metadata
			language: en
license: mit
library_name: timm
tags:
  - image-classification
  - resnet18
  - cifar10
datasets: cifar10
metrics:
  - accuracy
model-index:
  - name: resnet18_cifar10
    results:
      - task:
          type: image-classification
        dataset:
          name: CIFAR-10
          type: cifar10
        metrics:
          - type: accuracy
            value: 0.9498
Model Card for Model ID
This model is a small resnet18 trained on cifar10.
- Test Accuracy: 0.9498
 - License: MIT
 
How to Get Started with the Model
Use the code below to get started with the model.
import detectors
import timm
model = timm.create_model("resnet18_cifar10", pretrained=True)
Training Data
Training data is cifar10.
Training Hyperparameters
config:
scripts/train_configs/cifar10.jsonmodel:
resnet18_cifar10dataset:
cifar10batch_size:
128epochs:
300validation_frequency:
5seed:
1criterion:
CrossEntropyLosscriterion_kwargs:
{}optimizer:
SGDlr:
0.1optimizer_kwargs:
{'momentum': 0.9, 'weight_decay': 0.0005, 'nesterov': 'True'}scheduler:
ReduceLROnPlateauscheduler_kwargs:
{'factor': 0.1, 'patience': 3, 'threshold': 0.001, 'mode': 'max'}debug:
False
Testing Data
Testing data is cifar10.
This model card was created by Eduardo Dadalto.