Upload 7 files
Browse files- 5_HP-Karaoke-UVR.py +132 -0
- deecho.py +201 -0
- infer.py +214 -0
- requirements.txt +20 -0
- uvr.py +132 -0
- 仅去和声混响.sh +58 -0
- 全流程一键版.sh +82 -0
5_HP-Karaoke-UVR.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import torch
|
4 |
+
import warnings
|
5 |
+
import hashlib
|
6 |
+
import math
|
7 |
+
import importlib
|
8 |
+
import numpy as np
|
9 |
+
from tqdm import tqdm
|
10 |
+
from scipy.io import wavfile
|
11 |
+
import librosa
|
12 |
+
import pdb
|
13 |
+
from uvr5_pack.lib_v5 import spec_utils
|
14 |
+
from uvr5_pack.utils import _get_name_params, inference
|
15 |
+
from uvr5_pack.lib_v5.model_param_init import ModelParameters
|
16 |
+
|
17 |
+
|
18 |
+
warnings.filterwarnings("ignore")
|
19 |
+
|
20 |
+
|
21 |
+
class _audio_pre_():
|
22 |
+
def __init__(self, model_path, device, is_half):
|
23 |
+
self.model_path = model_path
|
24 |
+
self.device = device
|
25 |
+
self.data = {
|
26 |
+
# Processing Options
|
27 |
+
'postprocess': False,
|
28 |
+
'tta': False,
|
29 |
+
# Constants
|
30 |
+
'window_size': 320,
|
31 |
+
'agg': 10,
|
32 |
+
'high_end_process': 'mirroring',
|
33 |
+
}
|
34 |
+
nn_arch_sizes = [
|
35 |
+
31191, # default
|
36 |
+
33966,61968, 123821, 123812, 537238 # custom
|
37 |
+
]
|
38 |
+
self.nn_architecture = list('{}KB'.format(s) for s in nn_arch_sizes)
|
39 |
+
model_size = math.ceil(os.stat(model_path).st_size / 1024)
|
40 |
+
nn_architecture = '{}KB'.format(min(nn_arch_sizes, key=lambda x:abs(x-model_size)))
|
41 |
+
nets = importlib.import_module('uvr5_pack.lib_v5.nets' + f'_{nn_architecture}'.replace('_{}KB'.format(nn_arch_sizes[0]), ''), package=None)
|
42 |
+
model_hash = hashlib.md5(open(model_path, 'rb').read()).hexdigest()
|
43 |
+
param_name, model_params_d = _get_name_params(model_path, model_hash)
|
44 |
+
|
45 |
+
mp = ModelParameters(model_params_d)
|
46 |
+
model = nets.CascadedASPPNet(mp.param['bins'] * 2)
|
47 |
+
cpk = torch.load(model_path, map_location='cpu')
|
48 |
+
model.load_state_dict(cpk)
|
49 |
+
model.eval()
|
50 |
+
if is_half:
|
51 |
+
model = model.half().to(device)
|
52 |
+
else:
|
53 |
+
model = model.to(device)
|
54 |
+
|
55 |
+
self.mp = mp
|
56 |
+
self.model = model
|
57 |
+
|
58 |
+
def _path_audio_(self, music_file, ins_root=None, vocal_root=None):
|
59 |
+
if ins_root is None and vocal_root is None:
|
60 |
+
return "No save root."
|
61 |
+
name = os.path.basename(music_file)
|
62 |
+
if ins_root is not None:
|
63 |
+
os.makedirs(ins_root, exist_ok=True)
|
64 |
+
if vocal_root is not None:
|
65 |
+
os.makedirs(vocal_root, exist_ok=True)
|
66 |
+
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
|
67 |
+
bands_n = len(self.mp.param['band'])
|
68 |
+
for d in range(bands_n, 0, -1):
|
69 |
+
bp = self.mp.param['band'][d]
|
70 |
+
if d == bands_n:
|
71 |
+
X_wave[d], _ = librosa.core.load(
|
72 |
+
music_file, bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
|
73 |
+
if X_wave[d].ndim == 1:
|
74 |
+
X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]])
|
75 |
+
else:
|
76 |
+
X_wave[d] = librosa.core.resample(X_wave[d+1], self.mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
|
77 |
+
|
78 |
+
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(X_wave[d], bp['hl'], bp['n_fft'], self.mp.param['mid_side'], self.mp.param['mid_side_b2'], self.mp.param['reverse'])
|
79 |
+
if d == bands_n and self.data['high_end_process'] != 'none':
|
80 |
+
input_high_end_h = (bp['n_fft'] // 2 - bp['crop_stop']) + (self.mp.param['pre_filter_stop'] - self.mp.param['pre_filter_start'])
|
81 |
+
input_high_end = X_spec_s[d][:, bp['n_fft']//2-input_high_end_h:bp['n_fft']//2, :]
|
82 |
+
|
83 |
+
X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp)
|
84 |
+
aggresive_set = float(self.data['agg']/100)
|
85 |
+
aggressiveness = {'value': aggresive_set, 'split_bin': self.mp.param['band'][1]['crop_stop']}
|
86 |
+
with torch.no_grad():
|
87 |
+
pred, X_mag, X_phase = inference(X_spec_m, self.device, self.model, aggressiveness, self.data)
|
88 |
+
|
89 |
+
if self.data['postprocess']:
|
90 |
+
pred_inv = np.clip(X_mag - pred, 0, np.inf)
|
91 |
+
pred = spec_utils.mask_silence(pred, pred_inv)
|
92 |
+
|
93 |
+
y_spec_m = pred * X_phase
|
94 |
+
v_spec_m = X_spec_m - y_spec_m
|
95 |
+
|
96 |
+
if ins_root is not None:
|
97 |
+
if self.data['high_end_process'].startswith('mirroring'):
|
98 |
+
input_high_end_ = spec_utils.mirroring(self.data['high_end_process'], y_spec_m, input_high_end, self.mp)
|
99 |
+
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp, input_high_end_h, input_high_end_)
|
100 |
+
else:
|
101 |
+
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp)
|
102 |
+
print('%s instruments done' % name)
|
103 |
+
# 分离文件名和扩展名
|
104 |
+
file_name, ext = os.path.splitext(name)
|
105 |
+
wavfile.write(os.path.join(ins_root, '和声_{}{}'.format(file_name, ext)), self.mp.param['sr'], (np.array(wav_instrument)*32768).astype(np.int16))
|
106 |
+
if vocal_root is not None:
|
107 |
+
if self.data['high_end_process'].startswith('mirroring'):
|
108 |
+
input_high_end_ = spec_utils.mirroring(self.data['high_end_process'], v_spec_m, input_high_end, self.mp)
|
109 |
+
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp, input_high_end_h, input_high_end_)
|
110 |
+
else:
|
111 |
+
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
|
112 |
+
print('%s vocals done' % name)
|
113 |
+
# 分离文件名和扩展名
|
114 |
+
file_name, ext = os.path.splitext(name)
|
115 |
+
wavfile.write(os.path.join(vocal_root, '{}{}'.format(file_name, ext)), self.mp.param['sr'], (np.array(wav_vocals)*32768).astype(np.int16))
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
if __name__ == '__main__':
|
120 |
+
device = 'cuda'
|
121 |
+
is_half = True
|
122 |
+
model_path = 'uvr5_weights/5_HP-Karaoke-UVR.pth'
|
123 |
+
pre_fun = _audio_pre_(model_path=model_path, device=device, is_half=True)
|
124 |
+
|
125 |
+
# 获取混响文件夹内的所有.wav文件路径
|
126 |
+
audio_folder = '/mnt/workspace/input/'
|
127 |
+
wav_files = [os.path.join(audio_folder, file) for file in os.listdir(audio_folder) if file.endswith('.mp3')]
|
128 |
+
|
129 |
+
# 遍历每个音频文件进行处理
|
130 |
+
save_path = 'echo'
|
131 |
+
for wav_file in wav_files:
|
132 |
+
pre_fun._path_audio_(wav_file, save_path, save_path)
|
deecho.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, sys, torch, warnings, pdb
|
2 |
+
now_dir = os.getcwd()
|
3 |
+
sys.path.append(now_dir)
|
4 |
+
from json import load as ll
|
5 |
+
warnings.filterwarnings("ignore")
|
6 |
+
import librosa
|
7 |
+
import importlib
|
8 |
+
import numpy as np
|
9 |
+
import hashlib, math
|
10 |
+
from tqdm import tqdm
|
11 |
+
from uvr5_pack.lib_v5 import spec_utils
|
12 |
+
from uvr5_pack.utils import _get_name_params, inference
|
13 |
+
from uvr5_pack.lib_v5.model_param_init import ModelParameters
|
14 |
+
import soundfile as sf
|
15 |
+
from uvr5_pack.lib_v5.nets_new import CascadedNet
|
16 |
+
from uvr5_pack.lib_v5 import nets_61968KB as nets
|
17 |
+
import argparse
|
18 |
+
|
19 |
+
class AudioSeparator:
|
20 |
+
def __init__(self, agg, model_path, device, is_half, model_params):
|
21 |
+
self.model_path = model_path
|
22 |
+
self.device = device
|
23 |
+
self.data = {
|
24 |
+
# Processing Options
|
25 |
+
"postprocess": False,
|
26 |
+
"tta": False,
|
27 |
+
# Constants
|
28 |
+
"window_size": 320,
|
29 |
+
"agg": agg,
|
30 |
+
"high_end_process": "mirroring",
|
31 |
+
}
|
32 |
+
if model_params == "4band_v3":
|
33 |
+
mp = ModelParameters("uvr5_pack/lib_v5/modelparams/4band_v3.json")
|
34 |
+
nout = 64 if "DeReverb" in model_path else 48
|
35 |
+
model = CascadedNet(mp.param["bins"] * 2, nout)
|
36 |
+
if model_params == "4band_v2":
|
37 |
+
mp = ModelParameters("uvr5_pack/lib_v5/modelparams/4band_v2.json")
|
38 |
+
model = nets.CascadedASPPNet(mp.param["bins"] * 2)
|
39 |
+
cpk = torch.load(model_path, map_location="cpu")
|
40 |
+
model.load_state_dict(cpk)
|
41 |
+
model.eval()
|
42 |
+
if is_half:
|
43 |
+
model = model.half().to(device)
|
44 |
+
else:
|
45 |
+
model = model.to(device)
|
46 |
+
|
47 |
+
self.mp = mp
|
48 |
+
self.model = model
|
49 |
+
|
50 |
+
def separate(self, music_file, vocal_root=None, ins_root=None, model_params=None, format="flac"):
|
51 |
+
if ins_root is None and vocal_root is None:
|
52 |
+
return "No save root."
|
53 |
+
if os.path.isfile(music_file):
|
54 |
+
music_files = [music_file]
|
55 |
+
elif os.path.isdir(music_file):
|
56 |
+
music_files = [os.path.join(music_file, f) for f in os.listdir(music_file) if f.endswith(".wav") or f.endswith(".mp3")]
|
57 |
+
else:
|
58 |
+
return "Invalid path."
|
59 |
+
for music_file in music_files:
|
60 |
+
name = os.path.basename(music_file)
|
61 |
+
if ins_root is not None:
|
62 |
+
os.makedirs(ins_root, exist_ok=True)
|
63 |
+
if vocal_root is not None:
|
64 |
+
os.makedirs(vocal_root, exist_ok=True)
|
65 |
+
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
|
66 |
+
bands_n = len(self.mp.param["band"])
|
67 |
+
|
68 |
+
for d in range(bands_n, 0, -1):
|
69 |
+
bp = self.mp.param["band"][d]
|
70 |
+
if d == bands_n: # high-end band
|
71 |
+
(
|
72 |
+
X_wave[d],
|
73 |
+
_,
|
74 |
+
) = librosa.core.load(
|
75 |
+
music_file,
|
76 |
+
bp["sr"],
|
77 |
+
False,
|
78 |
+
dtype=np.float32,
|
79 |
+
res_type=bp["res_type"],
|
80 |
+
)
|
81 |
+
if X_wave[d].ndim == 1:
|
82 |
+
X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]])
|
83 |
+
else: # lower bands
|
84 |
+
X_wave[d] = librosa.core.resample(
|
85 |
+
X_wave[d + 1],
|
86 |
+
self.mp.param["band"][d + 1]["sr"],
|
87 |
+
bp["sr"],
|
88 |
+
res_type=bp["res_type"],
|
89 |
+
)
|
90 |
+
# Stft of wave source
|
91 |
+
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(
|
92 |
+
X_wave[d],
|
93 |
+
bp["hl"],
|
94 |
+
bp["n_fft"],
|
95 |
+
self.mp.param["mid_side"],
|
96 |
+
self.mp.param["mid_side_b2"],
|
97 |
+
self.mp.param["reverse"],
|
98 |
+
)
|
99 |
+
if d == bands_n and self.data["high_end_process"] != "none":
|
100 |
+
input_high_end_h = (bp["n_fft"] // 2 - bp["crop_stop"]) + (
|
101 |
+
self.mp.param["pre_filter_stop"] - self.mp.param["pre_filter_start"]
|
102 |
+
)
|
103 |
+
input_high_end = X_spec_s[d][
|
104 |
+
:, bp["n_fft"] // 2 - input_high_end_h : bp["n_fft"] // 2, :
|
105 |
+
]
|
106 |
+
|
107 |
+
X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp)
|
108 |
+
aggresive_set = float(self.data["agg"] / 100)
|
109 |
+
aggressiveness = {
|
110 |
+
"value": aggresive_set,
|
111 |
+
"split_bin": self.mp.param["band"][1]["crop_stop"],
|
112 |
+
}
|
113 |
+
with torch.no_grad():
|
114 |
+
pred, X_mag, X_phase = inference(
|
115 |
+
X_spec_m, self.device, self.model, aggressiveness, self.data
|
116 |
+
)
|
117 |
+
|
118 |
+
# Postprocess
|
119 |
+
if self.data["postprocess"]:
|
120 |
+
pred_inv = np.clip(X_mag - pred, 0, np.inf)
|
121 |
+
pred = spec_utils.mask_silence(pred, pred_inv)
|
122 |
+
y_spec_m = pred * X_phase
|
123 |
+
v_spec_m = X_spec_m - y_spec_m
|
124 |
+
|
125 |
+
if ins_root is not None:
|
126 |
+
if self.data["high_end_process"].startswith("mirroring"):
|
127 |
+
input_high_end_ = spec_utils.mirroring(
|
128 |
+
self.data["high_end_process"], y_spec_m, input_high_end, self.mp
|
129 |
+
)
|
130 |
+
wav_instrument = spec_utils.cmb_spectrogram_to_wave(
|
131 |
+
y_spec_m, self.mp, input_high_end_h, input_high_end_
|
132 |
+
)
|
133 |
+
else:
|
134 |
+
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp)
|
135 |
+
print("%s instruments done" % name)
|
136 |
+
if model_params == "4band_v2":
|
137 |
+
sf.write(
|
138 |
+
os.path.join(
|
139 |
+
ins_root, "instrument_{}_{}.{}".format(name, self.data["agg"],format)
|
140 |
+
),
|
141 |
+
(np.array(wav_instrument) * 32768).astype("int16"), self.mp.param["sr"],
|
142 |
+
) #
|
143 |
+
if model_params == "4band_v3":
|
144 |
+
sf.write(
|
145 |
+
os.path.join(
|
146 |
+
ins_root, "人声_{}".format(name, self.data["agg"], format)
|
147 |
+
),
|
148 |
+
(np.array(wav_instrument) * 32768).astype("int16"), self.mp.param["sr"],
|
149 |
+
) #
|
150 |
+
|
151 |
+
if vocal_root is not None:
|
152 |
+
if self.data["high_end_process"].startswith("mirroring"):
|
153 |
+
input_high_end_ = spec_utils.mirroring(
|
154 |
+
self.data["high_end_process"], v_spec_m, input_high_end, self.mp
|
155 |
+
)
|
156 |
+
wav_vocals = spec_utils.cmb_spectrogram_to_wave(
|
157 |
+
v_spec_m, self.mp, input_high_end_h, input_high_end_
|
158 |
+
)
|
159 |
+
else:
|
160 |
+
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
|
161 |
+
print("%s vocals done" % name)
|
162 |
+
if model_params == "4band_v2":
|
163 |
+
sf.write(
|
164 |
+
os.path.join(
|
165 |
+
vocal_root, "vocal_{}_{}.{}".format(name, self.data["agg"], format)
|
166 |
+
),
|
167 |
+
(np.array(wav_vocals) * 32768).astype("int16"), self.mp.param["sr"],
|
168 |
+
)
|
169 |
+
if model_params == "4band_v3":
|
170 |
+
sf.write(
|
171 |
+
os.path.join(
|
172 |
+
vocal_root, "混响_{}".format(name, self.data["agg"], format)
|
173 |
+
),
|
174 |
+
(np.array(wav_vocals) * 32768).astype("int16"), self.mp.param["sr"],
|
175 |
+
)
|
176 |
+
|
177 |
+
if __name__ == "__main__":
|
178 |
+
parser = argparse.ArgumentParser(description="Process audio with specified parameters.")
|
179 |
+
parser.add_argument("-device", choices=["cpu", "cuda"], default="cpu", help="Device for processing")
|
180 |
+
parser.add_argument("-is_half", type=bool, required=True, help="Use half precision")
|
181 |
+
parser.add_argument("-model_path", required=True, help="Path to the model weights")
|
182 |
+
parser.add_argument("-agg", type=int, default=10, help="Aggregation parameter")
|
183 |
+
parser.add_argument("-audio_path", required=True, help="Path to the audio file or folder")
|
184 |
+
parser.add_argument("-save_path", required=True, help="Path to save the output")
|
185 |
+
parser.add_argument("-model_params", choices=["4band_v3", "4band_v2"], required=True, help="Path to save the output")
|
186 |
+
parser.add_argument("-format", choices=["wav", "flac"], default="wav",)
|
187 |
+
args = parser.parse_args()
|
188 |
+
separator = AudioSeparator(
|
189 |
+
model_path=args.model_path,
|
190 |
+
device=args.device,
|
191 |
+
is_half=args.is_half,
|
192 |
+
agg=args.agg,
|
193 |
+
model_params=args.model_params
|
194 |
+
)
|
195 |
+
separator.separate(
|
196 |
+
args.audio_path,
|
197 |
+
args.save_path,
|
198 |
+
args.save_path,
|
199 |
+
args.model_params,
|
200 |
+
args.format
|
201 |
+
)
|
infer.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import soundfile as sf
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
import librosa
|
5 |
+
import numpy as np
|
6 |
+
import onnxruntime as ort
|
7 |
+
from pathlib import Path
|
8 |
+
from argparse import ArgumentParser
|
9 |
+
from tqdm import tqdm
|
10 |
+
|
11 |
+
|
12 |
+
class ConvTDFNet:
|
13 |
+
def __init__(self, target_name, L, dim_f, dim_t, n_fft, hop=1024):
|
14 |
+
super(ConvTDFNet, self).__init__()
|
15 |
+
self.dim_c = 4
|
16 |
+
self.dim_f = dim_f
|
17 |
+
self.dim_t = 2**dim_t
|
18 |
+
self.n_fft = n_fft
|
19 |
+
self.hop = hop
|
20 |
+
self.n_bins = self.n_fft // 2 + 1
|
21 |
+
self.chunk_size = hop * (self.dim_t - 1)
|
22 |
+
self.window = torch.hann_window(window_length=self.n_fft, periodic=True)
|
23 |
+
self.target_name = target_name
|
24 |
+
|
25 |
+
out_c = self.dim_c * 4 if target_name == "*" else self.dim_c
|
26 |
+
|
27 |
+
self.freq_pad = torch.zeros([1, out_c, self.n_bins - self.dim_f, self.dim_t])
|
28 |
+
self.n = L // 2
|
29 |
+
|
30 |
+
def stft(self, x):
|
31 |
+
x = x.reshape([-1, self.chunk_size])
|
32 |
+
x = torch.stft(
|
33 |
+
x,
|
34 |
+
n_fft=self.n_fft,
|
35 |
+
hop_length=self.hop,
|
36 |
+
window=self.window,
|
37 |
+
center=True,
|
38 |
+
return_complex=True,
|
39 |
+
)
|
40 |
+
x = torch.view_as_real(x)
|
41 |
+
x = x.permute([0, 3, 1, 2])
|
42 |
+
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape(
|
43 |
+
[-1, self.dim_c, self.n_bins, self.dim_t]
|
44 |
+
)
|
45 |
+
return x[:, :, : self.dim_f]
|
46 |
+
|
47 |
+
# Inversed Short-time Fourier transform (STFT).
|
48 |
+
def istft(self, x, freq_pad=None):
|
49 |
+
freq_pad = (
|
50 |
+
self.freq_pad.repeat([x.shape[0], 1, 1, 1])
|
51 |
+
if freq_pad is None
|
52 |
+
else freq_pad
|
53 |
+
)
|
54 |
+
x = torch.cat([x, freq_pad], -2)
|
55 |
+
c = 4 * 2 if self.target_name == "*" else 2
|
56 |
+
x = x.reshape([-1, c, 2, self.n_bins, self.dim_t]).reshape(
|
57 |
+
[-1, 2, self.n_bins, self.dim_t]
|
58 |
+
)
|
59 |
+
x = x.permute([0, 2, 3, 1])
|
60 |
+
x = x.contiguous()
|
61 |
+
x = torch.view_as_complex(x)
|
62 |
+
x = torch.istft(
|
63 |
+
x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True
|
64 |
+
)
|
65 |
+
return x.reshape([-1, c, self.chunk_size])
|
66 |
+
|
67 |
+
class Predictor:
|
68 |
+
def __init__(self, args):
|
69 |
+
self.args = args
|
70 |
+
self.model_ = ConvTDFNet(
|
71 |
+
target_name="vocals",
|
72 |
+
L=11,
|
73 |
+
dim_f=args["dim_f"],
|
74 |
+
dim_t=args["dim_t"],
|
75 |
+
n_fft=args["n_fft"]
|
76 |
+
)
|
77 |
+
|
78 |
+
if torch.cuda.is_available():
|
79 |
+
self.model = ort.InferenceSession(args['model_path'], providers=['CUDAExecutionProvider'])
|
80 |
+
else:
|
81 |
+
self.model = ort.InferenceSession(args['model_path'], providers=['CPUExecutionProvider'])
|
82 |
+
|
83 |
+
def demix(self, mix):
|
84 |
+
samples = mix.shape[-1]
|
85 |
+
margin = self.args["margin"]
|
86 |
+
chunk_size = self.args["chunks"] * 44100
|
87 |
+
|
88 |
+
assert not margin == 0, "margin cannot be zero!"
|
89 |
+
|
90 |
+
if margin > chunk_size:
|
91 |
+
margin = chunk_size
|
92 |
+
|
93 |
+
segmented_mix = {}
|
94 |
+
|
95 |
+
if self.args["chunks"] == 0 or samples < chunk_size:
|
96 |
+
chunk_size = samples
|
97 |
+
|
98 |
+
counter = -1
|
99 |
+
for skip in range(0, samples, chunk_size):
|
100 |
+
counter += 1
|
101 |
+
s_margin = 0 if counter == 0 else margin
|
102 |
+
end = min(skip + chunk_size + margin, samples)
|
103 |
+
start = skip - s_margin
|
104 |
+
segmented_mix[skip] = mix[:, start:end].copy()
|
105 |
+
if end == samples:
|
106 |
+
break
|
107 |
+
|
108 |
+
sources = self.demix_base(segmented_mix, margin_size=margin)
|
109 |
+
return sources
|
110 |
+
|
111 |
+
def demix_base(self, mixes, margin_size):
|
112 |
+
chunked_sources = []
|
113 |
+
progress_bar = tqdm(total=len(mixes))
|
114 |
+
progress_bar.set_description("Processing")
|
115 |
+
|
116 |
+
for mix in mixes:
|
117 |
+
cmix = mixes[mix]
|
118 |
+
sources = []
|
119 |
+
n_sample = cmix.shape[1]
|
120 |
+
model = self.model_
|
121 |
+
trim = model.n_fft // 2
|
122 |
+
gen_size = model.chunk_size - 2 * trim
|
123 |
+
pad = gen_size - n_sample % gen_size
|
124 |
+
mix_p = np.concatenate(
|
125 |
+
(np.zeros((2, trim)), cmix, np.zeros((2, pad)), np.zeros((2, trim))), 1
|
126 |
+
)
|
127 |
+
mix_waves = []
|
128 |
+
i = 0
|
129 |
+
while i < n_sample + pad:
|
130 |
+
waves = np.array(mix_p[:, i : i + model.chunk_size])
|
131 |
+
mix_waves.append(waves)
|
132 |
+
i += gen_size
|
133 |
+
|
134 |
+
mix_waves = torch.tensor(np.array(mix_waves), dtype=torch.float32)
|
135 |
+
|
136 |
+
with torch.no_grad():
|
137 |
+
_ort = self.model
|
138 |
+
spek = model.stft(mix_waves)
|
139 |
+
if self.args["denoise"]:
|
140 |
+
spec_pred = (
|
141 |
+
-_ort.run(None, {"input": -spek.cpu().numpy()})[0] * 0.5
|
142 |
+
+ _ort.run(None, {"input": spek.cpu().numpy()})[0] * 0.5
|
143 |
+
)
|
144 |
+
tar_waves = model.istft(torch.tensor(spec_pred))
|
145 |
+
else:
|
146 |
+
tar_waves = model.istft(
|
147 |
+
torch.tensor(_ort.run(None, {"input": spek.cpu().numpy() })[0])
|
148 |
+
)
|
149 |
+
tar_signal = (
|
150 |
+
tar_waves[:, :, trim:-trim]
|
151 |
+
.transpose(0, 1)
|
152 |
+
.reshape(2, -1)
|
153 |
+
.numpy()[:, :-pad]
|
154 |
+
)
|
155 |
+
|
156 |
+
start = 0 if mix == 0 else margin_size
|
157 |
+
end = None if mix == list(mixes.keys())[::-1][0] else -margin_size
|
158 |
+
|
159 |
+
if margin_size == 0:
|
160 |
+
end = None
|
161 |
+
|
162 |
+
sources.append(tar_signal[:, start:end])
|
163 |
+
|
164 |
+
progress_bar.update(1)
|
165 |
+
|
166 |
+
chunked_sources.append(sources)
|
167 |
+
_sources = np.concatenate(chunked_sources, axis=-1)
|
168 |
+
|
169 |
+
progress_bar.close()
|
170 |
+
return _sources
|
171 |
+
|
172 |
+
def predict(self, file_path):
|
173 |
+
|
174 |
+
mix, rate = librosa.load(file_path, mono=False, sr=44100)
|
175 |
+
|
176 |
+
if mix.ndim == 1:
|
177 |
+
mix = np.asfortranarray([mix, mix])
|
178 |
+
|
179 |
+
mix = mix.T
|
180 |
+
sources = self.demix(mix.T)
|
181 |
+
opt = sources[0].T
|
182 |
+
|
183 |
+
return (mix - opt, opt, rate)
|
184 |
+
|
185 |
+
def main():
|
186 |
+
parser = ArgumentParser()
|
187 |
+
|
188 |
+
parser.add_argument("files", nargs="+", type=Path, default=[], help="Source audio path")
|
189 |
+
parser.add_argument("-o", "--output", type=Path, default=Path("separated"), help="Output folder")
|
190 |
+
parser.add_argument("-m", "--model_path", type=Path, help="MDX Net ONNX Model path")
|
191 |
+
|
192 |
+
parser.add_argument("-d", "--no-denoise", dest="denoise", action="store_false", default=True, help="Disable denoising")
|
193 |
+
parser.add_argument("-M", "--margin", type=int, default=44100, help="Margin")
|
194 |
+
parser.add_argument("-c", "--chunks", type=int, default=15, help="Chunk size")
|
195 |
+
parser.add_argument("-F", "--n_fft", type=int, default=6144)
|
196 |
+
parser.add_argument("-t", "--dim_t", type=int, default=8)
|
197 |
+
parser.add_argument("-f", "--dim_f", type=int, default=2048)
|
198 |
+
|
199 |
+
args = parser.parse_args()
|
200 |
+
dict_args = vars(args)
|
201 |
+
|
202 |
+
os.makedirs(args.output, exist_ok=True)
|
203 |
+
|
204 |
+
for file_path in args.files:
|
205 |
+
predictor = Predictor(args=dict_args)
|
206 |
+
vocals, no_vocals, sampling_rate = predictor.predict(file_path)
|
207 |
+
filename = os.path.splitext(os.path.split(file_path)[-1])[0]
|
208 |
+
sf.write(os.path.join(args.output, filename+".wav"), no_vocals, sampling_rate)
|
209 |
+
sf.write(os.path.join(args.output, filename+"_instrum.wav"), vocals, sampling_rate)
|
210 |
+
|
211 |
+
if __name__ == "__main__":
|
212 |
+
main()
|
213 |
+
|
214 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
joblib>=1.1.0
|
2 |
+
numba==0.56.4
|
3 |
+
numpy==1.23.5
|
4 |
+
scipy==1.9.3
|
5 |
+
librosa>=0.9.1
|
6 |
+
llvmlite==0.39.0
|
7 |
+
pydub>=0.25.1
|
8 |
+
soundfile>=0.12.1
|
9 |
+
praat-parselmouth>=0.4.2
|
10 |
+
Pillow==9.5.0
|
11 |
+
resampy>=0.4.2
|
12 |
+
scikit-learn
|
13 |
+
starlette>=0.25.0
|
14 |
+
tqdm>=4.63.1
|
15 |
+
audioread==3.0.0
|
16 |
+
soundstretch==1.2
|
17 |
+
demucs
|
18 |
+
pyyaml
|
19 |
+
ml_collections
|
20 |
+
rotary_embedding_torch
|
uvr.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import torch
|
4 |
+
import warnings
|
5 |
+
import hashlib
|
6 |
+
import math
|
7 |
+
import importlib
|
8 |
+
import numpy as np
|
9 |
+
from tqdm import tqdm
|
10 |
+
from scipy.io import wavfile
|
11 |
+
import librosa
|
12 |
+
import pdb
|
13 |
+
from uvr5_pack.lib_v5 import spec_utils
|
14 |
+
from uvr5_pack.utils import _get_name_params, inference
|
15 |
+
from uvr5_pack.lib_v5.model_param_init import ModelParameters
|
16 |
+
|
17 |
+
|
18 |
+
warnings.filterwarnings("ignore")
|
19 |
+
|
20 |
+
|
21 |
+
class _audio_pre_():
|
22 |
+
def __init__(self, model_path, device, is_half):
|
23 |
+
self.model_path = model_path
|
24 |
+
self.device = device
|
25 |
+
self.data = {
|
26 |
+
# Processing Options
|
27 |
+
'postprocess': False,
|
28 |
+
'tta': False,
|
29 |
+
# Constants
|
30 |
+
'window_size': 320,
|
31 |
+
'agg': 10,
|
32 |
+
'high_end_process': 'mirroring',
|
33 |
+
}
|
34 |
+
nn_arch_sizes = [
|
35 |
+
31191, # default
|
36 |
+
33966,61968, 123821, 123812, 537238 # custom
|
37 |
+
]
|
38 |
+
self.nn_architecture = list('{}KB'.format(s) for s in nn_arch_sizes)
|
39 |
+
model_size = math.ceil(os.stat(model_path).st_size / 1024)
|
40 |
+
nn_architecture = '{}KB'.format(min(nn_arch_sizes, key=lambda x:abs(x-model_size)))
|
41 |
+
nets = importlib.import_module('uvr5_pack.lib_v5.nets' + f'_{nn_architecture}'.replace('_{}KB'.format(nn_arch_sizes[0]), ''), package=None)
|
42 |
+
model_hash = hashlib.md5(open(model_path, 'rb').read()).hexdigest()
|
43 |
+
param_name, model_params_d = _get_name_params(model_path, model_hash)
|
44 |
+
|
45 |
+
mp = ModelParameters(model_params_d)
|
46 |
+
model = nets.CascadedASPPNet(mp.param['bins'] * 2)
|
47 |
+
cpk = torch.load(model_path, map_location='cpu')
|
48 |
+
model.load_state_dict(cpk)
|
49 |
+
model.eval()
|
50 |
+
if is_half:
|
51 |
+
model = model.half().to(device)
|
52 |
+
else:
|
53 |
+
model = model.to(device)
|
54 |
+
|
55 |
+
self.mp = mp
|
56 |
+
self.model = model
|
57 |
+
|
58 |
+
def _path_audio_(self, music_file, ins_root=None, vocal_root=None):
|
59 |
+
if ins_root is None and vocal_root is None:
|
60 |
+
return "No save root."
|
61 |
+
name = os.path.basename(music_file)
|
62 |
+
if ins_root is not None:
|
63 |
+
os.makedirs(ins_root, exist_ok=True)
|
64 |
+
if vocal_root is not None:
|
65 |
+
os.makedirs(vocal_root, exist_ok=True)
|
66 |
+
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
|
67 |
+
bands_n = len(self.mp.param['band'])
|
68 |
+
for d in range(bands_n, 0, -1):
|
69 |
+
bp = self.mp.param['band'][d]
|
70 |
+
if d == bands_n:
|
71 |
+
X_wave[d], _ = librosa.core.load(
|
72 |
+
music_file, bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
|
73 |
+
if X_wave[d].ndim == 1:
|
74 |
+
X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]])
|
75 |
+
else:
|
76 |
+
X_wave[d] = librosa.core.resample(X_wave[d+1], self.mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
|
77 |
+
|
78 |
+
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(X_wave[d], bp['hl'], bp['n_fft'], self.mp.param['mid_side'], self.mp.param['mid_side_b2'], self.mp.param['reverse'])
|
79 |
+
if d == bands_n and self.data['high_end_process'] != 'none':
|
80 |
+
input_high_end_h = (bp['n_fft'] // 2 - bp['crop_stop']) + (self.mp.param['pre_filter_stop'] - self.mp.param['pre_filter_start'])
|
81 |
+
input_high_end = X_spec_s[d][:, bp['n_fft']//2-input_high_end_h:bp['n_fft']//2, :]
|
82 |
+
|
83 |
+
X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp)
|
84 |
+
aggresive_set = float(self.data['agg']/100)
|
85 |
+
aggressiveness = {'value': aggresive_set, 'split_bin': self.mp.param['band'][1]['crop_stop']}
|
86 |
+
with torch.no_grad():
|
87 |
+
pred, X_mag, X_phase = inference(X_spec_m, self.device, self.model, aggressiveness, self.data)
|
88 |
+
|
89 |
+
if self.data['postprocess']:
|
90 |
+
pred_inv = np.clip(X_mag - pred, 0, np.inf)
|
91 |
+
pred = spec_utils.mask_silence(pred, pred_inv)
|
92 |
+
|
93 |
+
y_spec_m = pred * X_phase
|
94 |
+
v_spec_m = X_spec_m - y_spec_m
|
95 |
+
|
96 |
+
if ins_root is not None:
|
97 |
+
if self.data['high_end_process'].startswith('mirroring'):
|
98 |
+
input_high_end_ = spec_utils.mirroring(self.data['high_end_process'], y_spec_m, input_high_end, self.mp)
|
99 |
+
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp, input_high_end_h, input_high_end_)
|
100 |
+
else:
|
101 |
+
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp)
|
102 |
+
print('%s instruments done' % name)
|
103 |
+
# 分离文件名和扩展名
|
104 |
+
file_name, ext = os.path.splitext(name)
|
105 |
+
wavfile.write(os.path.join(ins_root, '和声_{}{}'.format(file_name, ext)), self.mp.param['sr'], (np.array(wav_instrument)*32768).astype(np.int16))
|
106 |
+
if vocal_root is not None:
|
107 |
+
if self.data['high_end_process'].startswith('mirroring'):
|
108 |
+
input_high_end_ = spec_utils.mirroring(self.data['high_end_process'], v_spec_m, input_high_end, self.mp)
|
109 |
+
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp, input_high_end_h, input_high_end_)
|
110 |
+
else:
|
111 |
+
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
|
112 |
+
print('%s vocals done' % name)
|
113 |
+
# 分离文件名和扩展名
|
114 |
+
file_name, ext = os.path.splitext(name)
|
115 |
+
wavfile.write(os.path.join(vocal_root, '{}{}'.format(file_name, ext)), self.mp.param['sr'], (np.array(wav_vocals)*32768).astype(np.int16))
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
if __name__ == '__main__':
|
120 |
+
device = 'cuda'
|
121 |
+
is_half = True
|
122 |
+
model_path = 'uvr5_weights/5_HP-Karaoke-UVR.pth'
|
123 |
+
pre_fun = _audio_pre_(model_path=model_path, device=device, is_half=True)
|
124 |
+
|
125 |
+
# 获取混响文件夹内的所有.wav文件路径
|
126 |
+
audio_folder = 'output'
|
127 |
+
wav_files = [os.path.join(audio_folder, file) for file in os.listdir(audio_folder) if file.endswith('.wav')]
|
128 |
+
|
129 |
+
# 遍历每个音频文件进行处理
|
130 |
+
save_path = 'echo'
|
131 |
+
for wav_file in wav_files:
|
132 |
+
pre_fun._path_audio_(wav_file, save_path, save_path)
|
仅去和声混响.sh
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
# Change directory
|
4 |
+
cd /mnt/workspace/uvr5
|
5 |
+
|
6 |
+
# Run 5_HP-Karaoke-UVR.py
|
7 |
+
python 5_HP-Karaoke-UVR.py
|
8 |
+
|
9 |
+
# Convert mp3 files to wav
|
10 |
+
source_folder="/mnt/workspace/uvr5/echo"
|
11 |
+
for mp3_file in $(ls $source_folder/*.mp3)
|
12 |
+
do
|
13 |
+
wav_file="${mp3_file%.mp3}.wav"
|
14 |
+
mv $mp3_file $wav_file
|
15 |
+
done
|
16 |
+
|
17 |
+
# Move and convert files
|
18 |
+
target_folder="/mnt/workspace/uvr5/伴奏"
|
19 |
+
for file_name in $(ls $source_folder)
|
20 |
+
do
|
21 |
+
if [[ $file_name == *"和声_"* && $file_name == *.wav ]]
|
22 |
+
then
|
23 |
+
file_path="$source_folder/$file_name"
|
24 |
+
target_path="$target_folder/$file_name"
|
25 |
+
mv $file_path $target_path
|
26 |
+
mp3_file_path="${target_path%.wav}.mp3"
|
27 |
+
ffmpeg -i $target_path -vn -ar 44100 -ac 2 -b:a 192k -loglevel panic $mp3_file_path
|
28 |
+
rm $target_path
|
29 |
+
fi
|
30 |
+
done
|
31 |
+
|
32 |
+
# Run deecho.py
|
33 |
+
python deecho.py -d cuda -model_path /mnt/workspace/uvr5/uvr5_weights/VR-DeEchoAggressive.pth -audio_path /mnt/workspace/uvr5/echo/ -is_half False -save_path /mnt/workspace/uvr5/人声/ -model_params 4band_v3
|
34 |
+
|
35 |
+
# Convert files to mp3 and remove wav files
|
36 |
+
input_folder='/mnt/workspace/uvr5/人声/'
|
37 |
+
output_folder='/mnt/workspace/uvr5/人声/'
|
38 |
+
for file in $(ls $input_folder)
|
39 |
+
do
|
40 |
+
if [[ $file == *"人声_"* && $file == *.wav ]]
|
41 |
+
then
|
42 |
+
input_path="$input_folder/$file"
|
43 |
+
output_file="${file%.wav}.mp3"
|
44 |
+
output_path="$output_folder/$output_file"
|
45 |
+
ffmpeg -i $input_path -vn -ar 44100 -ac 2 -b:a 192k -loglevel panic $output_path
|
46 |
+
fi
|
47 |
+
done
|
48 |
+
|
49 |
+
# Remove wav files
|
50 |
+
for file in $(ls $input_folder)
|
51 |
+
do
|
52 |
+
if [[ $file == *.wav ]]
|
53 |
+
then
|
54 |
+
file_path="$input_folder/$file"
|
55 |
+
rm $file_path
|
56 |
+
fi
|
57 |
+
done
|
58 |
+
echo -e "\033[32m> 已将所有input文件夹内的音频去除和声及混响,人声在 /mnt/workspace/uvr5/人声/ 文件夹内,非人声在 /mnt/workspace/uvr5/伴奏/ 文件夹内。 \033[0m"
|
全流程一键版.sh
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
# Change directory
|
4 |
+
cd /mnt/workspace/uvr5/MDX23v24
|
5 |
+
|
6 |
+
# 设置 HF_ENDPOINT 环境变量
|
7 |
+
export HF_ENDPOINT="https://hf-mirror.com"
|
8 |
+
|
9 |
+
input_folder="/mnt/workspace/input/"
|
10 |
+
output_folder="/mnt/workspace/input"
|
11 |
+
|
12 |
+
for file_path in $(ls -1 $input_folder); do
|
13 |
+
filename=$(basename "$file_path" | cut -d. -f1)
|
14 |
+
# 调用 inference.py,并传入环境变量 HF_ENDPOINT
|
15 |
+
python inference.py --vocals_only --large_gpu --use_InstVoc --use_VitLarge --use_BSRoformer --input_audio "$input_folder/$file_path" --output_folder "$output_folder"
|
16 |
+
done
|
17 |
+
|
18 |
+
# Move and convert files
|
19 |
+
source_folder="/mnt/workspace/uvr5/output"
|
20 |
+
target_folder="/mnt/workspace/uvr5/伴奏"
|
21 |
+
for file_name in $(ls $source_folder)
|
22 |
+
do
|
23 |
+
if [[ $file_name == *"_instrum.wav" ]]
|
24 |
+
then
|
25 |
+
file_path="$source_folder/$file_name"
|
26 |
+
target_path="$target_folder/$file_name"
|
27 |
+
mv $file_path $target_path
|
28 |
+
mp3_file_path="${target_path%.wav}.mp3"
|
29 |
+
ffmpeg -i $target_path -vn -ar 44100 -ac 2 -b:a 320k -loglevel panic $mp3_file_path
|
30 |
+
rm $target_path
|
31 |
+
fi
|
32 |
+
done
|
33 |
+
|
34 |
+
# Change directory
|
35 |
+
cd /mnt/workspace/uvr5
|
36 |
+
|
37 |
+
# Run uvr.py
|
38 |
+
python uvr.py
|
39 |
+
|
40 |
+
# Move and convert files
|
41 |
+
source_folder="/mnt/workspace/uvr5/echo"
|
42 |
+
target_folder="/mnt/workspace/uvr5/伴奏"
|
43 |
+
for file_name in $(ls $source_folder)
|
44 |
+
do
|
45 |
+
if [[ $file_name == *"和声_"* && $file_name == *.wav ]]
|
46 |
+
then
|
47 |
+
file_path="$source_folder/$file_name"
|
48 |
+
target_path="$target_folder/$file_name"
|
49 |
+
mv $file_path $target_path
|
50 |
+
mp3_file_path="${target_path%.wav}.mp3"
|
51 |
+
ffmpeg -i $target_path -vn -ar 44100 -ac 2 -b:a 320k -loglevel panic $mp3_file_path
|
52 |
+
rm $target_path
|
53 |
+
fi
|
54 |
+
done
|
55 |
+
|
56 |
+
# Run deecho.py
|
57 |
+
python deecho.py -d cuda -model_path /mnt/workspace/uvr5/uvr5_weights/VR-DeEchoAggressive.pth -audio_path /mnt/workspace/uvr5/echo/ -is_half False -save_path /mnt/workspace/uvr5/人声/ -model_params 4band_v3
|
58 |
+
|
59 |
+
# Convert files to mp3 and remove wav files
|
60 |
+
input_folder='/mnt/workspace/uvr5/人声/'
|
61 |
+
output_folder='/mnt/workspace/uvr5/人声/'
|
62 |
+
for file in $(ls $input_folder)
|
63 |
+
do
|
64 |
+
if [[ $file == *"人声_"* && $file == *.wav ]]
|
65 |
+
then
|
66 |
+
input_path="$input_folder/$file"
|
67 |
+
output_file="${file%.wav}.mp3"
|
68 |
+
output_path="$output_folder/$output_file"
|
69 |
+
ffmpeg -i $input_path -vn -ar 44100 -ac 2 -b:a 320k -loglevel panic $output_path
|
70 |
+
fi
|
71 |
+
done
|
72 |
+
|
73 |
+
# Remove wav files
|
74 |
+
for file in $(ls $input_folder)
|
75 |
+
do
|
76 |
+
if [[ $file == *.wav ]]
|
77 |
+
then
|
78 |
+
file_path="$input_folder/$file"
|
79 |
+
rm $file_path
|
80 |
+
fi
|
81 |
+
done
|
82 |
+
echo -e "\033[32m> 已将所有input文件夹内的音频完成分离,人声在 /mnt/workspace/uvr5/人声/ 文件夹内,伴奏及和声在 /mnt/workspace/uvr5/伴奏/ 文件夹内。 \033[0m"
|