Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,371 +1,41 @@
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
- sentence-transformers
|
4 |
-
-
|
5 |
- feature-extraction
|
6 |
-
|
7 |
-
|
8 |
-
-
|
9 |
-
|
10 |
-
|
11 |
-
widget:
|
12 |
-
- source_sentence: launch library
|
13 |
-
sentences:
|
14 |
-
- take me to the library
|
15 |
-
- decrease volume
|
16 |
-
- what is happening in bali
|
17 |
-
- source_sentence: show news 4
|
18 |
-
sentences:
|
19 |
-
- boot protocol space
|
20 |
-
- end protocol space
|
21 |
-
- volume on
|
22 |
-
- source_sentence: navigate to bandung
|
23 |
-
sentences:
|
24 |
-
- enable map outlines
|
25 |
-
- stop protocol space
|
26 |
-
- adlas
|
27 |
-
- source_sentence: take me to video 4
|
28 |
-
sentences:
|
29 |
-
- go back
|
30 |
-
- unmute video
|
31 |
-
- fullscreen
|
32 |
-
- source_sentence: news in london
|
33 |
-
sentences:
|
34 |
-
- rewind
|
35 |
-
- news in jakarta
|
36 |
-
- tap london
|
37 |
-
pipeline_tag: sentence-similarity
|
38 |
-
library_name: sentence-transformers
|
39 |
---
|
40 |
|
41 |
-
#
|
42 |
|
43 |
-
This is a
|
44 |
-
|
45 |
-
## Model Details
|
46 |
-
|
47 |
-
### Model Description
|
48 |
-
- **Model Type:** Sentence Transformer
|
49 |
-
- **Base model:** [sentence-transformers/paraphrase-MiniLM-L3-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L3-v2) <!-- at revision 4ca70771034acceecb2e72475f72050fcdde4ddc -->
|
50 |
-
- **Maximum Sequence Length:** 128 tokens
|
51 |
-
- **Output Dimensionality:** 384 dimensions
|
52 |
-
- **Similarity Function:** Cosine Similarity
|
53 |
-
<!-- - **Training Dataset:** Unknown -->
|
54 |
-
<!-- - **Language:** Unknown -->
|
55 |
-
<!-- - **License:** Unknown -->
|
56 |
-
|
57 |
-
### Model Sources
|
58 |
-
|
59 |
-
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
60 |
-
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
61 |
-
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
62 |
-
|
63 |
-
### Full Model Architecture
|
64 |
-
|
65 |
-
```
|
66 |
-
SentenceTransformer(
|
67 |
-
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'BertModel'})
|
68 |
-
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
69 |
-
)
|
70 |
-
```
|
71 |
|
72 |
## Usage
|
73 |
|
74 |
-
### Direct Usage (Sentence Transformers)
|
75 |
-
|
76 |
-
First install the Sentence Transformers library:
|
77 |
-
|
78 |
-
```bash
|
79 |
-
pip install -U sentence-transformers
|
80 |
-
```
|
81 |
-
|
82 |
-
Then you can load this model and run inference.
|
83 |
```python
|
84 |
from sentence_transformers import SentenceTransformer
|
85 |
-
|
86 |
-
|
87 |
-
model = SentenceTransformer("drithh/intent-classifier")
|
88 |
-
# Run inference
|
89 |
-
sentences = [
|
90 |
-
'news in london',
|
91 |
-
'news in jakarta',
|
92 |
-
'tap london',
|
93 |
-
]
|
94 |
-
embeddings = model.encode(sentences)
|
95 |
-
print(embeddings.shape)
|
96 |
-
# [3, 384]
|
97 |
-
|
98 |
-
# Get the similarity scores for the embeddings
|
99 |
-
similarities = model.similarity(embeddings, embeddings)
|
100 |
-
print(similarities)
|
101 |
-
# tensor([[ 1.0000, 0.9868, -0.0169],
|
102 |
-
# [ 0.9868, 1.0000, -0.0386],
|
103 |
-
# [-0.0169, -0.0386, 1.0000]])
|
104 |
```
|
105 |
|
106 |
-
|
107 |
-
### Direct Usage (Transformers)
|
108 |
-
|
109 |
-
<details><summary>Click to see the direct usage in Transformers</summary>
|
110 |
-
|
111 |
-
</details>
|
112 |
-
-->
|
113 |
-
|
114 |
-
<!--
|
115 |
-
### Downstream Usage (Sentence Transformers)
|
116 |
-
|
117 |
-
You can finetune this model on your own dataset.
|
118 |
-
|
119 |
-
<details><summary>Click to expand</summary>
|
120 |
-
|
121 |
-
</details>
|
122 |
-
-->
|
123 |
-
|
124 |
-
<!--
|
125 |
-
### Out-of-Scope Use
|
126 |
-
|
127 |
-
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
128 |
-
-->
|
129 |
-
|
130 |
-
<!--
|
131 |
-
## Bias, Risks and Limitations
|
132 |
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
-
|
137 |
-
### Recommendations
|
138 |
-
|
139 |
-
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
140 |
-
-->
|
141 |
-
|
142 |
-
## Training Details
|
143 |
-
|
144 |
-
### Training Dataset
|
145 |
-
|
146 |
-
#### Unnamed Dataset
|
147 |
-
|
148 |
-
* Size: 139,128 training samples
|
149 |
-
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
150 |
-
* Approximate statistics based on the first 1000 samples:
|
151 |
-
| | sentence_0 | sentence_1 | label |
|
152 |
-
|:--------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
153 |
-
| type | string | string | float |
|
154 |
-
| details | <ul><li>min: 3 tokens</li><li>mean: 4.71 tokens</li><li>max: 8 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 4.84 tokens</li><li>max: 8 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.04</li><li>max: 1.0</li></ul> |
|
155 |
-
* Samples:
|
156 |
-
| sentence_0 | sentence_1 | label |
|
157 |
-
|:------------------------------------|:----------------------------------|:-----------------|
|
158 |
-
| <code>clear boundaries</code> | <code>cancel protocol cove</code> | <code>0.0</code> |
|
159 |
-
| <code>take me to the library</code> | <code>show news bali</code> | <code>0.0</code> |
|
160 |
-
| <code>play video 3</code> | <code>fullscreen</code> | <code>0.0</code> |
|
161 |
-
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
162 |
-
```json
|
163 |
-
{
|
164 |
-
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
165 |
-
}
|
166 |
-
```
|
167 |
-
|
168 |
-
### Training Hyperparameters
|
169 |
-
#### Non-Default Hyperparameters
|
170 |
-
|
171 |
-
- `per_device_train_batch_size`: 32
|
172 |
-
- `per_device_eval_batch_size`: 32
|
173 |
-
- `multi_dataset_batch_sampler`: round_robin
|
174 |
-
|
175 |
-
#### All Hyperparameters
|
176 |
-
<details><summary>Click to expand</summary>
|
177 |
-
|
178 |
-
- `overwrite_output_dir`: False
|
179 |
-
- `do_predict`: False
|
180 |
-
- `eval_strategy`: no
|
181 |
-
- `prediction_loss_only`: True
|
182 |
-
- `per_device_train_batch_size`: 32
|
183 |
-
- `per_device_eval_batch_size`: 32
|
184 |
-
- `per_gpu_train_batch_size`: None
|
185 |
-
- `per_gpu_eval_batch_size`: None
|
186 |
-
- `gradient_accumulation_steps`: 1
|
187 |
-
- `eval_accumulation_steps`: None
|
188 |
-
- `torch_empty_cache_steps`: None
|
189 |
-
- `learning_rate`: 5e-05
|
190 |
-
- `weight_decay`: 0.0
|
191 |
-
- `adam_beta1`: 0.9
|
192 |
-
- `adam_beta2`: 0.999
|
193 |
-
- `adam_epsilon`: 1e-08
|
194 |
-
- `max_grad_norm`: 1
|
195 |
-
- `num_train_epochs`: 3
|
196 |
-
- `max_steps`: -1
|
197 |
-
- `lr_scheduler_type`: linear
|
198 |
-
- `lr_scheduler_kwargs`: {}
|
199 |
-
- `warmup_ratio`: 0.0
|
200 |
-
- `warmup_steps`: 0
|
201 |
-
- `log_level`: passive
|
202 |
-
- `log_level_replica`: warning
|
203 |
-
- `log_on_each_node`: True
|
204 |
-
- `logging_nan_inf_filter`: True
|
205 |
-
- `save_safetensors`: True
|
206 |
-
- `save_on_each_node`: False
|
207 |
-
- `save_only_model`: False
|
208 |
-
- `restore_callback_states_from_checkpoint`: False
|
209 |
-
- `no_cuda`: False
|
210 |
-
- `use_cpu`: False
|
211 |
-
- `use_mps_device`: False
|
212 |
-
- `seed`: 42
|
213 |
-
- `data_seed`: None
|
214 |
-
- `jit_mode_eval`: False
|
215 |
-
- `use_ipex`: False
|
216 |
-
- `bf16`: False
|
217 |
-
- `fp16`: False
|
218 |
-
- `fp16_opt_level`: O1
|
219 |
-
- `half_precision_backend`: auto
|
220 |
-
- `bf16_full_eval`: False
|
221 |
-
- `fp16_full_eval`: False
|
222 |
-
- `tf32`: None
|
223 |
-
- `local_rank`: 0
|
224 |
-
- `ddp_backend`: None
|
225 |
-
- `tpu_num_cores`: None
|
226 |
-
- `tpu_metrics_debug`: False
|
227 |
-
- `debug`: []
|
228 |
-
- `dataloader_drop_last`: False
|
229 |
-
- `dataloader_num_workers`: 0
|
230 |
-
- `dataloader_prefetch_factor`: None
|
231 |
-
- `past_index`: -1
|
232 |
-
- `disable_tqdm`: False
|
233 |
-
- `remove_unused_columns`: True
|
234 |
-
- `label_names`: None
|
235 |
-
- `load_best_model_at_end`: False
|
236 |
-
- `ignore_data_skip`: False
|
237 |
-
- `fsdp`: []
|
238 |
-
- `fsdp_min_num_params`: 0
|
239 |
-
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
240 |
-
- `fsdp_transformer_layer_cls_to_wrap`: None
|
241 |
-
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
242 |
-
- `deepspeed`: None
|
243 |
-
- `label_smoothing_factor`: 0.0
|
244 |
-
- `optim`: adamw_torch
|
245 |
-
- `optim_args`: None
|
246 |
-
- `adafactor`: False
|
247 |
-
- `group_by_length`: False
|
248 |
-
- `length_column_name`: length
|
249 |
-
- `ddp_find_unused_parameters`: None
|
250 |
-
- `ddp_bucket_cap_mb`: None
|
251 |
-
- `ddp_broadcast_buffers`: False
|
252 |
-
- `dataloader_pin_memory`: True
|
253 |
-
- `dataloader_persistent_workers`: False
|
254 |
-
- `skip_memory_metrics`: True
|
255 |
-
- `use_legacy_prediction_loop`: False
|
256 |
-
- `push_to_hub`: False
|
257 |
-
- `resume_from_checkpoint`: None
|
258 |
-
- `hub_model_id`: None
|
259 |
-
- `hub_strategy`: every_save
|
260 |
-
- `hub_private_repo`: None
|
261 |
-
- `hub_always_push`: False
|
262 |
-
- `hub_revision`: None
|
263 |
-
- `gradient_checkpointing`: False
|
264 |
-
- `gradient_checkpointing_kwargs`: None
|
265 |
-
- `include_inputs_for_metrics`: False
|
266 |
-
- `include_for_metrics`: []
|
267 |
-
- `eval_do_concat_batches`: True
|
268 |
-
- `fp16_backend`: auto
|
269 |
-
- `push_to_hub_model_id`: None
|
270 |
-
- `push_to_hub_organization`: None
|
271 |
-
- `mp_parameters`:
|
272 |
-
- `auto_find_batch_size`: False
|
273 |
-
- `full_determinism`: False
|
274 |
-
- `torchdynamo`: None
|
275 |
-
- `ray_scope`: last
|
276 |
-
- `ddp_timeout`: 1800
|
277 |
-
- `torch_compile`: False
|
278 |
-
- `torch_compile_backend`: None
|
279 |
-
- `torch_compile_mode`: None
|
280 |
-
- `include_tokens_per_second`: False
|
281 |
-
- `include_num_input_tokens_seen`: False
|
282 |
-
- `neftune_noise_alpha`: None
|
283 |
-
- `optim_target_modules`: None
|
284 |
-
- `batch_eval_metrics`: False
|
285 |
-
- `eval_on_start`: False
|
286 |
-
- `use_liger_kernel`: False
|
287 |
-
- `liger_kernel_config`: None
|
288 |
-
- `eval_use_gather_object`: False
|
289 |
-
- `average_tokens_across_devices`: False
|
290 |
-
- `prompts`: None
|
291 |
-
- `batch_sampler`: batch_sampler
|
292 |
-
- `multi_dataset_batch_sampler`: round_robin
|
293 |
-
- `router_mapping`: {}
|
294 |
-
- `learning_rate_mapping`: {}
|
295 |
-
|
296 |
-
</details>
|
297 |
-
|
298 |
-
### Training Logs
|
299 |
-
| Epoch | Step | Training Loss |
|
300 |
-
|:------:|:-----:|:-------------:|
|
301 |
-
| 0.1150 | 500 | 0.0288 |
|
302 |
-
| 0.2300 | 1000 | 0.0206 |
|
303 |
-
| 0.3450 | 1500 | 0.0161 |
|
304 |
-
| 0.4600 | 2000 | 0.0125 |
|
305 |
-
| 0.5750 | 2500 | 0.0095 |
|
306 |
-
| 0.6900 | 3000 | 0.0067 |
|
307 |
-
| 0.8050 | 3500 | 0.0047 |
|
308 |
-
| 0.9200 | 4000 | 0.0037 |
|
309 |
-
| 1.0350 | 4500 | 0.0032 |
|
310 |
-
| 1.1500 | 5000 | 0.0027 |
|
311 |
-
| 1.2649 | 5500 | 0.0024 |
|
312 |
-
| 1.3799 | 6000 | 0.0022 |
|
313 |
-
| 1.4949 | 6500 | 0.002 |
|
314 |
-
| 1.6099 | 7000 | 0.0018 |
|
315 |
-
| 1.7249 | 7500 | 0.0017 |
|
316 |
-
| 1.8399 | 8000 | 0.0016 |
|
317 |
-
| 1.9549 | 8500 | 0.0015 |
|
318 |
-
| 2.0699 | 9000 | 0.0014 |
|
319 |
-
| 2.1849 | 9500 | 0.0013 |
|
320 |
-
| 2.2999 | 10000 | 0.0013 |
|
321 |
-
| 2.4149 | 10500 | 0.0012 |
|
322 |
-
| 2.5299 | 11000 | 0.0012 |
|
323 |
-
| 2.6449 | 11500 | 0.0012 |
|
324 |
-
| 2.7599 | 12000 | 0.0012 |
|
325 |
-
| 2.8749 | 12500 | 0.0011 |
|
326 |
-
| 2.9899 | 13000 | 0.0011 |
|
327 |
-
|
328 |
-
|
329 |
-
### Framework Versions
|
330 |
-
- Python: 3.13.1
|
331 |
-
- Sentence Transformers: 5.0.0
|
332 |
-
- Transformers: 4.53.2
|
333 |
-
- PyTorch: 2.7.1
|
334 |
-
- Accelerate: 1.9.0
|
335 |
-
- Datasets: 4.0.0
|
336 |
-
- Tokenizers: 0.21.2
|
337 |
-
|
338 |
-
## Citation
|
339 |
-
|
340 |
-
### BibTeX
|
341 |
-
|
342 |
-
#### Sentence Transformers
|
343 |
-
```bibtex
|
344 |
-
@inproceedings{reimers-2019-sentence-bert,
|
345 |
-
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
346 |
-
author = "Reimers, Nils and Gurevych, Iryna",
|
347 |
-
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
348 |
-
month = "11",
|
349 |
-
year = "2019",
|
350 |
-
publisher = "Association for Computational Linguistics",
|
351 |
-
url = "https://arxiv.org/abs/1908.10084",
|
352 |
-
}
|
353 |
-
```
|
354 |
-
|
355 |
-
<!--
|
356 |
-
## Glossary
|
357 |
-
|
358 |
-
*Clearly define terms in order to be accessible across audiences.*
|
359 |
-
-->
|
360 |
-
|
361 |
-
<!--
|
362 |
-
## Model Card Authors
|
363 |
-
|
364 |
-
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
365 |
-
-->
|
366 |
-
|
367 |
-
<!--
|
368 |
-
## Model Card Contact
|
369 |
|
370 |
-
|
371 |
-
|
|
|
|
|
|
1 |
---
|
2 |
+
language: en
|
3 |
tags:
|
4 |
- sentence-transformers
|
5 |
+
- intent-classification
|
6 |
- feature-extraction
|
7 |
+
license: mit
|
8 |
+
datasets:
|
9 |
+
- custom
|
10 |
+
metrics:
|
11 |
+
- cosine-similarity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
---
|
13 |
|
14 |
+
# Intent Classification Model
|
15 |
|
16 |
+
This is a fine-tuned SentenceTransformer model for intent classification. It was trained on custom intent data including navigation, media controls, library management, and protocol activation commands.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
## Usage
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
```python
|
21 |
from sentence_transformers import SentenceTransformer
|
22 |
+
model = SentenceTransformer('drithh/intent-classifier')
|
23 |
+
embeddings = model.encode("go to London")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
```
|
25 |
|
26 |
+
## Supported Intents
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
- **Navigation**: go to LOCATION, navigate to LOCATION
|
29 |
+
- **Atlas**: open atlas, launch atlas
|
30 |
+
- **Map Controls**: select LOCATION, show boundaries, hide boundaries
|
31 |
+
- **Library**: open library, close library, go to video NUMBER
|
32 |
+
- **Media Controls**: play video, pause video, rewind, forward
|
33 |
+
- **News**: show news LOCATION, hide news
|
34 |
+
- **Protocols**: activate PROTOCOL, deactivate PROTOCOL
|
35 |
|
36 |
+
## Model Details
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
- **Base Model**: sentence-transformers/paraphrase-MiniLM-L3-v2
|
39 |
+
- **Fine-tuning**: Cosine similarity loss
|
40 |
+
- **Embedding Dimensions**: 384
|
41 |
+
- **Training Data**: 139,128 training pairs
|