florentgbelidji
HF Staff
Add new SentenceTransformer model trained with SetFit on tweet_eval, emotion
63f01ba
| pipeline_tag: sentence-similarity | |
| tags: | |
| - sentence-transformers | |
| - feature-extraction | |
| - sentence-similarity | |
| # florentgbelidji/setfit_emotion | |
| This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. | |
| <!--- Describe your model here --> | |
| ## Usage (Sentence-Transformers) | |
| Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: | |
| ``` | |
| pip install -U sentence-transformers | |
| ``` | |
| Then you can use the model like this: | |
| ```python | |
| from sentence_transformers import SentenceTransformer | |
| sentences = ["This is an example sentence", "Each sentence is converted"] | |
| model = SentenceTransformer('florentgbelidji/setfit_emotion') | |
| embeddings = model.encode(sentences) | |
| print(embeddings) | |
| ``` | |
| ## Evaluation Results | |
| <!--- Describe how your model was evaluated --> | |
| For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=florentgbelidji/setfit_emotion) | |
| ## Training | |
| The model was trained with the parameters: | |
| **DataLoader**: | |
| `torch.utils.data.dataloader.DataLoader` of length 203 with parameters: | |
| ``` | |
| {'batch_size': 16, 'sampler': 'torch.utils.data.dataloader._InfiniteConstantSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} | |
| ``` | |
| **Loss**: | |
| `sentence_transformers.losses.BatchHardTripletLoss.BatchHardTripletLoss` | |
| Parameters of the fit()-Method: | |
| ``` | |
| { | |
| "epochs": 1, | |
| "evaluation_steps": 0, | |
| "evaluator": "NoneType", | |
| "max_grad_norm": 1, | |
| "optimizer_class": "<class 'transformers.optimization.AdamW'>", | |
| "optimizer_params": { | |
| "lr": 2e-05 | |
| }, | |
| "scheduler": "WarmupLinear", | |
| "steps_per_epoch": 4060, | |
| "warmup_steps": 406, | |
| "weight_decay": 0.01 | |
| } | |
| ``` | |
| ## Full Model Architecture | |
| ``` | |
| SentenceTransformer( | |
| (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel | |
| (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) | |
| (2): Normalize() | |
| ) | |
| ``` | |
| ## Citing & Authors | |
| <!--- Describe where people can find more information --> |