|
119 |
+
(code_dir + "xsam/configs/xsam/images/vprompt_masks/coco_interseg_scribble1.png",),
|
120 |
+
(code_dir + "xsam/configs/xsam/images/vprompt_masks/coco_interseg_box0.png",),
|
121 |
+
(code_dir + "xsam/configs/xsam/images/vprompt_masks/coco_interseg_mask1.png",),
|
122 |
+
(code_dir + "xsam/configs/xsam/images/vprompt_masks/coco_vgdseg_point0.png",),
|
123 |
+
(code_dir + "xsam/configs/xsam/images/vprompt_masks/coco_vgdseg_scribble1.png",),
|
124 |
+
(code_dir + "xsam/configs/xsam/images/vprompt_masks/coco_vgdseg_box0.png",),
|
125 |
+
(
|
126 |
+
code_dir + "xsam/configs/xsam/images/vprompt_masks/coco_vgdseg_point0.png",
|
127 |
+
code_dir + "xsam/configs/xsam/images/vprompt_masks/coco_vgdseg_scribble1.png",
|
128 |
+
),
|
129 |
+
(
|
130 |
+
code_dir + "xsam/configs/xsam/images/vprompt_masks/coco_vgdseg_box0.png",
|
131 |
+
code_dir + "xsam/configs/xsam/images/vprompt_masks/coco_vgdseg_point1.png",
|
132 |
+
),
|
133 |
+
]
|
134 |
+
|
135 |
+
#######################################################################
|
136 |
+
# PART 2 Model & Tokenizer & Image Processor #
|
137 |
+
#######################################################################
|
138 |
+
# TODO: add special tokens via import from xsam.utils
|
139 |
+
special_tokens = ["<SEG>", "<p>", "</p>"]
|
140 |
+
cond_type = "phrase" # "phrase" "cls" "all"
|
141 |
+
ignore_label = 255
|
142 |
+
tokenizer = dict(
|
143 |
+
type=AutoTokenizer.from_pretrained,
|
144 |
+
pretrained_model_name_or_path=llm_name_or_path,
|
145 |
+
trust_remote_code=True,
|
146 |
+
padding_side="right",
|
147 |
+
)
|
148 |
+
|
149 |
+
image_processor = dict(
|
150 |
+
type=SiglipImageProcessor.from_pretrained,
|
151 |
+
pretrained_model_name_or_path=visual_encoder_name_or_path,
|
152 |
+
trust_remote_code=True,
|
153 |
+
)
|
154 |
+
|
155 |
+
extra_image_processor = dict(
|
156 |
+
type=SamImageProcessor.from_pretrained,
|
157 |
+
pretrained_model_name_or_path=seg_encoder_name_or_path,
|
158 |
+
trust_remote_code=True,
|
159 |
+
ignore_index=0,
|
160 |
+
)
|
161 |
+
|
162 |
+
model = dict(
|
163 |
+
type=XSamModel,
|
164 |
+
freeze_llm=False,
|
165 |
+
freeze_visual_encoder=False,
|
166 |
+
freeze_segmentor_encoder=False,
|
167 |
+
use_dual_encoder=True,
|
168 |
+
use_vision_sampler=True,
|
169 |
+
connector_type="conv",
|
170 |
+
cond_type=cond_type,
|
171 |
+
seg_select_layers=[6, 12, 18, 24],
|
172 |
+
connector_hidden_dim=512,
|
173 |
+
connector_scale_factor=[4, 2, 1, 0.5],
|
174 |
+
sampler_input_feat="seg_pixel_values",
|
175 |
+
special_tokens=special_tokens,
|
176 |
+
s1_pretrained_pth=s1_pretrained_pth,
|
177 |
+
s2_pretrained_pth=s2_pretrained_pth,
|
178 |
+
tokenizer=tokenizer,
|
179 |
+
postprocess_fn=generic_seg_postprocess_fn,
|
180 |
+
llm=dict(
|
181 |
+
type=AutoModelForCausalLM.from_pretrained,
|
182 |
+
pretrained_model_name_or_path=llm_name_or_path,
|
183 |
+
trust_remote_code=False,
|
184 |
+
torch_dtype=torch.bfloat16,
|
185 |
+
attn_implementation="flash_attention_2",
|
186 |
+
),
|
187 |
+
visual_encoder=dict(
|
188 |
+
type=SiglipVisionModel.from_pretrained,
|
189 |
+
pretrained_model_name_or_path=visual_encoder_name_or_path,
|
190 |
+
torch_dtype=torch.bfloat16,
|
191 |
+
),
|
192 |
+
segmentor=dict(
|
193 |
+
type=XSegmentor,
|
194 |
+
encoder=dict(
|
195 |
+
type=SamModel.from_pretrained,
|
196 |
+
pretrained_model_name_or_path=seg_encoder_name_or_path,
|
197 |
+
trust_remote_code=True,
|
198 |
+
torch_dtype=torch.bfloat16,
|
199 |
+
),
|
200 |
+
decoder=dict(
|
201 |
+
type=Mask2FormerModel._from_config,
|
202 |
+
config=dict(
|
203 |
+
type=Mask2FormerConfig.from_pretrained,
|
204 |
+
pretrained_model_name_or_path=seg_decoder_name_or_path,
|
205 |
+
use_backbone=False,
|
206 |
+
feature_channels=[512, 1024, 2048],
|
207 |
+
num_feature_levels=3,
|
208 |
+
trust_remote_code=True,
|
209 |
+
),
|
210 |
+
torch_dtype=torch.bfloat16,
|
211 |
+
),
|
212 |
+
torch_dtype=torch.bfloat16,
|
213 |
+
reinit_decoder=True,
|
214 |
+
open_cls=True,
|
215 |
+
),
|
216 |
+
)
|
217 |
+
|
218 |
+
#######################################################################
|
219 |
+
# PART 3 Dataset & Dataloader #
|
220 |
+
#######################################################################
|
221 |
+
imgconv_data_root = data_dir + "llava_data/"
|
222 |
+
genseg_data_root = data_dir + "generic_seg_data/"
|
223 |
+
ovseg_data_root = data_dir + "ov_seg_data/"
|
224 |
+
refseg_data_root = data_dir + "refer_seg_data/"
|
225 |
+
reaseg_data_root = data_dir + "reason_seg_data/"
|
226 |
+
gcgseg_data_root = data_dir + "gcg_seg_data/"
|
227 |
+
vgdseg_data_root = data_dir + "vgd_seg_data/"
|
228 |
+
interseg_data_root = data_dir + "inter_seg_data/"
|
229 |
+
|
230 |
+
pannoptic_genseg_dataset = dict(
|
231 |
+
type=GenericSegDataset,
|
232 |
+
data_path=genseg_data_root + "coco/annotations/panoptic_train2017.json",
|
233 |
+
image_folder=genseg_data_root + "coco/train2017",
|
234 |
+
panseg_map_folder=genseg_data_root + "coco/panoptic_train2017",
|
235 |
+
tokenizer=tokenizer,
|
236 |
+
task_name="genseg",
|
237 |
+
data_name="panoptic_genseg",
|
238 |
+
cond_type=cond_type,
|
239 |
+
special_tokens=special_tokens,
|
240 |
+
extra_image_processor=extra_image_processor,
|
241 |
+
image_processor=image_processor,
|
242 |
+
dataset_map_fn=dict(
|
243 |
+
type=dataset_map_fn_factory,
|
244 |
+
fn=generic_seg_map_fn,
|
245 |
+
cond_type=cond_type,
|
246 |
+
),
|
247 |
+
template_map_fn=dict(type=template_map_fn_factory, template=prompt_template),
|
248 |
+
max_length=max_length,
|
249 |
+
use_variant_cat=True,
|
250 |
+
pad_image_to_square=True,
|
251 |
+
)
|
252 |
+
|
253 |
+
coco_vgdseg_dataset = dict(
|
254 |
+
type=VGDSegDataset,
|
255 |
+
source_data_path=vgdseg_data_root + "coco/annotations/instances_train2017.json",
|
256 |
+
data_path=vgdseg_data_root + "annotations/coco_vgdseg_train.json",
|
257 |
+
image_folder=vgdseg_data_root + "coco/train2017",
|
258 |
+
tokenizer=tokenizer,
|
259 |
+
data_mode="train",
|
260 |
+
task_name="vgdseg",
|
261 |
+
data_name="coco_vgdseg",
|
262 |
+
cond_type=cond_type,
|
263 |
+
special_tokens=special_tokens,
|
264 |
+
extra_image_processor=extra_image_processor,
|
265 |
+
image_processor=image_processor,
|
266 |
+
dataset_map_fn=dict(
|
267 |
+
type=dataset_map_fn_factory,
|
268 |
+
fn=vgd_seg_map_fn,
|
269 |
+
cond_type=cond_type,
|
270 |
+
),
|
271 |
+
template_map_fn=dict(type=template_map_fn_factory, template=prompt_template),
|
272 |
+
use_negative_sample=True,
|
273 |
+
sample_num=5,
|
274 |
+
max_length=max_length,
|
275 |
+
pad_image_to_square=True,
|
276 |
+
)
|
277 |
+
|
278 |
+
# False for predict mode, True for tensor mode
|
279 |
+
output_ids_with_output = True
|
280 |
+
val_datasets = [
|
281 |
+
dict(
|
282 |
+
type=GenericSegDataset,
|
283 |
+
data_path=genseg_data_root + "coco/annotations/panoptic_val2017.json",
|
284 |
+
image_folder=genseg_data_root + "coco/val2017",
|
285 |
+
panseg_map_folder=genseg_data_root + "coco/panoptic_val2017",
|
286 |
+
semseg_map_folder=genseg_data_root + "coco/panoptic_semseg_val2017",
|
287 |
+
data_mode="eval",
|
288 |
+
tokenizer=tokenizer,
|
289 |
+
task_name="genseg",
|
290 |
+
data_name="panoptic_genseg",
|
291 |
+
cond_type=cond_type,
|
292 |
+
special_tokens=special_tokens,
|
293 |
+
extra_image_processor=extra_image_processor,
|
294 |
+
image_processor=image_processor,
|
295 |
+
output_ids_with_output=output_ids_with_output,
|
296 |
+
postprocess_fn=dict(
|
297 |
+
type=process_map_fn_factory,
|
298 |
+
fn=generic_seg_postprocess_fn,
|
299 |
+
task_name="panoptic_genseg",
|
300 |
+
threshold=0.0,
|
301 |
+
),
|
302 |
+
dataset_map_fn=dict(
|
303 |
+
type=dataset_map_fn_factory,
|
304 |
+
fn=generic_seg_map_fn,
|
305 |
+
cond_type=cond_type,
|
306 |
+
),
|
307 |
+
template_map_fn=dict(
|
308 |
+
type=template_map_fn_factory,
|
309 |
+
template=prompt_template,
|
310 |
+
output_suffix=output_ids_with_output,
|
311 |
+
),
|
312 |
+
max_length=max_length,
|
313 |
+
pad_image_to_square=True,
|
314 |
+
),
|
315 |
+
dict(
|
316 |
+
type=GenericSegDataset,
|
317 |
+
data_path=genseg_data_root + "coco/annotations/panoptic_val2017.json",
|
318 |
+
image_folder=genseg_data_root + "coco/val2017",
|
319 |
+
panseg_map_folder=genseg_data_root + "coco/panoptic_val2017",
|
320 |
+
semseg_map_folder=genseg_data_root + "coco/panoptic_semseg_val2017",
|
321 |
+
data_mode="eval",
|
322 |
+
tokenizer=tokenizer,
|
323 |
+
task_name="genseg",
|
324 |
+
data_name="panoptic_genseg",
|
325 |
+
output_ids_with_output=output_ids_with_output,
|
326 |
+
cond_type=cond_type,
|
327 |
+
special_tokens=special_tokens,
|
328 |
+
image_processor=image_processor,
|
329 |
+
extra_image_processor=extra_image_processor,
|
330 |
+
dataset_map_fn=dict(
|
331 |
+
type=dataset_map_fn_factory,
|
332 |
+
fn=generic_seg_map_fn,
|
333 |
+
cond_type=cond_type,
|
334 |
+
),
|
335 |
+
postprocess_fn=dict(
|
336 |
+
type=process_map_fn_factory,
|
337 |
+
fn=generic_seg_postprocess_fn,
|
338 |
+
task_name="semantic_genseg",
|
339 |
+
),
|
340 |
+
template_map_fn=dict(
|
341 |
+
type=template_map_fn_factory,
|
342 |
+
template=prompt_template,
|
343 |
+
output_suffix=output_ids_with_output,
|
344 |
+
),
|
345 |
+
max_length=max_length,
|
346 |
+
pad_image_to_square=True,
|
347 |
+
),
|
348 |
+
dict(
|
349 |
+
type=GenericSegDataset,
|
350 |
+
data_path=genseg_data_root + "coco/annotations/instances_val2017.json",
|
351 |
+
image_folder=genseg_data_root + "coco/val2017",
|
352 |
+
task_name="genseg",
|
353 |
+
data_name="instance_genseg",
|
354 |
+
data_mode="eval",
|
355 |
+
tokenizer=tokenizer,
|
356 |
+
output_ids_with_output=output_ids_with_output,
|
357 |
+
cond_type=cond_type,
|
358 |
+
special_tokens=special_tokens,
|
359 |
+
image_processor=image_processor,
|
360 |
+
extra_image_processor=extra_image_processor,
|
361 |
+
postprocess_fn=dict(
|
362 |
+
type=process_map_fn_factory,
|
363 |
+
fn=generic_seg_postprocess_fn,
|
364 |
+
task_name="instance_genseg",
|
365 |
+
threshold=0.0,
|
366 |
+
),
|
367 |
+
dataset_map_fn=dict(
|
368 |
+
type=dataset_map_fn_factory,
|
369 |
+
fn=generic_seg_map_fn,
|
370 |
+
cond_type=cond_type,
|
371 |
+
),
|
372 |
+
template_map_fn=dict(
|
373 |
+
type=template_map_fn_factory,
|
374 |
+
template=prompt_template,
|
375 |
+
output_suffix=output_ids_with_output,
|
376 |
+
),
|
377 |
+
max_length=max_length,
|
378 |
+
pad_image_to_square=True,
|
379 |
+
),
|
380 |
+
dict(
|
381 |
+
type=VGDSegDataset,
|
382 |
+
source_data_path=vgdseg_data_root + "coco/annotations/instances_val2017.json",
|
383 |
+
data_path=vgdseg_data_root + "annotations/coco_vgdseg_val.json",
|
384 |
+
image_folder=vgdseg_data_root + "coco/val2017",
|
385 |
+
tokenizer=tokenizer,
|
386 |
+
task_name="vgdseg",
|
387 |
+
data_name="coco_vgdseg_point",
|
388 |
+
data_mode="eval",
|
389 |
+
visual_prompt_type="point_visual_prompt",
|
390 |
+
output_ids_with_output=output_ids_with_output,
|
391 |
+
cond_type=cond_type,
|
392 |
+
special_tokens=special_tokens,
|
393 |
+
extra_image_processor=extra_image_processor,
|
394 |
+
image_processor=image_processor,
|
395 |
+
postprocess_fn=dict(
|
396 |
+
type=process_map_fn_factory,
|
397 |
+
fn=vgd_seg_postprocess_fn,
|
398 |
+
threshold=0.0,
|
399 |
+
return_contiguous_labels=True,
|
400 |
+
),
|
401 |
+
dataset_map_fn=dict(
|
402 |
+
type=dataset_map_fn_factory,
|
403 |
+
fn=vgd_seg_map_fn,
|
404 |
+
cond_type=cond_type,
|
405 |
+
),
|
406 |
+
template_map_fn=dict(
|
407 |
+
type=template_map_fn_factory, template=prompt_template, output_suffix=output_ids_with_output
|
408 |
+
),
|
409 |
+
use_negative_sample=False,
|
410 |
+
sample_num=5,
|
411 |
+
max_length=max_length,
|
412 |
+
pad_image_to_square=True,
|
413 |
+
),
|
414 |
+
dict(
|
415 |
+
type=VGDSegDataset,
|
416 |
+
source_data_path=vgdseg_data_root + "coco/annotations/instances_val2017.json",
|
417 |
+
data_path=vgdseg_data_root + "annotations/coco_vgdseg_val.json",
|
418 |
+
image_folder=vgdseg_data_root + "coco/val2017",
|
419 |
+
tokenizer=tokenizer,
|
420 |
+
task_name="vgdseg",
|
421 |
+
data_name="coco_vgdseg_scribble",
|
422 |
+
data_mode="eval",
|
423 |
+
visual_prompt_type="scribble_visual_prompt",
|
424 |
+
output_ids_with_output=output_ids_with_output,
|
425 |
+
cond_type=cond_type,
|
426 |
+
special_tokens=special_tokens,
|
427 |
+
extra_image_processor=extra_image_processor,
|
428 |
+
image_processor=image_processor,
|
429 |
+
postprocess_fn=dict(
|
430 |
+
type=process_map_fn_factory,
|
431 |
+
fn=vgd_seg_postprocess_fn,
|
432 |
+
threshold=0.0,
|
433 |
+
return_contiguous_labels=True,
|
434 |
+
),
|
435 |
+
dataset_map_fn=dict(
|
436 |
+
type=dataset_map_fn_factory,
|
437 |
+
fn=vgd_seg_map_fn,
|
438 |
+
cond_type=cond_type,
|
439 |
+
),
|
440 |
+
template_map_fn=dict(
|
441 |
+
type=template_map_fn_factory, template=prompt_template, output_suffix=output_ids_with_output
|
442 |
+
),
|
443 |
+
use_negative_sample=False,
|
444 |
+
sample_num=5,
|
445 |
+
max_length=max_length,
|
446 |
+
pad_image_to_square=True,
|
447 |
+
),
|
448 |
+
dict(
|
449 |
+
type=VGDSegDataset,
|
450 |
+
source_data_path=vgdseg_data_root + "coco/annotations/instances_val2017.json",
|
451 |
+
data_path=vgdseg_data_root + "annotations/coco_vgdseg_val.json",
|
452 |
+
image_folder=vgdseg_data_root + "coco/val2017",
|
453 |
+
tokenizer=tokenizer,
|
454 |
+
task_name="vgdseg",
|
455 |
+
data_name="coco_vgdseg_box",
|
456 |
+
data_mode="eval",
|
457 |
+
visual_prompt_type="box_visual_prompt",
|
458 |
+
output_ids_with_output=output_ids_with_output,
|
459 |
+
cond_type=cond_type,
|
460 |
+
special_tokens=special_tokens,
|
461 |
+
extra_image_processor=extra_image_processor,
|
462 |
+
image_processor=image_processor,
|
463 |
+
postprocess_fn=dict(
|
464 |
+
type=process_map_fn_factory,
|
465 |
+
fn=vgd_seg_postprocess_fn,
|
466 |
+
threshold=0.0,
|
467 |
+
return_contiguous_labels=True,
|
468 |
+
),
|
469 |
+
dataset_map_fn=dict(
|
470 |
+
type=dataset_map_fn_factory,
|
471 |
+
fn=vgd_seg_map_fn,
|
472 |
+
cond_type=cond_type,
|
473 |
+
),
|
474 |
+
template_map_fn=dict(
|
475 |
+
type=template_map_fn_factory, template=prompt_template, output_suffix=output_ids_with_output
|
476 |
+
),
|
477 |
+
use_negative_sample=False,
|
478 |
+
sample_num=5,
|
479 |
+
max_length=max_length,
|
480 |
+
pad_image_to_square=True,
|
481 |
+
),
|
482 |
+
dict(
|
483 |
+
type=VGDSegDataset,
|
484 |
+
source_data_path=vgdseg_data_root + "coco/annotations/instances_val2017.json",
|
485 |
+
data_path=vgdseg_data_root + "annotations/coco_vgdseg_val.json",
|
486 |
+
image_folder=vgdseg_data_root + "coco/val2017",
|
487 |
+
tokenizer=tokenizer,
|
488 |
+
task_name="vgdseg",
|
489 |
+
data_name="coco_vgdseg_mask",
|
490 |
+
data_mode="eval",
|
491 |
+
visual_prompt_type="mask_visual_prompt",
|
492 |
+
output_ids_with_output=output_ids_with_output,
|
493 |
+
cond_type=cond_type,
|
494 |
+
special_tokens=special_tokens,
|
495 |
+
extra_image_processor=extra_image_processor,
|
496 |
+
image_processor=image_processor,
|
497 |
+
postprocess_fn=dict(
|
498 |
+
type=process_map_fn_factory,
|
499 |
+
fn=vgd_seg_postprocess_fn,
|
500 |
+
threshold=0.0,
|
501 |
+
return_contiguous_labels=True,
|
502 |
+
),
|
503 |
+
dataset_map_fn=dict(
|
504 |
+
type=dataset_map_fn_factory,
|
505 |
+
fn=vgd_seg_map_fn,
|
506 |
+
cond_type=cond_type,
|
507 |
+
),
|
508 |
+
template_map_fn=dict(
|
509 |
+
type=template_map_fn_factory, template=prompt_template, output_suffix=output_ids_with_output
|
510 |
+
),
|
511 |
+
use_negative_sample=False,
|
512 |
+
sample_num=5,
|
513 |
+
max_length=max_length,
|
514 |
+
pad_image_to_square=True,
|
515 |
+
),
|
516 |
+
]
|
517 |
+
|
518 |
+
val_evaluators = [
|
519 |
+
dict(
|
520 |
+
type=GenericSegEvaluator,
|
521 |
+
distributed=True,
|
522 |
+
data_name="panoptic_genseg",
|
523 |
+
),
|
524 |
+
dict(
|
525 |
+
type=GenericSegEvaluator,
|
526 |
+
data_name="semantic_genseg",
|
527 |
+
distributed=True,
|
528 |
+
),
|
529 |
+
dict(
|
530 |
+
type=GenericSegEvaluator,
|
531 |
+
data_name="instance_genseg",
|
532 |
+
distributed=True,
|
533 |
+
),
|
534 |
+
dict(
|
535 |
+
type=VGDSegEvaluator,
|
536 |
+
data_name="coco_vgdseg_point",
|
537 |
+
distributed=True,
|
538 |
+
),
|
539 |
+
dict(
|
540 |
+
type=VGDSegEvaluator,
|
541 |
+
data_name="coco_vgdseg_scribble",
|
542 |
+
distributed=True,
|
543 |
+
),
|
544 |
+
dict(
|
545 |
+
type=VGDSegEvaluator,
|
546 |
+
data_name="coco_vgdseg_box",
|
547 |
+
distributed=True,
|
548 |
+
),
|
549 |
+
dict(
|
550 |
+
type=VGDSegEvaluator,
|
551 |
+
data_name="coco_vgdseg_mask",
|
552 |
+
distributed=True,
|
553 |
+
),
|
554 |
+
]
|
555 |
+
|
556 |
+
vis_datasets = val_datasets
|
557 |
+
|
558 |
+
vis_datasets = deepcopy(val_datasets)
|
559 |
+
for dataset in vis_datasets:
|
560 |
+
if dataset["task_name"] in ["genseg", "ovseg", "vgdseg", "interseg"]:
|
561 |
+
dataset["postprocess_fn"]["threshold"] = 0.5 # type: ignore
|
562 |
+
|
563 |
+
#######################################################################
|
564 |
+
# PART 4 Scheduler & Optimizer #
|
565 |
+
#######################################################################
|
566 |
+
# optimizer
|
567 |
+
optim_wrapper = dict(
|
568 |
+
type=AmpOptimWrapper,
|
569 |
+
optimizer=dict(type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
570 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
571 |
+
accumulative_counts=accumulative_counts,
|
572 |
+
loss_scale="dynamic",
|
573 |
+
dtype="float16",
|
574 |
+
paramwise_cfg=dict(
|
575 |
+
custom_keys={
|
576 |
+
"segmentor.encoder": dict(lr_mult=0.1, decay_mult=1.0),
|
577 |
+
"visual_encoder": dict(lr_mult=0.1, decay_mult=1.0),
|
578 |
+
},
|
579 |
+
),
|
580 |
+
)
|
581 |
+
|
582 |
+
# learning policy
|
583 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
584 |
+
param_scheduler = [
|
585 |
+
dict(
|
586 |
+
type=LinearLR,
|
587 |
+
start_factor=1e-5,
|
588 |
+
by_epoch=True,
|
589 |
+
begin=0,
|
590 |
+
end=warmup_ratio * max_epochs,
|
591 |
+
convert_to_iter_based=True,
|
592 |
+
),
|
593 |
+
dict(
|
594 |
+
type=CosineAnnealingLR,
|
595 |
+
eta_min=0.0,
|
596 |
+
by_epoch=True,
|
597 |
+
begin=warmup_ratio * max_epochs,
|
598 |
+
end=max_epochs,
|
599 |
+
convert_to_iter_based=True,
|
600 |
+
),
|
601 |
+
]
|
602 |
+
|
603 |
+
# train, val, test setting
|
604 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
605 |
+
|
606 |
+
#######################################################################
|
607 |
+
# PART 5 Runtime #
|
608 |
+
#######################################################################
|
609 |
+
# set visualizer
|
610 |
+
visualizer = dict(
|
611 |
+
type=Visualizer,
|
612 |
+
scale=1.0,
|
613 |
+
font_size_scale=1.0,
|
614 |
+
)
|
615 |
+
|
616 |
+
# Log the dialogue periodically during the training process, optional
|
617 |
+
custom_hooks = [
|
618 |
+
dict(
|
619 |
+
type=ModelInfoHook,
|
620 |
+
module_names=["llm", "visual_encoder", "projector", "connector", "segmentor"],
|
621 |
+
display_params=True,
|
622 |
+
),
|
623 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer, special_tokens=special_tokens),
|
624 |
+
dict(
|
625 |
+
type=EvaluateChatHook,
|
626 |
+
tokenizer=tokenizer,
|
627 |
+
special_tokens=special_tokens,
|
628 |
+
image_processor=image_processor,
|
629 |
+
postprocess_fns=[
|
630 |
+
None,
|
631 |
+
generic_seg_postprocess_fn,
|
632 |
+
refer_seg_postprocess_fn,
|
633 |
+
reason_seg_postprocess_fn,
|
634 |
+
gcg_seg_postprocess_fn,
|
635 |
+
inter_seg_postprocess_fn,
|
636 |
+
inter_seg_postprocess_fn,
|
637 |
+
inter_seg_postprocess_fn,
|
638 |
+
inter_seg_postprocess_fn,
|
639 |
+
vgd_seg_postprocess_fn,
|
640 |
+
vgd_seg_postprocess_fn,
|
641 |
+
vgd_seg_postprocess_fn,
|
642 |
+
vgd_seg_postprocess_fn,
|
643 |
+
vgd_seg_postprocess_fn,
|
644 |
+
],
|
645 |
+
extra_image_processor=extra_image_processor,
|
646 |
+
visualizer=visualizer,
|
647 |
+
every_n_iters=evaluation_freq,
|
648 |
+
evaluation_inputs=evaluation_inputs,
|
649 |
+
evaluation_images=evaluation_images,
|
650 |
+
vprompt_masks=vprompt_masks,
|
651 |
+
system=SYSTEM,
|
652 |
+
prompt_template=prompt_template,
|
653 |
+
),
|
654 |
+
dict(type=PTCheckpointHook),
|
655 |
+
]
|
656 |
+
|
657 |
+
# configure default hooks
|
658 |
+
default_hooks = dict(
|
659 |
+
# record the time of every iteration.
|
660 |
+
timer=dict(type=IterTimerHook),
|
661 |
+
# print log every 10 iterations.
|
662 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=logging_interval),
|
663 |
+
# enable the parameter scheduler.
|
664 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
665 |
+
# save checkpoint per `save_steps`.
|
666 |
+
checkpoint=dict(
|
667 |
+
type=CheckpointHook,
|
668 |
+
by_epoch=False,
|
669 |
+
interval=save_steps,
|
670 |
+
max_keep_ckpts=save_total_limit,
|
671 |
+
),
|
672 |
+
# set sampler seed in distributed environment.
|
673 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
674 |
+
)
|
675 |
+
|
676 |
+
# configure environment
|
677 |
+
env_cfg = dict(
|
678 |
+
# whether to enable cudnn benchmark
|
679 |
+
cudnn_benchmark=False,
|
680 |
+
# set multi process parameters
|
681 |
+
mp_cfg=dict(mp_start_method="fork", opencv_num_threads=0),
|
682 |
+
# set distributed parameters
|
683 |
+
dist_cfg=dict(backend="nccl"),
|
684 |
+
)
|
685 |
+
|
686 |
+
# set log level
|
687 |
+
log_level = "INFO"
|
688 |
+
|
689 |
+
# load from which checkpoint
|
690 |
+
load_from = None
|
691 |
+
|
692 |
+
# whether to resume training from the loaded checkpoint
|
693 |
+
resume = False
|
694 |
+
|
695 |
+
# Defaults to use random seed and disable `deterministic`
|
696 |
+
randomness = dict(seed=None, deterministic=False)
|
697 |
+
|
698 |
+
# set log processor
|
699 |
+
log_processor = dict(
|
700 |
+
by_epoch=False,
|
701 |
+
window_size=1,
|
702 |
+
mean_pattern=r".*(loss|time|data_time|grad_norm|tflops).*",
|
703 |
+
)
|
vgdseg_annotations/coco_vgdseg_train.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2cd3675dff40773835bb8bcc0af2a33855f5bda6e15f873320a5667147934a92
|
3 |
+
size 1388731793
|
vgdseg_annotations/coco_vgdseg_val.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:39089126330dc2e72fd03f472e37ffab6273ce605b9c6415a4e6edd53a645f21
|
3 |
+
size 58943447
|