drithh commited on
Commit
60ae298
·
verified ·
1 Parent(s): 7a7334c

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +24 -354
README.md CHANGED
@@ -1,371 +1,41 @@
1
  ---
 
2
  tags:
3
  - sentence-transformers
4
- - sentence-similarity
5
  - feature-extraction
6
- - dense
7
- - generated_from_trainer
8
- - dataset_size:139128
9
- - loss:CosineSimilarityLoss
10
- base_model: sentence-transformers/paraphrase-MiniLM-L3-v2
11
- widget:
12
- - source_sentence: launch library
13
- sentences:
14
- - take me to the library
15
- - decrease volume
16
- - what is happening in bali
17
- - source_sentence: show news 4
18
- sentences:
19
- - boot protocol space
20
- - end protocol space
21
- - volume on
22
- - source_sentence: navigate to bandung
23
- sentences:
24
- - enable map outlines
25
- - stop protocol space
26
- - adlas
27
- - source_sentence: take me to video 4
28
- sentences:
29
- - go back
30
- - unmute video
31
- - fullscreen
32
- - source_sentence: news in london
33
- sentences:
34
- - rewind
35
- - news in jakarta
36
- - tap london
37
- pipeline_tag: sentence-similarity
38
- library_name: sentence-transformers
39
  ---
40
 
41
- # SentenceTransformer based on sentence-transformers/paraphrase-MiniLM-L3-v2
42
 
43
- This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-MiniLM-L3-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L3-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
44
-
45
- ## Model Details
46
-
47
- ### Model Description
48
- - **Model Type:** Sentence Transformer
49
- - **Base model:** [sentence-transformers/paraphrase-MiniLM-L3-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L3-v2) <!-- at revision 4ca70771034acceecb2e72475f72050fcdde4ddc -->
50
- - **Maximum Sequence Length:** 128 tokens
51
- - **Output Dimensionality:** 384 dimensions
52
- - **Similarity Function:** Cosine Similarity
53
- <!-- - **Training Dataset:** Unknown -->
54
- <!-- - **Language:** Unknown -->
55
- <!-- - **License:** Unknown -->
56
-
57
- ### Model Sources
58
-
59
- - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
60
- - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
61
- - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
62
-
63
- ### Full Model Architecture
64
-
65
- ```
66
- SentenceTransformer(
67
- (0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'BertModel'})
68
- (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
69
- )
70
- ```
71
 
72
  ## Usage
73
 
74
- ### Direct Usage (Sentence Transformers)
75
-
76
- First install the Sentence Transformers library:
77
-
78
- ```bash
79
- pip install -U sentence-transformers
80
- ```
81
-
82
- Then you can load this model and run inference.
83
  ```python
84
  from sentence_transformers import SentenceTransformer
85
-
86
- # Download from the 🤗 Hub
87
- model = SentenceTransformer("drithh/intent-classifier")
88
- # Run inference
89
- sentences = [
90
- 'news in london',
91
- 'news in jakarta',
92
- 'tap london',
93
- ]
94
- embeddings = model.encode(sentences)
95
- print(embeddings.shape)
96
- # [3, 384]
97
-
98
- # Get the similarity scores for the embeddings
99
- similarities = model.similarity(embeddings, embeddings)
100
- print(similarities)
101
- # tensor([[ 1.0000, 0.9868, -0.0169],
102
- # [ 0.9868, 1.0000, -0.0386],
103
- # [-0.0169, -0.0386, 1.0000]])
104
  ```
105
 
106
- <!--
107
- ### Direct Usage (Transformers)
108
-
109
- <details><summary>Click to see the direct usage in Transformers</summary>
110
-
111
- </details>
112
- -->
113
-
114
- <!--
115
- ### Downstream Usage (Sentence Transformers)
116
-
117
- You can finetune this model on your own dataset.
118
-
119
- <details><summary>Click to expand</summary>
120
-
121
- </details>
122
- -->
123
-
124
- <!--
125
- ### Out-of-Scope Use
126
-
127
- *List how the model may foreseeably be misused and address what users ought not to do with the model.*
128
- -->
129
-
130
- <!--
131
- ## Bias, Risks and Limitations
132
 
133
- *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
134
- -->
 
 
 
 
 
135
 
136
- <!--
137
- ### Recommendations
138
-
139
- *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
140
- -->
141
-
142
- ## Training Details
143
-
144
- ### Training Dataset
145
-
146
- #### Unnamed Dataset
147
-
148
- * Size: 139,128 training samples
149
- * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
150
- * Approximate statistics based on the first 1000 samples:
151
- | | sentence_0 | sentence_1 | label |
152
- |:--------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------|
153
- | type | string | string | float |
154
- | details | <ul><li>min: 3 tokens</li><li>mean: 4.71 tokens</li><li>max: 8 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 4.84 tokens</li><li>max: 8 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.04</li><li>max: 1.0</li></ul> |
155
- * Samples:
156
- | sentence_0 | sentence_1 | label |
157
- |:------------------------------------|:----------------------------------|:-----------------|
158
- | <code>clear boundaries</code> | <code>cancel protocol cove</code> | <code>0.0</code> |
159
- | <code>take me to the library</code> | <code>show news bali</code> | <code>0.0</code> |
160
- | <code>play video 3</code> | <code>fullscreen</code> | <code>0.0</code> |
161
- * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
162
- ```json
163
- {
164
- "loss_fct": "torch.nn.modules.loss.MSELoss"
165
- }
166
- ```
167
-
168
- ### Training Hyperparameters
169
- #### Non-Default Hyperparameters
170
-
171
- - `per_device_train_batch_size`: 32
172
- - `per_device_eval_batch_size`: 32
173
- - `multi_dataset_batch_sampler`: round_robin
174
-
175
- #### All Hyperparameters
176
- <details><summary>Click to expand</summary>
177
-
178
- - `overwrite_output_dir`: False
179
- - `do_predict`: False
180
- - `eval_strategy`: no
181
- - `prediction_loss_only`: True
182
- - `per_device_train_batch_size`: 32
183
- - `per_device_eval_batch_size`: 32
184
- - `per_gpu_train_batch_size`: None
185
- - `per_gpu_eval_batch_size`: None
186
- - `gradient_accumulation_steps`: 1
187
- - `eval_accumulation_steps`: None
188
- - `torch_empty_cache_steps`: None
189
- - `learning_rate`: 5e-05
190
- - `weight_decay`: 0.0
191
- - `adam_beta1`: 0.9
192
- - `adam_beta2`: 0.999
193
- - `adam_epsilon`: 1e-08
194
- - `max_grad_norm`: 1
195
- - `num_train_epochs`: 3
196
- - `max_steps`: -1
197
- - `lr_scheduler_type`: linear
198
- - `lr_scheduler_kwargs`: {}
199
- - `warmup_ratio`: 0.0
200
- - `warmup_steps`: 0
201
- - `log_level`: passive
202
- - `log_level_replica`: warning
203
- - `log_on_each_node`: True
204
- - `logging_nan_inf_filter`: True
205
- - `save_safetensors`: True
206
- - `save_on_each_node`: False
207
- - `save_only_model`: False
208
- - `restore_callback_states_from_checkpoint`: False
209
- - `no_cuda`: False
210
- - `use_cpu`: False
211
- - `use_mps_device`: False
212
- - `seed`: 42
213
- - `data_seed`: None
214
- - `jit_mode_eval`: False
215
- - `use_ipex`: False
216
- - `bf16`: False
217
- - `fp16`: False
218
- - `fp16_opt_level`: O1
219
- - `half_precision_backend`: auto
220
- - `bf16_full_eval`: False
221
- - `fp16_full_eval`: False
222
- - `tf32`: None
223
- - `local_rank`: 0
224
- - `ddp_backend`: None
225
- - `tpu_num_cores`: None
226
- - `tpu_metrics_debug`: False
227
- - `debug`: []
228
- - `dataloader_drop_last`: False
229
- - `dataloader_num_workers`: 0
230
- - `dataloader_prefetch_factor`: None
231
- - `past_index`: -1
232
- - `disable_tqdm`: False
233
- - `remove_unused_columns`: True
234
- - `label_names`: None
235
- - `load_best_model_at_end`: False
236
- - `ignore_data_skip`: False
237
- - `fsdp`: []
238
- - `fsdp_min_num_params`: 0
239
- - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
240
- - `fsdp_transformer_layer_cls_to_wrap`: None
241
- - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
242
- - `deepspeed`: None
243
- - `label_smoothing_factor`: 0.0
244
- - `optim`: adamw_torch
245
- - `optim_args`: None
246
- - `adafactor`: False
247
- - `group_by_length`: False
248
- - `length_column_name`: length
249
- - `ddp_find_unused_parameters`: None
250
- - `ddp_bucket_cap_mb`: None
251
- - `ddp_broadcast_buffers`: False
252
- - `dataloader_pin_memory`: True
253
- - `dataloader_persistent_workers`: False
254
- - `skip_memory_metrics`: True
255
- - `use_legacy_prediction_loop`: False
256
- - `push_to_hub`: False
257
- - `resume_from_checkpoint`: None
258
- - `hub_model_id`: None
259
- - `hub_strategy`: every_save
260
- - `hub_private_repo`: None
261
- - `hub_always_push`: False
262
- - `hub_revision`: None
263
- - `gradient_checkpointing`: False
264
- - `gradient_checkpointing_kwargs`: None
265
- - `include_inputs_for_metrics`: False
266
- - `include_for_metrics`: []
267
- - `eval_do_concat_batches`: True
268
- - `fp16_backend`: auto
269
- - `push_to_hub_model_id`: None
270
- - `push_to_hub_organization`: None
271
- - `mp_parameters`:
272
- - `auto_find_batch_size`: False
273
- - `full_determinism`: False
274
- - `torchdynamo`: None
275
- - `ray_scope`: last
276
- - `ddp_timeout`: 1800
277
- - `torch_compile`: False
278
- - `torch_compile_backend`: None
279
- - `torch_compile_mode`: None
280
- - `include_tokens_per_second`: False
281
- - `include_num_input_tokens_seen`: False
282
- - `neftune_noise_alpha`: None
283
- - `optim_target_modules`: None
284
- - `batch_eval_metrics`: False
285
- - `eval_on_start`: False
286
- - `use_liger_kernel`: False
287
- - `liger_kernel_config`: None
288
- - `eval_use_gather_object`: False
289
- - `average_tokens_across_devices`: False
290
- - `prompts`: None
291
- - `batch_sampler`: batch_sampler
292
- - `multi_dataset_batch_sampler`: round_robin
293
- - `router_mapping`: {}
294
- - `learning_rate_mapping`: {}
295
-
296
- </details>
297
-
298
- ### Training Logs
299
- | Epoch | Step | Training Loss |
300
- |:------:|:-----:|:-------------:|
301
- | 0.1150 | 500 | 0.0288 |
302
- | 0.2300 | 1000 | 0.0206 |
303
- | 0.3450 | 1500 | 0.0161 |
304
- | 0.4600 | 2000 | 0.0125 |
305
- | 0.5750 | 2500 | 0.0095 |
306
- | 0.6900 | 3000 | 0.0067 |
307
- | 0.8050 | 3500 | 0.0047 |
308
- | 0.9200 | 4000 | 0.0037 |
309
- | 1.0350 | 4500 | 0.0032 |
310
- | 1.1500 | 5000 | 0.0027 |
311
- | 1.2649 | 5500 | 0.0024 |
312
- | 1.3799 | 6000 | 0.0022 |
313
- | 1.4949 | 6500 | 0.002 |
314
- | 1.6099 | 7000 | 0.0018 |
315
- | 1.7249 | 7500 | 0.0017 |
316
- | 1.8399 | 8000 | 0.0016 |
317
- | 1.9549 | 8500 | 0.0015 |
318
- | 2.0699 | 9000 | 0.0014 |
319
- | 2.1849 | 9500 | 0.0013 |
320
- | 2.2999 | 10000 | 0.0013 |
321
- | 2.4149 | 10500 | 0.0012 |
322
- | 2.5299 | 11000 | 0.0012 |
323
- | 2.6449 | 11500 | 0.0012 |
324
- | 2.7599 | 12000 | 0.0012 |
325
- | 2.8749 | 12500 | 0.0011 |
326
- | 2.9899 | 13000 | 0.0011 |
327
-
328
-
329
- ### Framework Versions
330
- - Python: 3.13.1
331
- - Sentence Transformers: 5.0.0
332
- - Transformers: 4.53.2
333
- - PyTorch: 2.7.1
334
- - Accelerate: 1.9.0
335
- - Datasets: 4.0.0
336
- - Tokenizers: 0.21.2
337
-
338
- ## Citation
339
-
340
- ### BibTeX
341
-
342
- #### Sentence Transformers
343
- ```bibtex
344
- @inproceedings{reimers-2019-sentence-bert,
345
- title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
346
- author = "Reimers, Nils and Gurevych, Iryna",
347
- booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
348
- month = "11",
349
- year = "2019",
350
- publisher = "Association for Computational Linguistics",
351
- url = "https://arxiv.org/abs/1908.10084",
352
- }
353
- ```
354
-
355
- <!--
356
- ## Glossary
357
-
358
- *Clearly define terms in order to be accessible across audiences.*
359
- -->
360
-
361
- <!--
362
- ## Model Card Authors
363
-
364
- *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
365
- -->
366
-
367
- <!--
368
- ## Model Card Contact
369
 
370
- *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
371
- -->
 
 
 
1
  ---
2
+ language: en
3
  tags:
4
  - sentence-transformers
5
+ - intent-classification
6
  - feature-extraction
7
+ license: mit
8
+ datasets:
9
+ - custom
10
+ metrics:
11
+ - cosine-similarity
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  ---
13
 
14
+ # Intent Classification Model
15
 
16
+ This is a fine-tuned SentenceTransformer model for intent classification. It was trained on custom intent data including navigation, media controls, library management, and protocol activation commands.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
  ## Usage
19
 
 
 
 
 
 
 
 
 
 
20
  ```python
21
  from sentence_transformers import SentenceTransformer
22
+ model = SentenceTransformer('drithh/intent-classifier')
23
+ embeddings = model.encode("go to London")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  ```
25
 
26
+ ## Supported Intents
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
+ - **Navigation**: go to LOCATION, navigate to LOCATION
29
+ - **Atlas**: open atlas, launch atlas
30
+ - **Map Controls**: select LOCATION, show boundaries, hide boundaries
31
+ - **Library**: open library, close library, go to video NUMBER
32
+ - **Media Controls**: play video, pause video, rewind, forward
33
+ - **News**: show news LOCATION, hide news
34
+ - **Protocols**: activate PROTOCOL, deactivate PROTOCOL
35
 
36
+ ## Model Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
+ - **Base Model**: sentence-transformers/paraphrase-MiniLM-L3-v2
39
+ - **Fine-tuning**: Cosine similarity loss
40
+ - **Embedding Dimensions**: 384
41
+ - **Training Data**: 139,128 training pairs