Upload 2 files
Browse files- MDX23v24/inference.py +980 -0
- MDX23v24/requirements.txt +15 -0
MDX23v24/inference.py
ADDED
|
@@ -0,0 +1,980 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding: utf-8
|
| 2 |
+
|
| 3 |
+
if __name__ == '__main__':
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
gpu_use = "0"
|
| 7 |
+
|
| 8 |
+
print('GPU use: {}'.format(gpu_use))
|
| 9 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "{}".format(gpu_use)
|
| 10 |
+
import warnings
|
| 11 |
+
warnings.filterwarnings("ignore")
|
| 12 |
+
|
| 13 |
+
from tqdm import tqdm
|
| 14 |
+
import numpy as np
|
| 15 |
+
import torch
|
| 16 |
+
import torch.nn as nn
|
| 17 |
+
import os
|
| 18 |
+
import argparse
|
| 19 |
+
import soundfile as sf
|
| 20 |
+
from demucs.states import load_model
|
| 21 |
+
from demucs import pretrained
|
| 22 |
+
from demucs.apply import apply_model
|
| 23 |
+
import onnxruntime as ort
|
| 24 |
+
from time import time
|
| 25 |
+
import librosa
|
| 26 |
+
import hashlib
|
| 27 |
+
from scipy import signal
|
| 28 |
+
import gc
|
| 29 |
+
import yaml
|
| 30 |
+
from ml_collections import ConfigDict
|
| 31 |
+
import sys
|
| 32 |
+
import math
|
| 33 |
+
import pathlib
|
| 34 |
+
import warnings
|
| 35 |
+
from scipy.signal import resample_poly
|
| 36 |
+
|
| 37 |
+
from modules.tfc_tdf_v2 import Conv_TDF_net_trim_model
|
| 38 |
+
from modules.tfc_tdf_v3 import TFC_TDF_net, STFT
|
| 39 |
+
from modules.segm_models import Segm_Models_Net
|
| 40 |
+
from modules.bs_roformer import BSRoformer
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def get_models(name, device, load=True, vocals_model_type=0):
|
| 45 |
+
if vocals_model_type == 2:
|
| 46 |
+
model_vocals = Conv_TDF_net_trim_model(
|
| 47 |
+
device=device,
|
| 48 |
+
target_name='vocals',
|
| 49 |
+
L=11,
|
| 50 |
+
n_fft=7680,
|
| 51 |
+
dim_f=3072
|
| 52 |
+
)
|
| 53 |
+
elif vocals_model_type == 3:
|
| 54 |
+
model_vocals = Conv_TDF_net_trim_model(
|
| 55 |
+
device=device,
|
| 56 |
+
target_name='instrum',
|
| 57 |
+
L=11,
|
| 58 |
+
n_fft=5120,
|
| 59 |
+
dim_f=2560
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
return [model_vocals]
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def get_model_from_config(model_type, config_path):
|
| 66 |
+
with open(config_path) as f:
|
| 67 |
+
config = ConfigDict(yaml.load(f, Loader=yaml.FullLoader))
|
| 68 |
+
if model_type == 'mdx23c':
|
| 69 |
+
from modules.tfc_tdf_v3 import TFC_TDF_net
|
| 70 |
+
model = TFC_TDF_net(config)
|
| 71 |
+
elif model_type == 'segm_models':
|
| 72 |
+
from modules.segm_models import Segm_Models_Net
|
| 73 |
+
model = Segm_Models_Net(config)
|
| 74 |
+
elif model_type == 'bs_roformer':
|
| 75 |
+
from modules.bs_roformer import BSRoformer
|
| 76 |
+
model = BSRoformer(
|
| 77 |
+
**dict(config.model)
|
| 78 |
+
)
|
| 79 |
+
else:
|
| 80 |
+
print('Unknown model: {}'.format(model_type))
|
| 81 |
+
model = None
|
| 82 |
+
return model, config
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def demix_new(model, mix, device, config, dim_t=256):
|
| 86 |
+
mix = torch.tensor(mix)
|
| 87 |
+
#N = options["overlap_BSRoformer"]
|
| 88 |
+
N = 2 # overlap 50%
|
| 89 |
+
batch_size = 1
|
| 90 |
+
mdx_window_size = dim_t
|
| 91 |
+
C = config.audio.hop_length * (mdx_window_size - 1)
|
| 92 |
+
fade_size = C // 100
|
| 93 |
+
step = int(C // N)
|
| 94 |
+
border = C - step
|
| 95 |
+
length_init = mix.shape[-1]
|
| 96 |
+
#print(f"1: {mix.shape}")
|
| 97 |
+
|
| 98 |
+
# Do pad from the beginning and end to account floating window results better
|
| 99 |
+
if length_init > 2 * border and (border > 0):
|
| 100 |
+
mix = nn.functional.pad(mix, (border, border), mode='reflect')
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
# Prepare windows arrays (do 1 time for speed up). This trick repairs click problems on the edges of segment
|
| 104 |
+
window_size = C
|
| 105 |
+
fadein = torch.linspace(0, 1, fade_size)
|
| 106 |
+
fadeout = torch.linspace(1, 0, fade_size)
|
| 107 |
+
window_start = torch.ones(window_size)
|
| 108 |
+
window_middle = torch.ones(window_size)
|
| 109 |
+
window_finish = torch.ones(window_size)
|
| 110 |
+
window_start[-fade_size:] *= fadeout # First audio chunk, no fadein
|
| 111 |
+
window_finish[:fade_size] *= fadein # Last audio chunk, no fadeout
|
| 112 |
+
window_middle[-fade_size:] *= fadeout
|
| 113 |
+
window_middle[:fade_size] *= fadein
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
with torch.cuda.amp.autocast():
|
| 119 |
+
with torch.inference_mode():
|
| 120 |
+
if config.training.target_instrument is not None:
|
| 121 |
+
req_shape = (1, ) + tuple(mix.shape)
|
| 122 |
+
else:
|
| 123 |
+
req_shape = (len(config.training.instruments),) + tuple(mix.shape)
|
| 124 |
+
|
| 125 |
+
result = torch.zeros(req_shape, dtype=torch.float32)
|
| 126 |
+
counter = torch.zeros(req_shape, dtype=torch.float32)
|
| 127 |
+
i = 0
|
| 128 |
+
batch_data = []
|
| 129 |
+
batch_locations = []
|
| 130 |
+
while i < mix.shape[1]:
|
| 131 |
+
# print(i, i + C, mix.shape[1])
|
| 132 |
+
part = mix[:, i:i + C].to(device)
|
| 133 |
+
length = part.shape[-1]
|
| 134 |
+
if length < C:
|
| 135 |
+
if length > C // 2 + 1:
|
| 136 |
+
part = nn.functional.pad(input=part, pad=(0, C - length), mode='reflect')
|
| 137 |
+
else:
|
| 138 |
+
part = nn.functional.pad(input=part, pad=(0, C - length, 0, 0), mode='constant', value=0)
|
| 139 |
+
batch_data.append(part)
|
| 140 |
+
batch_locations.append((i, length))
|
| 141 |
+
i += step
|
| 142 |
+
|
| 143 |
+
if len(batch_data) >= batch_size or (i >= mix.shape[1]):
|
| 144 |
+
arr = torch.stack(batch_data, dim=0)
|
| 145 |
+
x = model(arr)
|
| 146 |
+
|
| 147 |
+
window = window_middle
|
| 148 |
+
if i - step == 0: # First audio chunk, no fadein
|
| 149 |
+
window = window_start
|
| 150 |
+
elif i >= mix.shape[1]: # Last audio chunk, no fadeout
|
| 151 |
+
window = window_finish
|
| 152 |
+
|
| 153 |
+
for j in range(len(batch_locations)):
|
| 154 |
+
start, l = batch_locations[j]
|
| 155 |
+
result[..., start:start+l] += x[j][..., :l].cpu() * window[..., :l]
|
| 156 |
+
counter[..., start:start+l] += window[..., :l]
|
| 157 |
+
|
| 158 |
+
batch_data = []
|
| 159 |
+
batch_locations = []
|
| 160 |
+
|
| 161 |
+
estimated_sources = result / counter
|
| 162 |
+
estimated_sources = estimated_sources.cpu().numpy()
|
| 163 |
+
np.nan_to_num(estimated_sources, copy=False, nan=0.0)
|
| 164 |
+
|
| 165 |
+
if length_init > 2 * border and (border > 0):
|
| 166 |
+
# Remove pad
|
| 167 |
+
estimated_sources = estimated_sources[..., border:-border]
|
| 168 |
+
|
| 169 |
+
if config.training.target_instrument is None:
|
| 170 |
+
return {k: v for k, v in zip(config.training.instruments, estimated_sources)}
|
| 171 |
+
else:
|
| 172 |
+
return {k: v for k, v in zip([config.training.target_instrument], estimated_sources)}
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
def demix_new_wrapper(mix, device, model, config, dim_t=256):
|
| 176 |
+
if options["BigShifts"] <= 0:
|
| 177 |
+
bigshifts = 1
|
| 178 |
+
else:
|
| 179 |
+
bigshifts = options["BigShifts"]
|
| 180 |
+
|
| 181 |
+
shift_in_samples = mix.shape[1] // bigshifts
|
| 182 |
+
shifts = [x * shift_in_samples for x in range(bigshifts)]
|
| 183 |
+
|
| 184 |
+
results = []
|
| 185 |
+
|
| 186 |
+
for shift in tqdm(shifts, position=0):
|
| 187 |
+
shifted_mix = np.concatenate((mix[:, -shift:], mix[:, :-shift]), axis=-1)
|
| 188 |
+
sources = demix_new(model, shifted_mix, device, config, dim_t=dim_t)
|
| 189 |
+
vocals = next(sources[key] for key in sources.keys() if key.lower() == "vocals")
|
| 190 |
+
unshifted_vocals = np.concatenate((vocals[..., shift:], vocals[..., :shift]), axis=-1)
|
| 191 |
+
vocals *= 1 # 1.0005168 CHECK NEEDED! volume compensation
|
| 192 |
+
|
| 193 |
+
results.append(unshifted_vocals)
|
| 194 |
+
|
| 195 |
+
vocals = np.mean(results, axis=0)
|
| 196 |
+
|
| 197 |
+
return vocals
|
| 198 |
+
|
| 199 |
+
def demix_vitlarge(model, mix, device):
|
| 200 |
+
C = model.config.audio.hop_length * (2 * model.config.inference.dim_t - 1)
|
| 201 |
+
N = 2
|
| 202 |
+
step = C // N
|
| 203 |
+
|
| 204 |
+
with torch.cuda.amp.autocast():
|
| 205 |
+
with torch.no_grad():
|
| 206 |
+
if model.config.training.target_instrument is not None:
|
| 207 |
+
req_shape = (1, ) + tuple(mix.shape)
|
| 208 |
+
else:
|
| 209 |
+
req_shape = (len(model.config.training.instruments),) + tuple(mix.shape)
|
| 210 |
+
|
| 211 |
+
mix = mix.to(device)
|
| 212 |
+
result = torch.zeros(req_shape, dtype=torch.float32).to(device)
|
| 213 |
+
counter = torch.zeros(req_shape, dtype=torch.float32).to(device)
|
| 214 |
+
i = 0
|
| 215 |
+
|
| 216 |
+
while i < mix.shape[1]:
|
| 217 |
+
part = mix[:, i:i + C]
|
| 218 |
+
length = part.shape[-1]
|
| 219 |
+
if length < C:
|
| 220 |
+
part = nn.functional.pad(input=part, pad=(0, C - length, 0, 0), mode='constant', value=0)
|
| 221 |
+
x = model(part.unsqueeze(0))[0]
|
| 222 |
+
result[..., i:i+length] += x[..., :length]
|
| 223 |
+
counter[..., i:i+length] += 1.
|
| 224 |
+
i += step
|
| 225 |
+
estimated_sources = result / counter
|
| 226 |
+
|
| 227 |
+
if model.config.training.target_instrument is None:
|
| 228 |
+
return {k: v for k, v in zip(model.config.training.instruments, estimated_sources.cpu().numpy())}
|
| 229 |
+
else:
|
| 230 |
+
return {k: v for k, v in zip([model.config.training.target_instrument], estimated_sources.cpu().numpy())}
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
def demix_full_vitlarge(mix, device, model):
|
| 234 |
+
if options["BigShifts"] <= 0:
|
| 235 |
+
bigshifts = 1
|
| 236 |
+
else:
|
| 237 |
+
bigshifts = options["BigShifts"]
|
| 238 |
+
shift_in_samples = mix.shape[1] // bigshifts
|
| 239 |
+
shifts = [x * shift_in_samples for x in range(bigshifts)]
|
| 240 |
+
|
| 241 |
+
results1 = []
|
| 242 |
+
results2 = []
|
| 243 |
+
mix = torch.from_numpy(mix).type('torch.FloatTensor').to(device)
|
| 244 |
+
for shift in tqdm(shifts, position=0):
|
| 245 |
+
shifted_mix = torch.cat((mix[:, -shift:], mix[:, :-shift]), dim=-1)
|
| 246 |
+
sources = demix_vitlarge(model, shifted_mix, device)
|
| 247 |
+
sources1 = sources["vocals"]
|
| 248 |
+
sources2 = sources["other"]
|
| 249 |
+
restored_sources1 = np.concatenate((sources1[..., shift:], sources1[..., :shift]), axis=-1)
|
| 250 |
+
restored_sources2 = np.concatenate((sources2[..., shift:], sources2[..., :shift]), axis=-1)
|
| 251 |
+
results1.append(restored_sources1)
|
| 252 |
+
results2.append(restored_sources2)
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
sources1 = np.mean(results1, axis=0)
|
| 256 |
+
sources2 = np.mean(results2, axis=0)
|
| 257 |
+
|
| 258 |
+
return sources1, sources2
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
def demix_wrapper(mix, device, models, infer_session, overlap=0.2, bigshifts=1, vc=1.0):
|
| 262 |
+
if bigshifts <= 0:
|
| 263 |
+
bigshifts = 1
|
| 264 |
+
shift_in_samples = mix.shape[1] // bigshifts
|
| 265 |
+
shifts = [x * shift_in_samples for x in range(bigshifts)]
|
| 266 |
+
results = []
|
| 267 |
+
|
| 268 |
+
for shift in tqdm(shifts, position=0):
|
| 269 |
+
shifted_mix = np.concatenate((mix[:, -shift:], mix[:, :-shift]), axis=-1)
|
| 270 |
+
sources = demix(shifted_mix, device, models, infer_session, overlap) * vc # 1.021 volume compensation
|
| 271 |
+
restored_sources = np.concatenate((sources[..., shift:], sources[..., :shift]), axis=-1)
|
| 272 |
+
results.append(restored_sources)
|
| 273 |
+
|
| 274 |
+
sources = np.mean(results, axis=0)
|
| 275 |
+
|
| 276 |
+
return sources
|
| 277 |
+
|
| 278 |
+
def demix(mix, device, models, infer_session, overlap=0.2):
|
| 279 |
+
start_time = time()
|
| 280 |
+
sources = []
|
| 281 |
+
n_sample = mix.shape[1]
|
| 282 |
+
n_fft = models[0].n_fft
|
| 283 |
+
n_bins = n_fft//2+1
|
| 284 |
+
trim = n_fft//2
|
| 285 |
+
hop = models[0].hop
|
| 286 |
+
dim_f = models[0].dim_f
|
| 287 |
+
dim_t = models[0].dim_t # * 2
|
| 288 |
+
chunk_size = hop * (dim_t -1)
|
| 289 |
+
org_mix = mix
|
| 290 |
+
tar_waves_ = []
|
| 291 |
+
mdx_batch_size = 1
|
| 292 |
+
overlap = overlap
|
| 293 |
+
gen_size = chunk_size-2*trim
|
| 294 |
+
pad = gen_size + trim - ((mix.shape[-1]) % gen_size)
|
| 295 |
+
|
| 296 |
+
mixture = np.concatenate((np.zeros((2, trim), dtype='float32'), mix, np.zeros((2, pad), dtype='float32')), 1)
|
| 297 |
+
|
| 298 |
+
step = int((1 - overlap) * chunk_size)
|
| 299 |
+
result = np.zeros((1, 2, mixture.shape[-1]), dtype=np.float32)
|
| 300 |
+
divider = np.zeros((1, 2, mixture.shape[-1]), dtype=np.float32)
|
| 301 |
+
total = 0
|
| 302 |
+
total_chunks = (mixture.shape[-1] + step - 1) // step
|
| 303 |
+
|
| 304 |
+
for i in range(0, mixture.shape[-1], step):
|
| 305 |
+
total += 1
|
| 306 |
+
start = i
|
| 307 |
+
end = min(i + chunk_size, mixture.shape[-1])
|
| 308 |
+
chunk_size_actual = end - start
|
| 309 |
+
|
| 310 |
+
if overlap == 0:
|
| 311 |
+
window = None
|
| 312 |
+
else:
|
| 313 |
+
window = np.hanning(chunk_size_actual)
|
| 314 |
+
window = np.tile(window[None, None, :], (1, 2, 1))
|
| 315 |
+
|
| 316 |
+
mix_part_ = mixture[:, start:end]
|
| 317 |
+
if end != i + chunk_size:
|
| 318 |
+
pad_size = (i + chunk_size) - end
|
| 319 |
+
mix_part_ = np.concatenate((mix_part_, np.zeros((2, pad_size), dtype='float32')), axis=-1)
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
mix_part = torch.tensor([mix_part_], dtype=torch.float32).to(device)
|
| 323 |
+
mix_waves = mix_part.split(mdx_batch_size)
|
| 324 |
+
|
| 325 |
+
with torch.no_grad():
|
| 326 |
+
for mix_wave in mix_waves:
|
| 327 |
+
_ort = infer_session
|
| 328 |
+
stft_res = models[0].stft(mix_wave)
|
| 329 |
+
stft_res[:, :, :3, :] *= 0
|
| 330 |
+
res = _ort.run(None, {'input': stft_res.cpu().numpy()})[0]
|
| 331 |
+
ten = torch.tensor(res)
|
| 332 |
+
tar_waves = models[0].istft(ten.to(device))
|
| 333 |
+
tar_waves = tar_waves.cpu().detach().numpy()
|
| 334 |
+
|
| 335 |
+
if window is not None:
|
| 336 |
+
tar_waves[..., :chunk_size_actual] *= window
|
| 337 |
+
divider[..., start:end] += window
|
| 338 |
+
else:
|
| 339 |
+
divider[..., start:end] += 1
|
| 340 |
+
result[..., start:end] += tar_waves[..., :end-start]
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
tar_waves = result / divider
|
| 344 |
+
tar_waves_.append(tar_waves)
|
| 345 |
+
tar_waves_ = np.vstack(tar_waves_)[:, :, trim:-trim]
|
| 346 |
+
tar_waves = np.concatenate(tar_waves_, axis=-1)[:, :mix.shape[-1]]
|
| 347 |
+
source = tar_waves[:,0:None]
|
| 348 |
+
|
| 349 |
+
return source
|
| 350 |
+
|
| 351 |
+
class EnsembleDemucsMDXMusicSeparationModel:
|
| 352 |
+
"""
|
| 353 |
+
Doesn't do any separation just passes the input back as output
|
| 354 |
+
"""
|
| 355 |
+
def __init__(self, options):
|
| 356 |
+
"""
|
| 357 |
+
options - user options
|
| 358 |
+
"""
|
| 359 |
+
|
| 360 |
+
if torch.cuda.is_available():
|
| 361 |
+
device = 'cuda:0'
|
| 362 |
+
else:
|
| 363 |
+
device = 'cpu'
|
| 364 |
+
if 'cpu' in options:
|
| 365 |
+
if options['cpu']:
|
| 366 |
+
device = 'cpu'
|
| 367 |
+
# print('Use device: {}'.format(device))
|
| 368 |
+
self.single_onnx = False
|
| 369 |
+
if 'single_onnx' in options:
|
| 370 |
+
if options['single_onnx']:
|
| 371 |
+
self.single_onnx = True
|
| 372 |
+
# print('Use single vocal ONNX')
|
| 373 |
+
self.overlap_demucs = float(options['overlap_demucs'])
|
| 374 |
+
self.overlap_MDX = float(options['overlap_VOCFT'])
|
| 375 |
+
if self.overlap_demucs > 0.99:
|
| 376 |
+
self.overlap_demucs = 0.99
|
| 377 |
+
if self.overlap_demucs < 0.0:
|
| 378 |
+
self.overlap_demucs = 0.0
|
| 379 |
+
if self.overlap_MDX > 0.99:
|
| 380 |
+
self.overlap_MDX = 0.99
|
| 381 |
+
if self.overlap_MDX < 0.0:
|
| 382 |
+
self.overlap_MDX = 0.0
|
| 383 |
+
model_folder = os.path.dirname(os.path.realpath(__file__)) + '/models/'
|
| 384 |
+
"""
|
| 385 |
+
|
| 386 |
+
remote_url = 'https://dl.fbaipublicfiles.com/demucs/hybrid_transformer/04573f0d-f3cf25b2.th'
|
| 387 |
+
model_path = model_folder + '04573f0d-f3cf25b2.th'
|
| 388 |
+
if not os.path.isfile(model_path):
|
| 389 |
+
torch.hub.download_url_to_file(remote_url, model_folder + '04573f0d-f3cf25b2.th')
|
| 390 |
+
model_vocals = load_model(model_path)
|
| 391 |
+
model_vocals.to(device)
|
| 392 |
+
self.model_vocals_only = model_vocals
|
| 393 |
+
"""
|
| 394 |
+
|
| 395 |
+
if options['vocals_only'] is False:
|
| 396 |
+
self.models = []
|
| 397 |
+
self.weights_vocals = np.array([10, 1, 8, 9])
|
| 398 |
+
self.weights_bass = np.array([19, 4, 5, 8])
|
| 399 |
+
self.weights_drums = np.array([18, 2, 4, 9])
|
| 400 |
+
self.weights_other = np.array([14, 2, 5, 10])
|
| 401 |
+
|
| 402 |
+
model1 = pretrained.get_model('htdemucs_ft')
|
| 403 |
+
model1.to(device)
|
| 404 |
+
self.models.append(model1)
|
| 405 |
+
|
| 406 |
+
model2 = pretrained.get_model('htdemucs')
|
| 407 |
+
model2.to(device)
|
| 408 |
+
self.models.append(model2)
|
| 409 |
+
|
| 410 |
+
model3 = pretrained.get_model('htdemucs_6s')
|
| 411 |
+
model3.to(device)
|
| 412 |
+
self.models.append(model3)
|
| 413 |
+
|
| 414 |
+
model4 = pretrained.get_model('hdemucs_mmi')
|
| 415 |
+
model4.to(device)
|
| 416 |
+
self.models.append(model4)
|
| 417 |
+
|
| 418 |
+
if 0:
|
| 419 |
+
for model in self.models:
|
| 420 |
+
pass
|
| 421 |
+
# print(model.sources)
|
| 422 |
+
'''
|
| 423 |
+
['drums', 'bass', 'other', 'vocals']
|
| 424 |
+
['drums', 'bass', 'other', 'vocals']
|
| 425 |
+
['drums', 'bass', 'other', 'vocals', 'guitar', 'piano']
|
| 426 |
+
['drums', 'bass', 'other', 'vocals']
|
| 427 |
+
'''
|
| 428 |
+
|
| 429 |
+
"""
|
| 430 |
+
#BS-RoformerDRUMS+BASS init
|
| 431 |
+
print("Loading BS-RoformerDB into memory")
|
| 432 |
+
remote_url_bsrofoDB = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/model_bs_roformer_ep_937_sdr_10.5309.ckpt'
|
| 433 |
+
remote_url_conf_bsrofoDB = 'https://raw.githubusercontent.com/TRvlvr/application_data/main/mdx_model_data/mdx_c_configs/model_bs_roformer_ep_937_sdr_10.5309.yaml'
|
| 434 |
+
if not os.path.isfile(model_folder+'model_bs_roformer_ep_937_sdr_10.5309.ckpt'):
|
| 435 |
+
torch.hub.download_url_to_file(remote_url_bsrofoDB, model_folder+'model_bs_roformer_ep_937_sdr_10.5309.ckpt')
|
| 436 |
+
if not os.path.isfile(model_folder+'model_bs_roformer_ep_937_sdr_10.5309.yaml'):
|
| 437 |
+
torch.hub.download_url_to_file(remote_url_conf_bsrofoDB, model_folder+'model_bs_roformer_ep_937_sdr_10.5309.yaml')
|
| 438 |
+
|
| 439 |
+
with open(model_folder + 'model_bs_roformer_ep_937_sdr_10.5309.yaml') as f:
|
| 440 |
+
config_bsrofoDB = ConfigDict(yaml.load(f, Loader=yaml.FullLoader))
|
| 441 |
+
|
| 442 |
+
self.model_bsrofoDB = BSRoformer(**dict(config_bsrofoDB.model))
|
| 443 |
+
self.config_bsrofoDB = config_bsrofoDB
|
| 444 |
+
self.model_bsrofoDB.load_state_dict(torch.load(model_folder+'model_bs_roformer_ep_937_sdr_10.5309.ckpt'))
|
| 445 |
+
self.device = torch.device(device)
|
| 446 |
+
self.model_bsrofoDB = self.model_bsrofoDB.to(device)
|
| 447 |
+
self.model_bsrofoDB.eval()
|
| 448 |
+
"""
|
| 449 |
+
|
| 450 |
+
if device == 'cpu':
|
| 451 |
+
providers = ["CPUExecutionProvider"]
|
| 452 |
+
else:
|
| 453 |
+
providers = ["CUDAExecutionProvider"]
|
| 454 |
+
|
| 455 |
+
|
| 456 |
+
#BS-RoformerVOC init
|
| 457 |
+
print("Loading BS-Roformer into memory")
|
| 458 |
+
if options["BSRoformer_model"] == "ep_368_1296":
|
| 459 |
+
model_name = "model_bs_roformer_ep_368_sdr_12.9628"
|
| 460 |
+
else:
|
| 461 |
+
model_name = "model_bs_roformer_ep_317_sdr_12.9755"
|
| 462 |
+
remote_url_bsrofo = f'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/{model_name}.ckpt'
|
| 463 |
+
remote_url_conf_bsrofo = f'https://raw.githubusercontent.com/TRvlvr/application_data/main/mdx_model_data/mdx_c_configs/{model_name}.yaml'
|
| 464 |
+
if not os.path.isfile(model_folder+f'{model_name}.ckpt'):
|
| 465 |
+
torch.hub.download_url_to_file(remote_url_bsrofo, model_folder+f'{model_name}.ckpt')
|
| 466 |
+
if not os.path.isfile(model_folder+f'{model_name}.yaml'):
|
| 467 |
+
torch.hub.download_url_to_file(remote_url_conf_bsrofo, model_folder+f'{model_name}.yaml')
|
| 468 |
+
|
| 469 |
+
with open(model_folder + f'{model_name}.yaml') as f:
|
| 470 |
+
config_bsrofo = ConfigDict(yaml.load(f, Loader=yaml.FullLoader))
|
| 471 |
+
|
| 472 |
+
self.model_bsrofo = BSRoformer(**dict(config_bsrofo.model))
|
| 473 |
+
self.config_bsrofo = config_bsrofo
|
| 474 |
+
self.model_bsrofo.load_state_dict(torch.load(model_folder+f'{model_name}.ckpt'))
|
| 475 |
+
self.device = torch.device(device)
|
| 476 |
+
self.model_bsrofo = self.model_bsrofo.to(device)
|
| 477 |
+
self.model_bsrofo.eval()
|
| 478 |
+
|
| 479 |
+
|
| 480 |
+
#MDXv3 init
|
| 481 |
+
print("Loading InstVoc into memory")
|
| 482 |
+
remote_url_mdxv3 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/MDX23C-8KFFT-InstVoc_HQ.ckpt'
|
| 483 |
+
remote_url_conf_mdxv3 = 'https://raw.githubusercontent.com/TRvlvr/application_data/main/mdx_model_data/mdx_c_configs/model_2_stem_full_band_8k.yaml'
|
| 484 |
+
if not os.path.isfile(model_folder+'MDX23C-8KFFT-InstVoc_HQ.ckpt'):
|
| 485 |
+
torch.hub.download_url_to_file(remote_url_mdxv3, model_folder+'MDX23C-8KFFT-InstVoc_HQ.ckpt')
|
| 486 |
+
if not os.path.isfile(model_folder+'model_2_stem_full_band_8k.yaml'):
|
| 487 |
+
torch.hub.download_url_to_file(remote_url_conf_mdxv3, model_folder+'model_2_stem_full_band_8k.yaml')
|
| 488 |
+
|
| 489 |
+
with open(model_folder + 'model_2_stem_full_band_8k.yaml') as f:
|
| 490 |
+
config_mdxv3 = ConfigDict(yaml.load(f, Loader=yaml.FullLoader))
|
| 491 |
+
|
| 492 |
+
self.config_mdxv3 = config_mdxv3
|
| 493 |
+
self.model_mdxv3 = TFC_TDF_net(config_mdxv3)
|
| 494 |
+
self.model_mdxv3.load_state_dict(torch.load(model_folder+'MDX23C-8KFFT-InstVoc_HQ.ckpt'))
|
| 495 |
+
self.device = torch.device(device)
|
| 496 |
+
self.model_mdxv3 = self.model_mdxv3.to(device)
|
| 497 |
+
self.model_mdxv3.eval()
|
| 498 |
+
|
| 499 |
+
#VitLarge init
|
| 500 |
+
if options['use_VitLarge'] is True:
|
| 501 |
+
print("Loading VitLarge into memory")
|
| 502 |
+
remote_url_vitlarge = 'https://github.com/ZFTurbo/Music-Source-Separation-Training/releases/download/v1.0.0/model_vocals_segm_models_sdr_9.77.ckpt'
|
| 503 |
+
remote_url_vl_conf = 'https://github.com/ZFTurbo/Music-Source-Separation-Training/releases/download/v1.0.0/config_vocals_segm_models.yaml'
|
| 504 |
+
if not os.path.isfile(model_folder+'model_vocals_segm_models_sdr_9.77.ckpt'):
|
| 505 |
+
torch.hub.download_url_to_file(remote_url_vitlarge, model_folder+'model_vocals_segm_models_sdr_9.77.ckpt')
|
| 506 |
+
if not os.path.isfile(model_folder+'config_vocals_segm_models.yaml'):
|
| 507 |
+
torch.hub.download_url_to_file(remote_url_vl_conf, model_folder+'config_vocals_segm_models.yaml')
|
| 508 |
+
|
| 509 |
+
with open(model_folder + 'config_vocals_segm_models.yaml') as f:
|
| 510 |
+
config_vl = ConfigDict(yaml.load(f, Loader=yaml.FullLoader))
|
| 511 |
+
|
| 512 |
+
self.config_vl = config_vl
|
| 513 |
+
self.model_vl = Segm_Models_Net(config_vl)
|
| 514 |
+
self.model_vl.load_state_dict(torch.load(model_folder+'model_vocals_segm_models_sdr_9.77.ckpt'))
|
| 515 |
+
self.device = torch.device(device)
|
| 516 |
+
self.model_vl = self.model_vl.to(device)
|
| 517 |
+
self.model_vl.eval()
|
| 518 |
+
|
| 519 |
+
# VOCFT init
|
| 520 |
+
if options['use_VOCFT']:
|
| 521 |
+
print("Loading VOCFT into memory")
|
| 522 |
+
self.mdx_models1 = get_models('tdf_extra', load=False, device=device, vocals_model_type=2)
|
| 523 |
+
model_path_onnx1 = model_folder + 'UVR-MDX-NET-Voc_FT.onnx'
|
| 524 |
+
remote_url_onnx1 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/UVR-MDX-NET-Voc_FT.onnx'
|
| 525 |
+
|
| 526 |
+
if not os.path.isfile(model_path_onnx1):
|
| 527 |
+
torch.hub.download_url_to_file(remote_url_onnx1, model_path_onnx1)
|
| 528 |
+
|
| 529 |
+
self.infer_session1 = ort.InferenceSession(
|
| 530 |
+
model_path_onnx1,
|
| 531 |
+
providers=providers,
|
| 532 |
+
provider_options=[{"device_id": 0}],
|
| 533 |
+
)
|
| 534 |
+
|
| 535 |
+
# InstHQ4 init
|
| 536 |
+
if options['use_InstHQ4']:
|
| 537 |
+
print("Loading InstHQ4 into memory")
|
| 538 |
+
self.mdx_models2 = get_models('tdf_extra', load=False, device=device, vocals_model_type=3)
|
| 539 |
+
model_path_onnx2 = model_folder + 'UVR-MDX-NET-Inst_HQ_4.onnx'
|
| 540 |
+
remote_url_onnx2 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/UVR-MDX-NET-Inst_HQ_4.onnx'
|
| 541 |
+
|
| 542 |
+
if not os.path.isfile(model_path_onnx2):
|
| 543 |
+
torch.hub.download_url_to_file(remote_url_onnx2, model_path_onnx2)
|
| 544 |
+
|
| 545 |
+
self.infer_session2 = ort.InferenceSession(
|
| 546 |
+
model_path_onnx2,
|
| 547 |
+
providers=providers,
|
| 548 |
+
provider_options=[{"device_id": 0}],
|
| 549 |
+
)
|
| 550 |
+
|
| 551 |
+
|
| 552 |
+
self.device = device
|
| 553 |
+
pass
|
| 554 |
+
|
| 555 |
+
@property
|
| 556 |
+
def instruments(self):
|
| 557 |
+
|
| 558 |
+
if options['vocals_only'] is False:
|
| 559 |
+
return ['bass', 'drums', 'other', 'vocals']
|
| 560 |
+
else:
|
| 561 |
+
return ['vocals']
|
| 562 |
+
|
| 563 |
+
def raise_aicrowd_error(self, msg):
|
| 564 |
+
""" Will be used by the evaluator to provide logs, DO NOT CHANGE """
|
| 565 |
+
raise NameError(msg)
|
| 566 |
+
|
| 567 |
+
def separate_music_file(
|
| 568 |
+
self,
|
| 569 |
+
mixed_sound_array,
|
| 570 |
+
sample_rate,
|
| 571 |
+
current_file_number=0,
|
| 572 |
+
total_files=0,
|
| 573 |
+
):
|
| 574 |
+
"""
|
| 575 |
+
Implements the sound separation for a single sound file
|
| 576 |
+
Inputs: Outputs from soundfile.read('mixture.wav')
|
| 577 |
+
mixed_sound_array
|
| 578 |
+
sample_rate
|
| 579 |
+
|
| 580 |
+
Outputs:
|
| 581 |
+
separated_music_arrays: Dictionary numpy array of each separated instrument
|
| 582 |
+
output_sample_rates: Dictionary of sample rates separated sequence
|
| 583 |
+
"""
|
| 584 |
+
|
| 585 |
+
# print('Update percent func: {}'.format(update_percent_func))
|
| 586 |
+
|
| 587 |
+
separated_music_arrays = {}
|
| 588 |
+
output_sample_rates = {}
|
| 589 |
+
#print(mixed_sound_array.T.shape)
|
| 590 |
+
#audio = np.expand_dims(mixed_sound_array.T, axis=0)
|
| 591 |
+
|
| 592 |
+
|
| 593 |
+
overlap_demucs = self.overlap_demucs
|
| 594 |
+
overlap_MDX = self.overlap_MDX
|
| 595 |
+
shifts = 0
|
| 596 |
+
overlap = overlap_demucs
|
| 597 |
+
|
| 598 |
+
vocals_model_names = [
|
| 599 |
+
"BSRoformer",
|
| 600 |
+
"InstVoc",
|
| 601 |
+
"VitLarge",
|
| 602 |
+
"VOCFT",
|
| 603 |
+
"InstHQ4"
|
| 604 |
+
]
|
| 605 |
+
|
| 606 |
+
vocals_model_outputs = []
|
| 607 |
+
weights = []
|
| 608 |
+
|
| 609 |
+
for model_name in vocals_model_names:
|
| 610 |
+
|
| 611 |
+
if options[f"use_{model_name}"]:
|
| 612 |
+
|
| 613 |
+
if model_name == "BSRoformer":
|
| 614 |
+
print(f'Processing vocals with {model_name} model...')
|
| 615 |
+
sources_bs = demix_new_wrapper(mixed_sound_array.T, self.device, self.model_bsrofo, self.config_bsrofo, dim_t=1101)
|
| 616 |
+
vocals_bs = match_array_shapes(sources_bs, mixed_sound_array.T)
|
| 617 |
+
vocals_model_outputs.append(vocals_bs)
|
| 618 |
+
weights.append(options.get(f"weight_{model_name}"))
|
| 619 |
+
|
| 620 |
+
|
| 621 |
+
if model_name == "InstVoc":
|
| 622 |
+
print(f'Processing vocals with {model_name} model...')
|
| 623 |
+
sources3 = demix_new_wrapper(mixed_sound_array.T, self.device, self.model_mdxv3, self.config_mdxv3, dim_t=1024)
|
| 624 |
+
vocals3 = match_array_shapes(sources3, mixed_sound_array.T)
|
| 625 |
+
vocals_model_outputs.append(vocals3)
|
| 626 |
+
weights.append(options.get(f"weight_{model_name}"))
|
| 627 |
+
|
| 628 |
+
elif model_name == "VitLarge":
|
| 629 |
+
print(f'Processing vocals with {model_name} model...')
|
| 630 |
+
vocals4, instrum4 = demix_full_vitlarge(mixed_sound_array.T, self.device, self.model_vl)#, self.config_vl, dim_t=512)
|
| 631 |
+
vocals4 = match_array_shapes(vocals4, mixed_sound_array.T)
|
| 632 |
+
vocals_model_outputs.append(vocals4)
|
| 633 |
+
weights.append(options.get(f"weight_{model_name}"))
|
| 634 |
+
|
| 635 |
+
elif model_name == "VOCFT":
|
| 636 |
+
print(f'Processing vocals with {model_name} model...')
|
| 637 |
+
overlap = overlap_MDX
|
| 638 |
+
sources1 = 0.5 * demix_wrapper(
|
| 639 |
+
mixed_sound_array.T,
|
| 640 |
+
self.device,
|
| 641 |
+
self.mdx_models1,
|
| 642 |
+
self.infer_session1,
|
| 643 |
+
overlap=overlap,
|
| 644 |
+
vc=1.021,
|
| 645 |
+
bigshifts=options['BigShifts'] // 3
|
| 646 |
+
)
|
| 647 |
+
sources1 += 0.5 * -demix_wrapper(
|
| 648 |
+
-mixed_sound_array.T,
|
| 649 |
+
self.device,
|
| 650 |
+
self.mdx_models1,
|
| 651 |
+
self.infer_session1,
|
| 652 |
+
overlap=overlap,
|
| 653 |
+
vc=1.021,
|
| 654 |
+
bigshifts=options['BigShifts'] // 3
|
| 655 |
+
)
|
| 656 |
+
vocals_mdxb1 = sources1
|
| 657 |
+
vocals_model_outputs.append(vocals_mdxb1)
|
| 658 |
+
weights.append(options.get(f"weight_{model_name}"))
|
| 659 |
+
|
| 660 |
+
elif model_name == "InstHQ4":
|
| 661 |
+
print(f'Processing vocals with {model_name} model...')
|
| 662 |
+
overlap = overlap_MDX
|
| 663 |
+
sources2 = 0.5 * demix_wrapper(
|
| 664 |
+
mixed_sound_array.T,
|
| 665 |
+
self.device,
|
| 666 |
+
self.mdx_models2,
|
| 667 |
+
self.infer_session2,
|
| 668 |
+
overlap=overlap,
|
| 669 |
+
vc=1.019,
|
| 670 |
+
bigshifts=options['BigShifts'] // 3
|
| 671 |
+
)
|
| 672 |
+
sources2 += 0.5 * -demix_wrapper(
|
| 673 |
+
-mixed_sound_array.T,
|
| 674 |
+
self.device,
|
| 675 |
+
self.mdx_models2,
|
| 676 |
+
self.infer_session2,
|
| 677 |
+
overlap=overlap,
|
| 678 |
+
vc=1.019,
|
| 679 |
+
bigshifts=options['BigShifts'] // 3
|
| 680 |
+
)
|
| 681 |
+
vocals_mdxb2 = mixed_sound_array.T - sources2
|
| 682 |
+
vocals_model_outputs.append(vocals_mdxb2)
|
| 683 |
+
weights.append(options.get(f"weight_{model_name}"))
|
| 684 |
+
|
| 685 |
+
else:
|
| 686 |
+
# No more model to process or unknown one
|
| 687 |
+
pass
|
| 688 |
+
|
| 689 |
+
print('Processing vocals: DONE!')
|
| 690 |
+
|
| 691 |
+
vocals_combined = np.zeros_like(vocals_model_outputs[0])
|
| 692 |
+
|
| 693 |
+
for output, weight in zip(vocals_model_outputs, weights):
|
| 694 |
+
vocals_combined += output * weight
|
| 695 |
+
|
| 696 |
+
vocals_combined /= np.sum(weights)
|
| 697 |
+
|
| 698 |
+
vocals_low = lr_filter(vocals_combined.T, 12000, 'lowpass') # * 1.01055 # remember to check if new final finetuned volume compensation is needed !
|
| 699 |
+
vocals_high = lr_filter(vocals3.T, 12000, 'highpass')
|
| 700 |
+
|
| 701 |
+
vocals = vocals_low + vocals_high
|
| 702 |
+
#vocals = vocals_combined.T
|
| 703 |
+
|
| 704 |
+
if options['filter_vocals'] is True:
|
| 705 |
+
vocals = lr_filter(vocals, 50, 'highpass', order=8)
|
| 706 |
+
|
| 707 |
+
# Generate instrumental
|
| 708 |
+
instrum = mixed_sound_array - vocals
|
| 709 |
+
|
| 710 |
+
if options['vocals_only'] is False:
|
| 711 |
+
|
| 712 |
+
"""
|
| 713 |
+
print(f'Processing drums & bass with 2nd BS-Roformer model...')
|
| 714 |
+
other_bs2 = demix_full_bsrofo(instrum.T, self.device, self.model_bsrofoDB, self.config_bsrofoDB)
|
| 715 |
+
other_bs2 = match_array_shapes(other_bs2, mixed_sound_array.T)
|
| 716 |
+
drums_bass_bs2 = mixed_sound_array.T - other_bs2
|
| 717 |
+
|
| 718 |
+
|
| 719 |
+
print('Starting Demucs processing...')
|
| 720 |
+
|
| 721 |
+
drums_bass_bs2 = np.expand_dims(drums_bass_bs2.T, axis=0)
|
| 722 |
+
drums_bass_bs2 = torch.from_numpy(drums_bass_bs2).type('torch.FloatTensor').to(self.device)
|
| 723 |
+
"""
|
| 724 |
+
audio = np.expand_dims(instrum.T, axis=0)
|
| 725 |
+
audio = torch.from_numpy(audio).type('torch.FloatTensor').to(self.device)
|
| 726 |
+
all_outs = []
|
| 727 |
+
print('Processing with htdemucs_ft...')
|
| 728 |
+
i = 0
|
| 729 |
+
overlap = overlap_demucs
|
| 730 |
+
model = pretrained.get_model('htdemucs_ft')
|
| 731 |
+
model.to(self.device)
|
| 732 |
+
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \
|
| 733 |
+
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy()
|
| 734 |
+
|
| 735 |
+
out[0] = self.weights_drums[i] * out[0]
|
| 736 |
+
out[1] = self.weights_bass[i] * out[1]
|
| 737 |
+
out[2] = self.weights_other[i] * out[2]
|
| 738 |
+
out[3] = self.weights_vocals[i] * out[3]
|
| 739 |
+
all_outs.append(out)
|
| 740 |
+
model = model.cpu()
|
| 741 |
+
del model
|
| 742 |
+
gc.collect()
|
| 743 |
+
i = 1
|
| 744 |
+
print('Processing with htdemucs...')
|
| 745 |
+
overlap = overlap_demucs
|
| 746 |
+
model = pretrained.get_model('htdemucs')
|
| 747 |
+
model.to(self.device)
|
| 748 |
+
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \
|
| 749 |
+
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy()
|
| 750 |
+
|
| 751 |
+
out[0] = self.weights_drums[i] * out[0]
|
| 752 |
+
out[1] = self.weights_bass[i] * out[1]
|
| 753 |
+
out[2] = self.weights_other[i] * out[2]
|
| 754 |
+
out[3] = self.weights_vocals[i] * out[3]
|
| 755 |
+
all_outs.append(out)
|
| 756 |
+
model = model.cpu()
|
| 757 |
+
del model
|
| 758 |
+
gc.collect()
|
| 759 |
+
i = 2
|
| 760 |
+
print('Processing with htdemucs_6s...')
|
| 761 |
+
overlap = overlap_demucs
|
| 762 |
+
model = pretrained.get_model('htdemucs_6s')
|
| 763 |
+
model.to(self.device)
|
| 764 |
+
out = apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy()
|
| 765 |
+
|
| 766 |
+
# More stems need to add
|
| 767 |
+
out[2] = out[2] + out[4] + out[5]
|
| 768 |
+
out = out[:4]
|
| 769 |
+
out[0] = self.weights_drums[i] * out[0]
|
| 770 |
+
out[1] = self.weights_bass[i] * out[1]
|
| 771 |
+
out[2] = self.weights_other[i] * out[2]
|
| 772 |
+
out[3] = self.weights_vocals[i] * out[3]
|
| 773 |
+
all_outs.append(out)
|
| 774 |
+
model = model.cpu()
|
| 775 |
+
del model
|
| 776 |
+
gc.collect()
|
| 777 |
+
i = 3
|
| 778 |
+
print('Processing with htdemucs_mmi...')
|
| 779 |
+
model = pretrained.get_model('hdemucs_mmi')
|
| 780 |
+
model.to(self.device)
|
| 781 |
+
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \
|
| 782 |
+
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy()
|
| 783 |
+
|
| 784 |
+
out[0] = self.weights_drums[i] * out[0]
|
| 785 |
+
out[1] = self.weights_bass[i] * out[1]
|
| 786 |
+
out[2] = self.weights_other[i] * out[2]
|
| 787 |
+
out[3] = self.weights_vocals[i] * out[3]
|
| 788 |
+
all_outs.append(out)
|
| 789 |
+
model = model.cpu()
|
| 790 |
+
del model
|
| 791 |
+
gc.collect()
|
| 792 |
+
out = np.array(all_outs).sum(axis=0)
|
| 793 |
+
out[0] = out[0] / self.weights_drums.sum()
|
| 794 |
+
out[1] = out[1] / self.weights_bass.sum()
|
| 795 |
+
out[2] = out[2] / self.weights_other.sum()
|
| 796 |
+
out[3] = out[3] / self.weights_vocals.sum()
|
| 797 |
+
|
| 798 |
+
# other
|
| 799 |
+
res = mixed_sound_array - vocals - out[0].T - out[1].T
|
| 800 |
+
res = np.clip(res, -1, 1)
|
| 801 |
+
separated_music_arrays['other'] = (2 * res + out[2].T) / 3.0
|
| 802 |
+
output_sample_rates['other'] = sample_rate
|
| 803 |
+
|
| 804 |
+
# drums
|
| 805 |
+
res = mixed_sound_array - vocals - out[1].T - out[2].T
|
| 806 |
+
res = np.clip(res, -1, 1)
|
| 807 |
+
separated_music_arrays['drums'] = (res + 2 * out[0].T.copy()) / 3.0
|
| 808 |
+
output_sample_rates['drums'] = sample_rate
|
| 809 |
+
|
| 810 |
+
# bass
|
| 811 |
+
res = mixed_sound_array - vocals - out[0].T - out[2].T
|
| 812 |
+
res = np.clip(res, -1, 1)
|
| 813 |
+
separated_music_arrays['bass'] = (res + 2 * out[1].T) / 3.0
|
| 814 |
+
output_sample_rates['bass'] = sample_rate
|
| 815 |
+
|
| 816 |
+
bass = separated_music_arrays['bass']
|
| 817 |
+
drums = separated_music_arrays['drums']
|
| 818 |
+
other = separated_music_arrays['other']
|
| 819 |
+
|
| 820 |
+
separated_music_arrays['other'] = mixed_sound_array - vocals - bass - drums
|
| 821 |
+
separated_music_arrays['drums'] = mixed_sound_array - vocals - bass - other
|
| 822 |
+
separated_music_arrays['bass'] = mixed_sound_array - vocals - drums - other
|
| 823 |
+
|
| 824 |
+
# vocals
|
| 825 |
+
separated_music_arrays['vocals'] = vocals
|
| 826 |
+
output_sample_rates['vocals'] = sample_rate
|
| 827 |
+
|
| 828 |
+
# instrum
|
| 829 |
+
separated_music_arrays['instrum'] = instrum
|
| 830 |
+
|
| 831 |
+
return separated_music_arrays, output_sample_rates
|
| 832 |
+
|
| 833 |
+
|
| 834 |
+
def predict_with_model(options):
|
| 835 |
+
|
| 836 |
+
output_format = options['output_format']
|
| 837 |
+
output_extension = 'flac' if output_format == 'FLAC' else "wav"
|
| 838 |
+
output_format = 'PCM_16' if output_format == 'FLAC' else options['output_format']
|
| 839 |
+
|
| 840 |
+
for input_audio in options['input_audio']:
|
| 841 |
+
if not os.path.isfile(input_audio):
|
| 842 |
+
print('Error. No such file: {}. Please check path!'.format(input_audio))
|
| 843 |
+
return
|
| 844 |
+
output_folder = options['output_folder']
|
| 845 |
+
if not os.path.isdir(output_folder):
|
| 846 |
+
os.mkdir(output_folder)
|
| 847 |
+
|
| 848 |
+
model = None
|
| 849 |
+
model = EnsembleDemucsMDXMusicSeparationModel(options)
|
| 850 |
+
|
| 851 |
+
for i, input_audio in enumerate(options['input_audio']):
|
| 852 |
+
print('Go for: {}'.format(input_audio))
|
| 853 |
+
audio, sr = librosa.load(input_audio, mono=False, sr=44100)
|
| 854 |
+
if len(audio.shape) == 1:
|
| 855 |
+
audio = np.stack([audio, audio], axis=0)
|
| 856 |
+
|
| 857 |
+
|
| 858 |
+
if options['input_gain'] != 0:
|
| 859 |
+
audio = dBgain(audio, options['input_gain'])
|
| 860 |
+
|
| 861 |
+
print("Input audio: {} Sample rate: {}".format(audio.shape, sr))
|
| 862 |
+
result, sample_rates = model.separate_music_file(audio.T, sr, i, len(options['input_audio']))
|
| 863 |
+
|
| 864 |
+
for instrum in model.instruments:
|
| 865 |
+
output_name = os.path.splitext(os.path.basename(input_audio))[0] + '_{}.{}'.format(instrum, output_extension)
|
| 866 |
+
if options["restore_gain"] is True: #restoring original gain
|
| 867 |
+
result[instrum] = dBgain(result[instrum], -options['input_gain'])
|
| 868 |
+
sf.write(output_folder + '/' + output_name, result[instrum], sample_rates[instrum], subtype=output_format)
|
| 869 |
+
print('File created: {}'.format(output_folder + '/' + output_name))
|
| 870 |
+
|
| 871 |
+
# instrumental part 1
|
| 872 |
+
# inst = (audio.T - result['vocals'])
|
| 873 |
+
inst = result['instrum']
|
| 874 |
+
|
| 875 |
+
if options["restore_gain"] is True: #restoring original gain
|
| 876 |
+
inst = dBgain(inst, -options['input_gain'])
|
| 877 |
+
|
| 878 |
+
output_name = os.path.splitext(os.path.basename(input_audio))[0] + '_{}.{}'.format('instrum', output_extension)
|
| 879 |
+
sf.write(output_folder + '/' + output_name, inst, sr, subtype=output_format)
|
| 880 |
+
print('File created: {}'.format(output_folder + '/' + output_name))
|
| 881 |
+
|
| 882 |
+
if options['vocals_only'] is False:
|
| 883 |
+
# instrumental part 2
|
| 884 |
+
inst2 = (result['bass'] + result['drums'] + result['other'])
|
| 885 |
+
output_name = os.path.splitext(os.path.basename(input_audio))[0] + '_{}.{}'.format('instrum2', output_extension)
|
| 886 |
+
sf.write(output_folder + '/' + output_name, inst2, sr, subtype=output_format)
|
| 887 |
+
print('File created: {}'.format(output_folder + '/' + output_name))
|
| 888 |
+
|
| 889 |
+
|
| 890 |
+
# Linkwitz-Riley filter
|
| 891 |
+
def lr_filter(audio, cutoff, filter_type, order=6, sr=44100):
|
| 892 |
+
audio = audio.T
|
| 893 |
+
nyquist = 0.5 * sr
|
| 894 |
+
normal_cutoff = cutoff / nyquist
|
| 895 |
+
b, a = signal.butter(order//2, normal_cutoff, btype=filter_type, analog=False)
|
| 896 |
+
sos = signal.tf2sos(b, a)
|
| 897 |
+
filtered_audio = signal.sosfiltfilt(sos, audio)
|
| 898 |
+
return filtered_audio.T
|
| 899 |
+
|
| 900 |
+
def match_array_shapes(array_1:np.ndarray, array_2:np.ndarray):
|
| 901 |
+
if array_1.shape[1] > array_2.shape[1]:
|
| 902 |
+
array_1 = array_1[:,:array_2.shape[1]]
|
| 903 |
+
elif array_1.shape[1] < array_2.shape[1]:
|
| 904 |
+
padding = array_2.shape[1] - array_1.shape[1]
|
| 905 |
+
array_1 = np.pad(array_1, ((0,0), (0,padding)), 'constant', constant_values=0)
|
| 906 |
+
return array_1
|
| 907 |
+
|
| 908 |
+
def dBgain(audio, volume_gain_dB):
|
| 909 |
+
attenuation = 10 ** (volume_gain_dB / 20)
|
| 910 |
+
gained_audio = audio * attenuation
|
| 911 |
+
return gained_audio
|
| 912 |
+
|
| 913 |
+
|
| 914 |
+
|
| 915 |
+
if __name__ == '__main__':
|
| 916 |
+
start_time = time()
|
| 917 |
+
print("started!\n")
|
| 918 |
+
m = argparse.ArgumentParser()
|
| 919 |
+
m.add_argument("--input_audio", "-i", nargs='+', type=str, help="Input audio location. You can provide multiple files at once", required=True)
|
| 920 |
+
m.add_argument("--output_folder", "-r", type=str, help="Output audio folder", required=True)
|
| 921 |
+
m.add_argument("--large_gpu", action='store_true', help="It will store all models on GPU for faster processing of multiple audio files. Requires 11 and more GB of free GPU memory.")
|
| 922 |
+
m.add_argument("--single_onnx", action='store_true', help="Only use single ONNX model for vocals. Can be useful if you have not enough GPU memory.")
|
| 923 |
+
m.add_argument("--cpu", action='store_true', help="Choose CPU instead of GPU for processing. Can be very slow.")
|
| 924 |
+
m.add_argument("--overlap_demucs", type=float, help="Overlap of splited audio for light models. Closer to 1.0 - slower", required=False, default=0.1)
|
| 925 |
+
m.add_argument("--overlap_VOCFT", type=float, help="Overlap of splited audio for heavy models. Closer to 1.0 - slower", required=False, default=0.1)
|
| 926 |
+
m.add_argument("--overlap_InstHQ4", type=float, help="Overlap of splited audio for heavy models. Closer to 1.0 - slower", required=False, default=0.1)
|
| 927 |
+
m.add_argument("--overlap_VitLarge", type=int, help="Overlap of splited audio for heavy models. Closer to 1.0 - slower", required=False, default=1)
|
| 928 |
+
m.add_argument("--overlap_InstVoc", type=int, help="MDXv3 overlap", required=False, default=2)
|
| 929 |
+
m.add_argument("--overlap_BSRoformer", type=int, help="BSRoformer overlap", required=False, default=2)
|
| 930 |
+
m.add_argument("--weight_InstVoc", type=float, help="Weight of MDXv3 model", required=False, default=4)
|
| 931 |
+
m.add_argument("--weight_VOCFT", type=float, help="Weight of VOC-FT model", required=False, default=1)
|
| 932 |
+
m.add_argument("--weight_InstHQ4", type=float, help="Weight of instHQ4 model", required=False, default=1)
|
| 933 |
+
m.add_argument("--weight_VitLarge", type=float, help="Weight of VitLarge model", required=False, default=1)
|
| 934 |
+
m.add_argument("--weight_BSRoformer", type=float, help="Weight of BS-Roformer model", required=False, default=10)
|
| 935 |
+
m.add_argument("--BigShifts", type=int, help="Managing MDX 'BigShifts' trick value.", required=False, default=7)
|
| 936 |
+
m.add_argument("--vocals_only", action='store_true', help="Vocals + instrumental only")
|
| 937 |
+
m.add_argument("--use_BSRoformer", action='store_true', help="use BSRoformer in vocal ensemble")
|
| 938 |
+
m.add_argument("--BSRoformer_model", type=str, help="Which checkpoint to use", required=False, default="ep_317_1297")
|
| 939 |
+
m.add_argument("--use_InstVoc", action='store_true', help="use instVoc in vocal ensemble")
|
| 940 |
+
m.add_argument("--use_VitLarge", action='store_true', help="use VitLarge in vocal ensemble")
|
| 941 |
+
m.add_argument("--use_InstHQ4", action='store_true', help="use InstHQ4 in vocal ensemble")
|
| 942 |
+
m.add_argument("--use_VOCFT", action='store_true', help="use VOCFT in vocal ensemble")
|
| 943 |
+
m.add_argument("--output_format", type=str, help="Output audio folder", default="float")
|
| 944 |
+
m.add_argument("--input_gain", type=int, help="input volume gain", required=False, default=0)
|
| 945 |
+
m.add_argument("--restore_gain", action='store_true', help="restore original gain after separation")
|
| 946 |
+
m.add_argument("--filter_vocals", action='store_true', help="Remove audio below 50hz in vocals stem")
|
| 947 |
+
options = m.parse_args().__dict__
|
| 948 |
+
print("Options: ")
|
| 949 |
+
|
| 950 |
+
print(f'Input Gain: {options["input_gain"]}dB')
|
| 951 |
+
print(f'Restore Gain: {options["restore_gain"]}')
|
| 952 |
+
print(f'BigShifts: {options["BigShifts"]}\n')
|
| 953 |
+
|
| 954 |
+
print(f'BSRoformer_model: {options["BSRoformer_model"]}')
|
| 955 |
+
print(f'weight_BSRoformer: {options["weight_BSRoformer"]}')
|
| 956 |
+
print(f'weight_InstVoc: {options["weight_InstVoc"]}\n')
|
| 957 |
+
|
| 958 |
+
print(f'use_VitLarge: {options["use_VitLarge"]}')
|
| 959 |
+
if options["use_VitLarge"] is True:
|
| 960 |
+
print(f'weight_VitLarge: {options["weight_VitLarge"]}\n')
|
| 961 |
+
|
| 962 |
+
print(f'use_VOCFT: {options["use_VOCFT"]}')
|
| 963 |
+
if options["use_VOCFT"] is True:
|
| 964 |
+
print(f'overlap_VOCFT: {options["overlap_VOCFT"]}')
|
| 965 |
+
print(f'weight_VOCFT: {options["weight_VOCFT"]}\n')
|
| 966 |
+
|
| 967 |
+
print(f'use_InstHQ4: {options["use_InstHQ4"]}')
|
| 968 |
+
if options["use_InstHQ4"] is True:
|
| 969 |
+
print(f'overlap_InstHQ4: {options["overlap_InstHQ4"]}')
|
| 970 |
+
print(f'weight_InstHQ4: {options["weight_InstHQ4"]}\n')
|
| 971 |
+
|
| 972 |
+
print(f'vocals_only: {options["vocals_only"]}')
|
| 973 |
+
|
| 974 |
+
if options["vocals_only"] is False:
|
| 975 |
+
print(f'overlap_demucs: {options["overlap_demucs"]}\n')
|
| 976 |
+
|
| 977 |
+
print(f'output_format: {options["output_format"]}\n')
|
| 978 |
+
predict_with_model(options)
|
| 979 |
+
print('Time: {:.0f} sec'.format(time() - start_time))
|
| 980 |
+
|
MDX23v24/requirements.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy
|
| 2 |
+
soundfile
|
| 3 |
+
scipy
|
| 4 |
+
tqdm
|
| 5 |
+
librosa
|
| 6 |
+
demucs
|
| 7 |
+
#onnxruntime-gpu # nighlty version installed within the notebook to fix cuda12.2 issue.
|
| 8 |
+
torch
|
| 9 |
+
pyyaml
|
| 10 |
+
ml_collections
|
| 11 |
+
#pytorch_lightning
|
| 12 |
+
samplerate==0.1.0
|
| 13 |
+
segmentation_models_pytorch==0.3.3
|
| 14 |
+
beartype==0.14.1
|
| 15 |
+
rotary_embedding_torch==0.3.5
|