TTC4900Model / README.md
forthisdream's picture
forthisdream/ATSI-text-classification-model
992483c verified
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: TTC4900Model
    results: []

TTC4900Model

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0667
  • Accuracy: 0.9859
  • F1: 0.9418
  • Precision: 0.9562
  • Recall: 0.9309

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.5192 0.3289 50 0.9342 0.7575 0.1077 0.0947 0.125
0.6007 0.6579 100 0.4256 0.8767 0.3189 0.2983 0.3445
0.2704 0.9868 150 0.2471 0.9561 0.6877 0.6916 0.6917
0.1382 1.3158 200 0.1346 0.9727 0.8789 0.9054 0.8698
0.1132 1.6447 250 0.0824 0.9876 0.9350 0.9701 0.9103
0.0981 1.9737 300 0.0431 0.9942 0.9749 0.9892 0.9635
0.0369 2.3026 350 0.0466 0.9892 0.9376 0.9576 0.9275
0.0373 2.6316 400 0.0413 0.9909 0.9602 0.9580 0.9630
0.0235 2.9605 450 0.0407 0.9909 0.9613 0.9600 0.9630

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Tokenizers 0.19.1