File size: 42,302 Bytes
b9fd956 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 |
# coding: utf-8
if __name__ == '__main__':
import os
gpu_use = "0"
print('GPU use: {}'.format(gpu_use))
os.environ["CUDA_VISIBLE_DEVICES"] = "{}".format(gpu_use)
import warnings
warnings.filterwarnings("ignore")
from tqdm import tqdm
import numpy as np
import torch
import torch.nn as nn
import os
import argparse
import soundfile as sf
from demucs.states import load_model
from demucs import pretrained
from demucs.apply import apply_model
import onnxruntime as ort
from time import time
import librosa
import hashlib
from scipy import signal
import gc
import yaml
from ml_collections import ConfigDict
import sys
import math
import pathlib
import warnings
from scipy.signal import resample_poly
from modules.tfc_tdf_v2 import Conv_TDF_net_trim_model
from modules.tfc_tdf_v3 import TFC_TDF_net, STFT
from modules.segm_models import Segm_Models_Net
from modules.bs_roformer import BSRoformer
def get_models(name, device, load=True, vocals_model_type=0):
if vocals_model_type == 2:
model_vocals = Conv_TDF_net_trim_model(
device=device,
target_name='vocals',
L=11,
n_fft=7680,
dim_f=3072
)
elif vocals_model_type == 3:
model_vocals = Conv_TDF_net_trim_model(
device=device,
target_name='instrum',
L=11,
n_fft=5120,
dim_f=2560
)
return [model_vocals]
def get_model_from_config(model_type, config_path):
with open(config_path) as f:
config = ConfigDict(yaml.load(f, Loader=yaml.FullLoader))
if model_type == 'mdx23c':
from modules.tfc_tdf_v3 import TFC_TDF_net
model = TFC_TDF_net(config)
elif model_type == 'segm_models':
from modules.segm_models import Segm_Models_Net
model = Segm_Models_Net(config)
elif model_type == 'bs_roformer':
from modules.bs_roformer import BSRoformer
model = BSRoformer(
**dict(config.model)
)
else:
print('Unknown model: {}'.format(model_type))
model = None
return model, config
def demix_new(model, mix, device, config, dim_t=256):
mix = torch.tensor(mix)
#N = options["overlap_BSRoformer"]
N = 2 # overlap 50%
batch_size = 1
mdx_window_size = dim_t
C = config.audio.hop_length * (mdx_window_size - 1)
fade_size = C // 100
step = int(C // N)
border = C - step
length_init = mix.shape[-1]
#print(f"1: {mix.shape}")
# Do pad from the beginning and end to account floating window results better
if length_init > 2 * border and (border > 0):
mix = nn.functional.pad(mix, (border, border), mode='reflect')
# Prepare windows arrays (do 1 time for speed up). This trick repairs click problems on the edges of segment
window_size = C
fadein = torch.linspace(0, 1, fade_size)
fadeout = torch.linspace(1, 0, fade_size)
window_start = torch.ones(window_size)
window_middle = torch.ones(window_size)
window_finish = torch.ones(window_size)
window_start[-fade_size:] *= fadeout # First audio chunk, no fadein
window_finish[:fade_size] *= fadein # Last audio chunk, no fadeout
window_middle[-fade_size:] *= fadeout
window_middle[:fade_size] *= fadein
with torch.cuda.amp.autocast():
with torch.inference_mode():
if config.training.target_instrument is not None:
req_shape = (1, ) + tuple(mix.shape)
else:
req_shape = (len(config.training.instruments),) + tuple(mix.shape)
result = torch.zeros(req_shape, dtype=torch.float32)
counter = torch.zeros(req_shape, dtype=torch.float32)
i = 0
batch_data = []
batch_locations = []
while i < mix.shape[1]:
# print(i, i + C, mix.shape[1])
part = mix[:, i:i + C].to(device)
length = part.shape[-1]
if length < C:
if length > C // 2 + 1:
part = nn.functional.pad(input=part, pad=(0, C - length), mode='reflect')
else:
part = nn.functional.pad(input=part, pad=(0, C - length, 0, 0), mode='constant', value=0)
batch_data.append(part)
batch_locations.append((i, length))
i += step
if len(batch_data) >= batch_size or (i >= mix.shape[1]):
arr = torch.stack(batch_data, dim=0)
x = model(arr)
window = window_middle
if i - step == 0: # First audio chunk, no fadein
window = window_start
elif i >= mix.shape[1]: # Last audio chunk, no fadeout
window = window_finish
for j in range(len(batch_locations)):
start, l = batch_locations[j]
result[..., start:start+l] += x[j][..., :l].cpu() * window[..., :l]
counter[..., start:start+l] += window[..., :l]
batch_data = []
batch_locations = []
estimated_sources = result / counter
estimated_sources = estimated_sources.cpu().numpy()
np.nan_to_num(estimated_sources, copy=False, nan=0.0)
if length_init > 2 * border and (border > 0):
# Remove pad
estimated_sources = estimated_sources[..., border:-border]
if config.training.target_instrument is None:
return {k: v for k, v in zip(config.training.instruments, estimated_sources)}
else:
return {k: v for k, v in zip([config.training.target_instrument], estimated_sources)}
def demix_new_wrapper(mix, device, model, config, dim_t=256):
if options["BigShifts"] <= 0:
bigshifts = 1
else:
bigshifts = options["BigShifts"]
shift_in_samples = mix.shape[1] // bigshifts
shifts = [x * shift_in_samples for x in range(bigshifts)]
results = []
for shift in tqdm(shifts, position=0):
shifted_mix = np.concatenate((mix[:, -shift:], mix[:, :-shift]), axis=-1)
sources = demix_new(model, shifted_mix, device, config, dim_t=dim_t)
vocals = next(sources[key] for key in sources.keys() if key.lower() == "vocals")
unshifted_vocals = np.concatenate((vocals[..., shift:], vocals[..., :shift]), axis=-1)
vocals *= 1 # 1.0005168 CHECK NEEDED! volume compensation
results.append(unshifted_vocals)
vocals = np.mean(results, axis=0)
return vocals
def demix_vitlarge(model, mix, device):
C = model.config.audio.hop_length * (2 * model.config.inference.dim_t - 1)
N = 2
step = C // N
with torch.cuda.amp.autocast():
with torch.no_grad():
if model.config.training.target_instrument is not None:
req_shape = (1, ) + tuple(mix.shape)
else:
req_shape = (len(model.config.training.instruments),) + tuple(mix.shape)
mix = mix.to(device)
result = torch.zeros(req_shape, dtype=torch.float32).to(device)
counter = torch.zeros(req_shape, dtype=torch.float32).to(device)
i = 0
while i < mix.shape[1]:
part = mix[:, i:i + C]
length = part.shape[-1]
if length < C:
part = nn.functional.pad(input=part, pad=(0, C - length, 0, 0), mode='constant', value=0)
x = model(part.unsqueeze(0))[0]
result[..., i:i+length] += x[..., :length]
counter[..., i:i+length] += 1.
i += step
estimated_sources = result / counter
if model.config.training.target_instrument is None:
return {k: v for k, v in zip(model.config.training.instruments, estimated_sources.cpu().numpy())}
else:
return {k: v for k, v in zip([model.config.training.target_instrument], estimated_sources.cpu().numpy())}
def demix_full_vitlarge(mix, device, model):
if options["BigShifts"] <= 0:
bigshifts = 1
else:
bigshifts = options["BigShifts"]
shift_in_samples = mix.shape[1] // bigshifts
shifts = [x * shift_in_samples for x in range(bigshifts)]
results1 = []
results2 = []
mix = torch.from_numpy(mix).type('torch.FloatTensor').to(device)
for shift in tqdm(shifts, position=0):
shifted_mix = torch.cat((mix[:, -shift:], mix[:, :-shift]), dim=-1)
sources = demix_vitlarge(model, shifted_mix, device)
sources1 = sources["vocals"]
sources2 = sources["other"]
restored_sources1 = np.concatenate((sources1[..., shift:], sources1[..., :shift]), axis=-1)
restored_sources2 = np.concatenate((sources2[..., shift:], sources2[..., :shift]), axis=-1)
results1.append(restored_sources1)
results2.append(restored_sources2)
sources1 = np.mean(results1, axis=0)
sources2 = np.mean(results2, axis=0)
return sources1, sources2
def demix_wrapper(mix, device, models, infer_session, overlap=0.2, bigshifts=1, vc=1.0):
if bigshifts <= 0:
bigshifts = 1
shift_in_samples = mix.shape[1] // bigshifts
shifts = [x * shift_in_samples for x in range(bigshifts)]
results = []
for shift in tqdm(shifts, position=0):
shifted_mix = np.concatenate((mix[:, -shift:], mix[:, :-shift]), axis=-1)
sources = demix(shifted_mix, device, models, infer_session, overlap) * vc # 1.021 volume compensation
restored_sources = np.concatenate((sources[..., shift:], sources[..., :shift]), axis=-1)
results.append(restored_sources)
sources = np.mean(results, axis=0)
return sources
def demix(mix, device, models, infer_session, overlap=0.2):
start_time = time()
sources = []
n_sample = mix.shape[1]
n_fft = models[0].n_fft
n_bins = n_fft//2+1
trim = n_fft//2
hop = models[0].hop
dim_f = models[0].dim_f
dim_t = models[0].dim_t # * 2
chunk_size = hop * (dim_t -1)
org_mix = mix
tar_waves_ = []
mdx_batch_size = 1
overlap = overlap
gen_size = chunk_size-2*trim
pad = gen_size + trim - ((mix.shape[-1]) % gen_size)
mixture = np.concatenate((np.zeros((2, trim), dtype='float32'), mix, np.zeros((2, pad), dtype='float32')), 1)
step = int((1 - overlap) * chunk_size)
result = np.zeros((1, 2, mixture.shape[-1]), dtype=np.float32)
divider = np.zeros((1, 2, mixture.shape[-1]), dtype=np.float32)
total = 0
total_chunks = (mixture.shape[-1] + step - 1) // step
for i in range(0, mixture.shape[-1], step):
total += 1
start = i
end = min(i + chunk_size, mixture.shape[-1])
chunk_size_actual = end - start
if overlap == 0:
window = None
else:
window = np.hanning(chunk_size_actual)
window = np.tile(window[None, None, :], (1, 2, 1))
mix_part_ = mixture[:, start:end]
if end != i + chunk_size:
pad_size = (i + chunk_size) - end
mix_part_ = np.concatenate((mix_part_, np.zeros((2, pad_size), dtype='float32')), axis=-1)
mix_part = torch.tensor([mix_part_], dtype=torch.float32).to(device)
mix_waves = mix_part.split(mdx_batch_size)
with torch.no_grad():
for mix_wave in mix_waves:
_ort = infer_session
stft_res = models[0].stft(mix_wave)
stft_res[:, :, :3, :] *= 0
res = _ort.run(None, {'input': stft_res.cpu().numpy()})[0]
ten = torch.tensor(res)
tar_waves = models[0].istft(ten.to(device))
tar_waves = tar_waves.cpu().detach().numpy()
if window is not None:
tar_waves[..., :chunk_size_actual] *= window
divider[..., start:end] += window
else:
divider[..., start:end] += 1
result[..., start:end] += tar_waves[..., :end-start]
tar_waves = result / divider
tar_waves_.append(tar_waves)
tar_waves_ = np.vstack(tar_waves_)[:, :, trim:-trim]
tar_waves = np.concatenate(tar_waves_, axis=-1)[:, :mix.shape[-1]]
source = tar_waves[:,0:None]
return source
class EnsembleDemucsMDXMusicSeparationModel:
"""
Doesn't do any separation just passes the input back as output
"""
def __init__(self, options):
"""
options - user options
"""
if torch.cuda.is_available():
device = 'cuda:0'
else:
device = 'cpu'
if 'cpu' in options:
if options['cpu']:
device = 'cpu'
# print('Use device: {}'.format(device))
self.single_onnx = False
if 'single_onnx' in options:
if options['single_onnx']:
self.single_onnx = True
# print('Use single vocal ONNX')
self.overlap_demucs = float(options['overlap_demucs'])
self.overlap_MDX = float(options['overlap_VOCFT'])
if self.overlap_demucs > 0.99:
self.overlap_demucs = 0.99
if self.overlap_demucs < 0.0:
self.overlap_demucs = 0.0
if self.overlap_MDX > 0.99:
self.overlap_MDX = 0.99
if self.overlap_MDX < 0.0:
self.overlap_MDX = 0.0
model_folder = os.path.dirname(os.path.realpath(__file__)) + '/models/'
"""
remote_url = 'https://dl.fbaipublicfiles.com/demucs/hybrid_transformer/04573f0d-f3cf25b2.th'
model_path = model_folder + '04573f0d-f3cf25b2.th'
if not os.path.isfile(model_path):
torch.hub.download_url_to_file(remote_url, model_folder + '04573f0d-f3cf25b2.th')
model_vocals = load_model(model_path)
model_vocals.to(device)
self.model_vocals_only = model_vocals
"""
if options['vocals_only'] is False:
self.models = []
self.weights_vocals = np.array([10, 1, 8, 9])
self.weights_bass = np.array([19, 4, 5, 8])
self.weights_drums = np.array([18, 2, 4, 9])
self.weights_other = np.array([14, 2, 5, 10])
model1 = pretrained.get_model('htdemucs_ft')
model1.to(device)
self.models.append(model1)
model2 = pretrained.get_model('htdemucs')
model2.to(device)
self.models.append(model2)
model3 = pretrained.get_model('htdemucs_6s')
model3.to(device)
self.models.append(model3)
model4 = pretrained.get_model('hdemucs_mmi')
model4.to(device)
self.models.append(model4)
if 0:
for model in self.models:
pass
# print(model.sources)
'''
['drums', 'bass', 'other', 'vocals']
['drums', 'bass', 'other', 'vocals']
['drums', 'bass', 'other', 'vocals', 'guitar', 'piano']
['drums', 'bass', 'other', 'vocals']
'''
"""
#BS-RoformerDRUMS+BASS init
print("Loading BS-RoformerDB into memory")
remote_url_bsrofoDB = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/model_bs_roformer_ep_937_sdr_10.5309.ckpt'
remote_url_conf_bsrofoDB = 'https://raw.githubusercontent.com/TRvlvr/application_data/main/mdx_model_data/mdx_c_configs/model_bs_roformer_ep_937_sdr_10.5309.yaml'
if not os.path.isfile(model_folder+'model_bs_roformer_ep_937_sdr_10.5309.ckpt'):
torch.hub.download_url_to_file(remote_url_bsrofoDB, model_folder+'model_bs_roformer_ep_937_sdr_10.5309.ckpt')
if not os.path.isfile(model_folder+'model_bs_roformer_ep_937_sdr_10.5309.yaml'):
torch.hub.download_url_to_file(remote_url_conf_bsrofoDB, model_folder+'model_bs_roformer_ep_937_sdr_10.5309.yaml')
with open(model_folder + 'model_bs_roformer_ep_937_sdr_10.5309.yaml') as f:
config_bsrofoDB = ConfigDict(yaml.load(f, Loader=yaml.FullLoader))
self.model_bsrofoDB = BSRoformer(**dict(config_bsrofoDB.model))
self.config_bsrofoDB = config_bsrofoDB
self.model_bsrofoDB.load_state_dict(torch.load(model_folder+'model_bs_roformer_ep_937_sdr_10.5309.ckpt'))
self.device = torch.device(device)
self.model_bsrofoDB = self.model_bsrofoDB.to(device)
self.model_bsrofoDB.eval()
"""
if device == 'cpu':
providers = ["CPUExecutionProvider"]
else:
providers = ["CUDAExecutionProvider"]
#BS-RoformerVOC init
print("Loading BS-Roformer into memory")
if options["BSRoformer_model"] == "ep_368_1296":
model_name = "model_bs_roformer_ep_368_sdr_12.9628"
else:
model_name = "model_bs_roformer_ep_317_sdr_12.9755"
remote_url_bsrofo = f'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/{model_name}.ckpt'
remote_url_conf_bsrofo = f'https://raw.githubusercontent.com/TRvlvr/application_data/main/mdx_model_data/mdx_c_configs/{model_name}.yaml'
if not os.path.isfile(model_folder+f'{model_name}.ckpt'):
torch.hub.download_url_to_file(remote_url_bsrofo, model_folder+f'{model_name}.ckpt')
if not os.path.isfile(model_folder+f'{model_name}.yaml'):
torch.hub.download_url_to_file(remote_url_conf_bsrofo, model_folder+f'{model_name}.yaml')
with open(model_folder + f'{model_name}.yaml') as f:
config_bsrofo = ConfigDict(yaml.load(f, Loader=yaml.FullLoader))
self.model_bsrofo = BSRoformer(**dict(config_bsrofo.model))
self.config_bsrofo = config_bsrofo
self.model_bsrofo.load_state_dict(torch.load(model_folder+f'{model_name}.ckpt'))
self.device = torch.device(device)
self.model_bsrofo = self.model_bsrofo.to(device)
self.model_bsrofo.eval()
#MDXv3 init
print("Loading InstVoc into memory")
remote_url_mdxv3 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/MDX23C-8KFFT-InstVoc_HQ.ckpt'
remote_url_conf_mdxv3 = 'https://raw.githubusercontent.com/TRvlvr/application_data/main/mdx_model_data/mdx_c_configs/model_2_stem_full_band_8k.yaml'
if not os.path.isfile(model_folder+'MDX23C-8KFFT-InstVoc_HQ.ckpt'):
torch.hub.download_url_to_file(remote_url_mdxv3, model_folder+'MDX23C-8KFFT-InstVoc_HQ.ckpt')
if not os.path.isfile(model_folder+'model_2_stem_full_band_8k.yaml'):
torch.hub.download_url_to_file(remote_url_conf_mdxv3, model_folder+'model_2_stem_full_band_8k.yaml')
with open(model_folder + 'model_2_stem_full_band_8k.yaml') as f:
config_mdxv3 = ConfigDict(yaml.load(f, Loader=yaml.FullLoader))
self.config_mdxv3 = config_mdxv3
self.model_mdxv3 = TFC_TDF_net(config_mdxv3)
self.model_mdxv3.load_state_dict(torch.load(model_folder+'MDX23C-8KFFT-InstVoc_HQ.ckpt'))
self.device = torch.device(device)
self.model_mdxv3 = self.model_mdxv3.to(device)
self.model_mdxv3.eval()
#VitLarge init
if options['use_VitLarge'] is True:
print("Loading VitLarge into memory")
remote_url_vitlarge = 'https://github.com/ZFTurbo/Music-Source-Separation-Training/releases/download/v1.0.0/model_vocals_segm_models_sdr_9.77.ckpt'
remote_url_vl_conf = 'https://github.com/ZFTurbo/Music-Source-Separation-Training/releases/download/v1.0.0/config_vocals_segm_models.yaml'
if not os.path.isfile(model_folder+'model_vocals_segm_models_sdr_9.77.ckpt'):
torch.hub.download_url_to_file(remote_url_vitlarge, model_folder+'model_vocals_segm_models_sdr_9.77.ckpt')
if not os.path.isfile(model_folder+'config_vocals_segm_models.yaml'):
torch.hub.download_url_to_file(remote_url_vl_conf, model_folder+'config_vocals_segm_models.yaml')
with open(model_folder + 'config_vocals_segm_models.yaml') as f:
config_vl = ConfigDict(yaml.load(f, Loader=yaml.FullLoader))
self.config_vl = config_vl
self.model_vl = Segm_Models_Net(config_vl)
self.model_vl.load_state_dict(torch.load(model_folder+'model_vocals_segm_models_sdr_9.77.ckpt'))
self.device = torch.device(device)
self.model_vl = self.model_vl.to(device)
self.model_vl.eval()
# VOCFT init
if options['use_VOCFT']:
print("Loading VOCFT into memory")
self.mdx_models1 = get_models('tdf_extra', load=False, device=device, vocals_model_type=2)
model_path_onnx1 = model_folder + 'UVR-MDX-NET-Voc_FT.onnx'
remote_url_onnx1 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/UVR-MDX-NET-Voc_FT.onnx'
if not os.path.isfile(model_path_onnx1):
torch.hub.download_url_to_file(remote_url_onnx1, model_path_onnx1)
self.infer_session1 = ort.InferenceSession(
model_path_onnx1,
providers=providers,
provider_options=[{"device_id": 0}],
)
# InstHQ4 init
if options['use_InstHQ4']:
print("Loading InstHQ4 into memory")
self.mdx_models2 = get_models('tdf_extra', load=False, device=device, vocals_model_type=3)
model_path_onnx2 = model_folder + 'UVR-MDX-NET-Inst_HQ_4.onnx'
remote_url_onnx2 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/UVR-MDX-NET-Inst_HQ_4.onnx'
if not os.path.isfile(model_path_onnx2):
torch.hub.download_url_to_file(remote_url_onnx2, model_path_onnx2)
self.infer_session2 = ort.InferenceSession(
model_path_onnx2,
providers=providers,
provider_options=[{"device_id": 0}],
)
self.device = device
pass
@property
def instruments(self):
if options['vocals_only'] is False:
return ['bass', 'drums', 'other', 'vocals']
else:
return ['vocals']
def raise_aicrowd_error(self, msg):
""" Will be used by the evaluator to provide logs, DO NOT CHANGE """
raise NameError(msg)
def separate_music_file(
self,
mixed_sound_array,
sample_rate,
current_file_number=0,
total_files=0,
):
"""
Implements the sound separation for a single sound file
Inputs: Outputs from soundfile.read('mixture.wav')
mixed_sound_array
sample_rate
Outputs:
separated_music_arrays: Dictionary numpy array of each separated instrument
output_sample_rates: Dictionary of sample rates separated sequence
"""
# print('Update percent func: {}'.format(update_percent_func))
separated_music_arrays = {}
output_sample_rates = {}
#print(mixed_sound_array.T.shape)
#audio = np.expand_dims(mixed_sound_array.T, axis=0)
overlap_demucs = self.overlap_demucs
overlap_MDX = self.overlap_MDX
shifts = 0
overlap = overlap_demucs
vocals_model_names = [
"BSRoformer",
"InstVoc",
"VitLarge",
"VOCFT",
"InstHQ4"
]
vocals_model_outputs = []
weights = []
for model_name in vocals_model_names:
if options[f"use_{model_name}"]:
if model_name == "BSRoformer":
print(f'Processing vocals with {model_name} model...')
sources_bs = demix_new_wrapper(mixed_sound_array.T, self.device, self.model_bsrofo, self.config_bsrofo, dim_t=1101)
vocals_bs = match_array_shapes(sources_bs, mixed_sound_array.T)
vocals_model_outputs.append(vocals_bs)
weights.append(options.get(f"weight_{model_name}"))
if model_name == "InstVoc":
print(f'Processing vocals with {model_name} model...')
sources3 = demix_new_wrapper(mixed_sound_array.T, self.device, self.model_mdxv3, self.config_mdxv3, dim_t=1024)
vocals3 = match_array_shapes(sources3, mixed_sound_array.T)
vocals_model_outputs.append(vocals3)
weights.append(options.get(f"weight_{model_name}"))
elif model_name == "VitLarge":
print(f'Processing vocals with {model_name} model...')
vocals4, instrum4 = demix_full_vitlarge(mixed_sound_array.T, self.device, self.model_vl)#, self.config_vl, dim_t=512)
vocals4 = match_array_shapes(vocals4, mixed_sound_array.T)
vocals_model_outputs.append(vocals4)
weights.append(options.get(f"weight_{model_name}"))
elif model_name == "VOCFT":
print(f'Processing vocals with {model_name} model...')
overlap = overlap_MDX
sources1 = 0.5 * demix_wrapper(
mixed_sound_array.T,
self.device,
self.mdx_models1,
self.infer_session1,
overlap=overlap,
vc=1.021,
bigshifts=options['BigShifts'] // 3
)
sources1 += 0.5 * -demix_wrapper(
-mixed_sound_array.T,
self.device,
self.mdx_models1,
self.infer_session1,
overlap=overlap,
vc=1.021,
bigshifts=options['BigShifts'] // 3
)
vocals_mdxb1 = sources1
vocals_model_outputs.append(vocals_mdxb1)
weights.append(options.get(f"weight_{model_name}"))
elif model_name == "InstHQ4":
print(f'Processing vocals with {model_name} model...')
overlap = overlap_MDX
sources2 = 0.5 * demix_wrapper(
mixed_sound_array.T,
self.device,
self.mdx_models2,
self.infer_session2,
overlap=overlap,
vc=1.019,
bigshifts=options['BigShifts'] // 3
)
sources2 += 0.5 * -demix_wrapper(
-mixed_sound_array.T,
self.device,
self.mdx_models2,
self.infer_session2,
overlap=overlap,
vc=1.019,
bigshifts=options['BigShifts'] // 3
)
vocals_mdxb2 = mixed_sound_array.T - sources2
vocals_model_outputs.append(vocals_mdxb2)
weights.append(options.get(f"weight_{model_name}"))
else:
# No more model to process or unknown one
pass
print('Processing vocals: DONE!')
vocals_combined = np.zeros_like(vocals_model_outputs[0])
for output, weight in zip(vocals_model_outputs, weights):
vocals_combined += output * weight
vocals_combined /= np.sum(weights)
vocals_low = lr_filter(vocals_combined.T, 12000, 'lowpass') # * 1.01055 # remember to check if new final finetuned volume compensation is needed !
vocals_high = lr_filter(vocals3.T, 12000, 'highpass')
vocals = vocals_low + vocals_high
#vocals = vocals_combined.T
if options['filter_vocals'] is True:
vocals = lr_filter(vocals, 50, 'highpass', order=8)
# Generate instrumental
instrum = mixed_sound_array - vocals
if options['vocals_only'] is False:
"""
print(f'Processing drums & bass with 2nd BS-Roformer model...')
other_bs2 = demix_full_bsrofo(instrum.T, self.device, self.model_bsrofoDB, self.config_bsrofoDB)
other_bs2 = match_array_shapes(other_bs2, mixed_sound_array.T)
drums_bass_bs2 = mixed_sound_array.T - other_bs2
print('Starting Demucs processing...')
drums_bass_bs2 = np.expand_dims(drums_bass_bs2.T, axis=0)
drums_bass_bs2 = torch.from_numpy(drums_bass_bs2).type('torch.FloatTensor').to(self.device)
"""
audio = np.expand_dims(instrum.T, axis=0)
audio = torch.from_numpy(audio).type('torch.FloatTensor').to(self.device)
all_outs = []
print('Processing with htdemucs_ft...')
i = 0
overlap = overlap_demucs
model = pretrained.get_model('htdemucs_ft')
model.to(self.device)
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy()
out[0] = self.weights_drums[i] * out[0]
out[1] = self.weights_bass[i] * out[1]
out[2] = self.weights_other[i] * out[2]
out[3] = self.weights_vocals[i] * out[3]
all_outs.append(out)
model = model.cpu()
del model
gc.collect()
i = 1
print('Processing with htdemucs...')
overlap = overlap_demucs
model = pretrained.get_model('htdemucs')
model.to(self.device)
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy()
out[0] = self.weights_drums[i] * out[0]
out[1] = self.weights_bass[i] * out[1]
out[2] = self.weights_other[i] * out[2]
out[3] = self.weights_vocals[i] * out[3]
all_outs.append(out)
model = model.cpu()
del model
gc.collect()
i = 2
print('Processing with htdemucs_6s...')
overlap = overlap_demucs
model = pretrained.get_model('htdemucs_6s')
model.to(self.device)
out = apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy()
# More stems need to add
out[2] = out[2] + out[4] + out[5]
out = out[:4]
out[0] = self.weights_drums[i] * out[0]
out[1] = self.weights_bass[i] * out[1]
out[2] = self.weights_other[i] * out[2]
out[3] = self.weights_vocals[i] * out[3]
all_outs.append(out)
model = model.cpu()
del model
gc.collect()
i = 3
print('Processing with htdemucs_mmi...')
model = pretrained.get_model('hdemucs_mmi')
model.to(self.device)
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy()
out[0] = self.weights_drums[i] * out[0]
out[1] = self.weights_bass[i] * out[1]
out[2] = self.weights_other[i] * out[2]
out[3] = self.weights_vocals[i] * out[3]
all_outs.append(out)
model = model.cpu()
del model
gc.collect()
out = np.array(all_outs).sum(axis=0)
out[0] = out[0] / self.weights_drums.sum()
out[1] = out[1] / self.weights_bass.sum()
out[2] = out[2] / self.weights_other.sum()
out[3] = out[3] / self.weights_vocals.sum()
# other
res = mixed_sound_array - vocals - out[0].T - out[1].T
res = np.clip(res, -1, 1)
separated_music_arrays['other'] = (2 * res + out[2].T) / 3.0
output_sample_rates['other'] = sample_rate
# drums
res = mixed_sound_array - vocals - out[1].T - out[2].T
res = np.clip(res, -1, 1)
separated_music_arrays['drums'] = (res + 2 * out[0].T.copy()) / 3.0
output_sample_rates['drums'] = sample_rate
# bass
res = mixed_sound_array - vocals - out[0].T - out[2].T
res = np.clip(res, -1, 1)
separated_music_arrays['bass'] = (res + 2 * out[1].T) / 3.0
output_sample_rates['bass'] = sample_rate
bass = separated_music_arrays['bass']
drums = separated_music_arrays['drums']
other = separated_music_arrays['other']
separated_music_arrays['other'] = mixed_sound_array - vocals - bass - drums
separated_music_arrays['drums'] = mixed_sound_array - vocals - bass - other
separated_music_arrays['bass'] = mixed_sound_array - vocals - drums - other
# vocals
separated_music_arrays['vocals'] = vocals
output_sample_rates['vocals'] = sample_rate
# instrum
separated_music_arrays['instrum'] = instrum
return separated_music_arrays, output_sample_rates
def predict_with_model(options):
output_format = options['output_format']
output_extension = 'flac' if output_format == 'FLAC' else "wav"
output_format = 'PCM_16' if output_format == 'FLAC' else options['output_format']
for input_audio in options['input_audio']:
if not os.path.isfile(input_audio):
print('Error. No such file: {}. Please check path!'.format(input_audio))
return
output_folder = options['output_folder']
if not os.path.isdir(output_folder):
os.mkdir(output_folder)
model = None
model = EnsembleDemucsMDXMusicSeparationModel(options)
for i, input_audio in enumerate(options['input_audio']):
print('Go for: {}'.format(input_audio))
audio, sr = librosa.load(input_audio, mono=False, sr=44100)
if len(audio.shape) == 1:
audio = np.stack([audio, audio], axis=0)
if options['input_gain'] != 0:
audio = dBgain(audio, options['input_gain'])
print("Input audio: {} Sample rate: {}".format(audio.shape, sr))
result, sample_rates = model.separate_music_file(audio.T, sr, i, len(options['input_audio']))
for instrum in model.instruments:
output_name = os.path.splitext(os.path.basename(input_audio))[0] + '_{}.{}'.format(instrum, output_extension)
if options["restore_gain"] is True: #restoring original gain
result[instrum] = dBgain(result[instrum], -options['input_gain'])
sf.write(output_folder + '/' + output_name, result[instrum], sample_rates[instrum], subtype=output_format)
print('File created: {}'.format(output_folder + '/' + output_name))
# instrumental part 1
# inst = (audio.T - result['vocals'])
inst = result['instrum']
if options["restore_gain"] is True: #restoring original gain
inst = dBgain(inst, -options['input_gain'])
output_name = os.path.splitext(os.path.basename(input_audio))[0] + '_{}.{}'.format('instrum', output_extension)
sf.write(output_folder + '/' + output_name, inst, sr, subtype=output_format)
print('File created: {}'.format(output_folder + '/' + output_name))
if options['vocals_only'] is False:
# instrumental part 2
inst2 = (result['bass'] + result['drums'] + result['other'])
output_name = os.path.splitext(os.path.basename(input_audio))[0] + '_{}.{}'.format('instrum2', output_extension)
sf.write(output_folder + '/' + output_name, inst2, sr, subtype=output_format)
print('File created: {}'.format(output_folder + '/' + output_name))
# Linkwitz-Riley filter
def lr_filter(audio, cutoff, filter_type, order=6, sr=44100):
audio = audio.T
nyquist = 0.5 * sr
normal_cutoff = cutoff / nyquist
b, a = signal.butter(order//2, normal_cutoff, btype=filter_type, analog=False)
sos = signal.tf2sos(b, a)
filtered_audio = signal.sosfiltfilt(sos, audio)
return filtered_audio.T
def match_array_shapes(array_1:np.ndarray, array_2:np.ndarray):
if array_1.shape[1] > array_2.shape[1]:
array_1 = array_1[:,:array_2.shape[1]]
elif array_1.shape[1] < array_2.shape[1]:
padding = array_2.shape[1] - array_1.shape[1]
array_1 = np.pad(array_1, ((0,0), (0,padding)), 'constant', constant_values=0)
return array_1
def dBgain(audio, volume_gain_dB):
attenuation = 10 ** (volume_gain_dB / 20)
gained_audio = audio * attenuation
return gained_audio
if __name__ == '__main__':
start_time = time()
print("started!\n")
m = argparse.ArgumentParser()
m.add_argument("--input_audio", "-i", nargs='+', type=str, help="Input audio location. You can provide multiple files at once", required=True)
m.add_argument("--output_folder", "-r", type=str, help="Output audio folder", required=True)
m.add_argument("--large_gpu", action='store_true', help="It will store all models on GPU for faster processing of multiple audio files. Requires 11 and more GB of free GPU memory.")
m.add_argument("--single_onnx", action='store_true', help="Only use single ONNX model for vocals. Can be useful if you have not enough GPU memory.")
m.add_argument("--cpu", action='store_true', help="Choose CPU instead of GPU for processing. Can be very slow.")
m.add_argument("--overlap_demucs", type=float, help="Overlap of splited audio for light models. Closer to 1.0 - slower", required=False, default=0.1)
m.add_argument("--overlap_VOCFT", type=float, help="Overlap of splited audio for heavy models. Closer to 1.0 - slower", required=False, default=0.1)
m.add_argument("--overlap_InstHQ4", type=float, help="Overlap of splited audio for heavy models. Closer to 1.0 - slower", required=False, default=0.1)
m.add_argument("--overlap_VitLarge", type=int, help="Overlap of splited audio for heavy models. Closer to 1.0 - slower", required=False, default=1)
m.add_argument("--overlap_InstVoc", type=int, help="MDXv3 overlap", required=False, default=2)
m.add_argument("--overlap_BSRoformer", type=int, help="BSRoformer overlap", required=False, default=2)
m.add_argument("--weight_InstVoc", type=float, help="Weight of MDXv3 model", required=False, default=4)
m.add_argument("--weight_VOCFT", type=float, help="Weight of VOC-FT model", required=False, default=1)
m.add_argument("--weight_InstHQ4", type=float, help="Weight of instHQ4 model", required=False, default=1)
m.add_argument("--weight_VitLarge", type=float, help="Weight of VitLarge model", required=False, default=1)
m.add_argument("--weight_BSRoformer", type=float, help="Weight of BS-Roformer model", required=False, default=10)
m.add_argument("--BigShifts", type=int, help="Managing MDX 'BigShifts' trick value.", required=False, default=7)
m.add_argument("--vocals_only", action='store_true', help="Vocals + instrumental only")
m.add_argument("--use_BSRoformer", action='store_true', help="use BSRoformer in vocal ensemble")
m.add_argument("--BSRoformer_model", type=str, help="Which checkpoint to use", required=False, default="ep_317_1297")
m.add_argument("--use_InstVoc", action='store_true', help="use instVoc in vocal ensemble")
m.add_argument("--use_VitLarge", action='store_true', help="use VitLarge in vocal ensemble")
m.add_argument("--use_InstHQ4", action='store_true', help="use InstHQ4 in vocal ensemble")
m.add_argument("--use_VOCFT", action='store_true', help="use VOCFT in vocal ensemble")
m.add_argument("--output_format", type=str, help="Output audio folder", default="float")
m.add_argument("--input_gain", type=int, help="input volume gain", required=False, default=0)
m.add_argument("--restore_gain", action='store_true', help="restore original gain after separation")
m.add_argument("--filter_vocals", action='store_true', help="Remove audio below 50hz in vocals stem")
options = m.parse_args().__dict__
print("Options: ")
print(f'Input Gain: {options["input_gain"]}dB')
print(f'Restore Gain: {options["restore_gain"]}')
print(f'BigShifts: {options["BigShifts"]}\n')
print(f'BSRoformer_model: {options["BSRoformer_model"]}')
print(f'weight_BSRoformer: {options["weight_BSRoformer"]}')
print(f'weight_InstVoc: {options["weight_InstVoc"]}\n')
print(f'use_VitLarge: {options["use_VitLarge"]}')
if options["use_VitLarge"] is True:
print(f'weight_VitLarge: {options["weight_VitLarge"]}\n')
print(f'use_VOCFT: {options["use_VOCFT"]}')
if options["use_VOCFT"] is True:
print(f'overlap_VOCFT: {options["overlap_VOCFT"]}')
print(f'weight_VOCFT: {options["weight_VOCFT"]}\n')
print(f'use_InstHQ4: {options["use_InstHQ4"]}')
if options["use_InstHQ4"] is True:
print(f'overlap_InstHQ4: {options["overlap_InstHQ4"]}')
print(f'weight_InstHQ4: {options["weight_InstHQ4"]}\n')
print(f'vocals_only: {options["vocals_only"]}')
if options["vocals_only"] is False:
print(f'overlap_demucs: {options["overlap_demucs"]}\n')
print(f'output_format: {options["output_format"]}\n')
predict_with_model(options)
print('Time: {:.0f} sec'.format(time() - start_time))
|