File size: 8,839 Bytes
f3f17e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os, sys, torch, warnings, pdb
now_dir = os.getcwd()
sys.path.append(now_dir)
from json import load as ll
warnings.filterwarnings("ignore")
import librosa
import importlib
import numpy as np
import hashlib, math
from tqdm import tqdm
from uvr5_pack.lib_v5 import spec_utils
from uvr5_pack.utils import _get_name_params, inference
from uvr5_pack.lib_v5.model_param_init import ModelParameters
import soundfile as sf
from uvr5_pack.lib_v5.nets_new import CascadedNet
from uvr5_pack.lib_v5 import nets_61968KB as nets
import argparse

class AudioSeparator:
    def __init__(self, agg, model_path, device, is_half, model_params):
        self.model_path = model_path
        self.device = device
        self.data = {
            # Processing Options
            "postprocess": False,
            "tta": False,
            # Constants
            "window_size": 320,
            "agg": agg,
            "high_end_process": "mirroring",
        }
        if model_params == "4band_v3":
            mp = ModelParameters("uvr5_pack/lib_v5/modelparams/4band_v3.json")
            nout = 64 if "DeReverb" in model_path else 48
            model = CascadedNet(mp.param["bins"] * 2, nout)
        if model_params == "4band_v2":
            mp = ModelParameters("uvr5_pack/lib_v5/modelparams/4band_v2.json")
            model = nets.CascadedASPPNet(mp.param["bins"] * 2)
        cpk = torch.load(model_path, map_location="cpu")
        model.load_state_dict(cpk)
        model.eval()
        if is_half:
            model = model.half().to(device)
        else:
            model = model.to(device)

        self.mp = mp
        self.model = model

    def separate(self, music_file, vocal_root=None, ins_root=None, model_params=None, format="flac"):
        if ins_root is None and vocal_root is None:
            return "No save root."
        if os.path.isfile(music_file):
            music_files = [music_file]
        elif os.path.isdir(music_file):
            music_files = [os.path.join(music_file, f) for f in os.listdir(music_file) if f.endswith(".wav") or f.endswith(".mp3")]
        else:
            return "Invalid path."
        for music_file in music_files:
            name = os.path.basename(music_file)
            if ins_root is not None:
                os.makedirs(ins_root, exist_ok=True)
            if vocal_root is not None:
                os.makedirs(vocal_root, exist_ok=True)
            X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
            bands_n = len(self.mp.param["band"])
            
            for d in range(bands_n, 0, -1):
                bp = self.mp.param["band"][d]
                if d == bands_n:  # high-end band
                    (
                        X_wave[d],
                        _,
                    ) = librosa.core.load(
                        music_file,
                        bp["sr"],
                        False,
                        dtype=np.float32,
                        res_type=bp["res_type"],
                    )
                    if X_wave[d].ndim == 1:
                        X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]])
                else:  # lower bands
                    X_wave[d] = librosa.core.resample(
                        X_wave[d + 1],
                        self.mp.param["band"][d + 1]["sr"],
                        bp["sr"],
                        res_type=bp["res_type"],
                    )
                # Stft of wave source
                X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(
                    X_wave[d],
                    bp["hl"],
                    bp["n_fft"],
                    self.mp.param["mid_side"],
                    self.mp.param["mid_side_b2"],
                    self.mp.param["reverse"],
                )
                if d == bands_n and self.data["high_end_process"] != "none":
                    input_high_end_h = (bp["n_fft"] // 2 - bp["crop_stop"]) + (
                        self.mp.param["pre_filter_stop"] - self.mp.param["pre_filter_start"]
                    )
                    input_high_end = X_spec_s[d][
                        :, bp["n_fft"] // 2 - input_high_end_h : bp["n_fft"] // 2, :
                    ]

            X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp)
            aggresive_set = float(self.data["agg"] / 100)
            aggressiveness = {
                "value": aggresive_set,
                "split_bin": self.mp.param["band"][1]["crop_stop"],
            }
            with torch.no_grad():
                pred, X_mag, X_phase = inference(
                    X_spec_m, self.device, self.model, aggressiveness, self.data
                )

            # Postprocess
            if self.data["postprocess"]:
                pred_inv = np.clip(X_mag - pred, 0, np.inf)
                pred = spec_utils.mask_silence(pred, pred_inv)
            y_spec_m = pred * X_phase
            v_spec_m = X_spec_m - y_spec_m

            if ins_root is not None:
                if self.data["high_end_process"].startswith("mirroring"):
                    input_high_end_ = spec_utils.mirroring(
                        self.data["high_end_process"], y_spec_m, input_high_end, self.mp
                    )
                    wav_instrument = spec_utils.cmb_spectrogram_to_wave(
                        y_spec_m, self.mp, input_high_end_h, input_high_end_
                    )
                else:
                    wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp)
                print("%s instruments done" % name)
                if model_params == "4band_v2":
                    sf.write(
                        os.path.join(
                            ins_root, "instrument_{}_{}.{}".format(name, self.data["agg"],format)
                        ),
                        (np.array(wav_instrument) * 32768).astype("int16"), self.mp.param["sr"],
                    )  #
                if model_params == "4band_v3":
                    sf.write(
                        os.path.join(
                            ins_root, "人声_{}".format(name, self.data["agg"], format)
                        ),
                        (np.array(wav_instrument) * 32768).astype("int16"), self.mp.param["sr"],
                    )  #

            if vocal_root is not None:
                if self.data["high_end_process"].startswith("mirroring"):
                    input_high_end_ = spec_utils.mirroring(
                        self.data["high_end_process"], v_spec_m, input_high_end, self.mp
                    )
                    wav_vocals = spec_utils.cmb_spectrogram_to_wave(
                        v_spec_m, self.mp, input_high_end_h, input_high_end_
                    )
                else:
                    wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
                print("%s vocals done" % name)
                if model_params == "4band_v2":
                    sf.write(
                        os.path.join(
                            vocal_root, "vocal_{}_{}.{}".format(name, self.data["agg"], format)
                        ),
                        (np.array(wav_vocals) * 32768).astype("int16"), self.mp.param["sr"],
                    )
                if model_params == "4band_v3":
                    sf.write(
                        os.path.join(
                            vocal_root, "混响_{}".format(name, self.data["agg"], format)
                        ),
                        (np.array(wav_vocals) * 32768).astype("int16"), self.mp.param["sr"],
                    )

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Process audio with specified parameters.")
    parser.add_argument("-device", choices=["cpu", "cuda"], default="cpu", help="Device for processing")
    parser.add_argument("-is_half", type=bool, required=True, help="Use half precision")
    parser.add_argument("-model_path", required=True, help="Path to the model weights")
    parser.add_argument("-agg", type=int, default=10, help="Aggregation parameter")
    parser.add_argument("-audio_path", required=True, help="Path to the audio file or folder")
    parser.add_argument("-save_path", required=True, help="Path to save the output")
    parser.add_argument("-model_params", choices=["4band_v3", "4band_v2"], required=True, help="Path to save the output")
    parser.add_argument("-format", choices=["wav", "flac"], default="wav",)
    args = parser.parse_args()
    separator = AudioSeparator(
        model_path=args.model_path,
        device=args.device,
        is_half=args.is_half,
        agg=args.agg,
        model_params=args.model_params
    )
    separator.separate(
        args.audio_path,
        args.save_path,
        args.save_path,
        args.model_params,
        args.format
    )