drithh commited on
Commit
7a7334c
·
verified ·
1 Parent(s): 03004e1

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,371 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - dense
7
+ - generated_from_trainer
8
+ - dataset_size:139128
9
+ - loss:CosineSimilarityLoss
10
+ base_model: sentence-transformers/paraphrase-MiniLM-L3-v2
11
+ widget:
12
+ - source_sentence: launch library
13
+ sentences:
14
+ - take me to the library
15
+ - decrease volume
16
+ - what is happening in bali
17
+ - source_sentence: show news 4
18
+ sentences:
19
+ - boot protocol space
20
+ - end protocol space
21
+ - volume on
22
+ - source_sentence: navigate to bandung
23
+ sentences:
24
+ - enable map outlines
25
+ - stop protocol space
26
+ - adlas
27
+ - source_sentence: take me to video 4
28
+ sentences:
29
+ - go back
30
+ - unmute video
31
+ - fullscreen
32
+ - source_sentence: news in london
33
+ sentences:
34
+ - rewind
35
+ - news in jakarta
36
+ - tap london
37
+ pipeline_tag: sentence-similarity
38
+ library_name: sentence-transformers
39
+ ---
40
+
41
+ # SentenceTransformer based on sentence-transformers/paraphrase-MiniLM-L3-v2
42
+
43
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-MiniLM-L3-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L3-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
44
+
45
+ ## Model Details
46
+
47
+ ### Model Description
48
+ - **Model Type:** Sentence Transformer
49
+ - **Base model:** [sentence-transformers/paraphrase-MiniLM-L3-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L3-v2) <!-- at revision 4ca70771034acceecb2e72475f72050fcdde4ddc -->
50
+ - **Maximum Sequence Length:** 128 tokens
51
+ - **Output Dimensionality:** 384 dimensions
52
+ - **Similarity Function:** Cosine Similarity
53
+ <!-- - **Training Dataset:** Unknown -->
54
+ <!-- - **Language:** Unknown -->
55
+ <!-- - **License:** Unknown -->
56
+
57
+ ### Model Sources
58
+
59
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
60
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
61
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
62
+
63
+ ### Full Model Architecture
64
+
65
+ ```
66
+ SentenceTransformer(
67
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'BertModel'})
68
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
69
+ )
70
+ ```
71
+
72
+ ## Usage
73
+
74
+ ### Direct Usage (Sentence Transformers)
75
+
76
+ First install the Sentence Transformers library:
77
+
78
+ ```bash
79
+ pip install -U sentence-transformers
80
+ ```
81
+
82
+ Then you can load this model and run inference.
83
+ ```python
84
+ from sentence_transformers import SentenceTransformer
85
+
86
+ # Download from the 🤗 Hub
87
+ model = SentenceTransformer("drithh/intent-classifier")
88
+ # Run inference
89
+ sentences = [
90
+ 'news in london',
91
+ 'news in jakarta',
92
+ 'tap london',
93
+ ]
94
+ embeddings = model.encode(sentences)
95
+ print(embeddings.shape)
96
+ # [3, 384]
97
+
98
+ # Get the similarity scores for the embeddings
99
+ similarities = model.similarity(embeddings, embeddings)
100
+ print(similarities)
101
+ # tensor([[ 1.0000, 0.9868, -0.0169],
102
+ # [ 0.9868, 1.0000, -0.0386],
103
+ # [-0.0169, -0.0386, 1.0000]])
104
+ ```
105
+
106
+ <!--
107
+ ### Direct Usage (Transformers)
108
+
109
+ <details><summary>Click to see the direct usage in Transformers</summary>
110
+
111
+ </details>
112
+ -->
113
+
114
+ <!--
115
+ ### Downstream Usage (Sentence Transformers)
116
+
117
+ You can finetune this model on your own dataset.
118
+
119
+ <details><summary>Click to expand</summary>
120
+
121
+ </details>
122
+ -->
123
+
124
+ <!--
125
+ ### Out-of-Scope Use
126
+
127
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
128
+ -->
129
+
130
+ <!--
131
+ ## Bias, Risks and Limitations
132
+
133
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
134
+ -->
135
+
136
+ <!--
137
+ ### Recommendations
138
+
139
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
140
+ -->
141
+
142
+ ## Training Details
143
+
144
+ ### Training Dataset
145
+
146
+ #### Unnamed Dataset
147
+
148
+ * Size: 139,128 training samples
149
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
150
+ * Approximate statistics based on the first 1000 samples:
151
+ | | sentence_0 | sentence_1 | label |
152
+ |:--------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------|
153
+ | type | string | string | float |
154
+ | details | <ul><li>min: 3 tokens</li><li>mean: 4.71 tokens</li><li>max: 8 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 4.84 tokens</li><li>max: 8 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.04</li><li>max: 1.0</li></ul> |
155
+ * Samples:
156
+ | sentence_0 | sentence_1 | label |
157
+ |:------------------------------------|:----------------------------------|:-----------------|
158
+ | <code>clear boundaries</code> | <code>cancel protocol cove</code> | <code>0.0</code> |
159
+ | <code>take me to the library</code> | <code>show news bali</code> | <code>0.0</code> |
160
+ | <code>play video 3</code> | <code>fullscreen</code> | <code>0.0</code> |
161
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
162
+ ```json
163
+ {
164
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
165
+ }
166
+ ```
167
+
168
+ ### Training Hyperparameters
169
+ #### Non-Default Hyperparameters
170
+
171
+ - `per_device_train_batch_size`: 32
172
+ - `per_device_eval_batch_size`: 32
173
+ - `multi_dataset_batch_sampler`: round_robin
174
+
175
+ #### All Hyperparameters
176
+ <details><summary>Click to expand</summary>
177
+
178
+ - `overwrite_output_dir`: False
179
+ - `do_predict`: False
180
+ - `eval_strategy`: no
181
+ - `prediction_loss_only`: True
182
+ - `per_device_train_batch_size`: 32
183
+ - `per_device_eval_batch_size`: 32
184
+ - `per_gpu_train_batch_size`: None
185
+ - `per_gpu_eval_batch_size`: None
186
+ - `gradient_accumulation_steps`: 1
187
+ - `eval_accumulation_steps`: None
188
+ - `torch_empty_cache_steps`: None
189
+ - `learning_rate`: 5e-05
190
+ - `weight_decay`: 0.0
191
+ - `adam_beta1`: 0.9
192
+ - `adam_beta2`: 0.999
193
+ - `adam_epsilon`: 1e-08
194
+ - `max_grad_norm`: 1
195
+ - `num_train_epochs`: 3
196
+ - `max_steps`: -1
197
+ - `lr_scheduler_type`: linear
198
+ - `lr_scheduler_kwargs`: {}
199
+ - `warmup_ratio`: 0.0
200
+ - `warmup_steps`: 0
201
+ - `log_level`: passive
202
+ - `log_level_replica`: warning
203
+ - `log_on_each_node`: True
204
+ - `logging_nan_inf_filter`: True
205
+ - `save_safetensors`: True
206
+ - `save_on_each_node`: False
207
+ - `save_only_model`: False
208
+ - `restore_callback_states_from_checkpoint`: False
209
+ - `no_cuda`: False
210
+ - `use_cpu`: False
211
+ - `use_mps_device`: False
212
+ - `seed`: 42
213
+ - `data_seed`: None
214
+ - `jit_mode_eval`: False
215
+ - `use_ipex`: False
216
+ - `bf16`: False
217
+ - `fp16`: False
218
+ - `fp16_opt_level`: O1
219
+ - `half_precision_backend`: auto
220
+ - `bf16_full_eval`: False
221
+ - `fp16_full_eval`: False
222
+ - `tf32`: None
223
+ - `local_rank`: 0
224
+ - `ddp_backend`: None
225
+ - `tpu_num_cores`: None
226
+ - `tpu_metrics_debug`: False
227
+ - `debug`: []
228
+ - `dataloader_drop_last`: False
229
+ - `dataloader_num_workers`: 0
230
+ - `dataloader_prefetch_factor`: None
231
+ - `past_index`: -1
232
+ - `disable_tqdm`: False
233
+ - `remove_unused_columns`: True
234
+ - `label_names`: None
235
+ - `load_best_model_at_end`: False
236
+ - `ignore_data_skip`: False
237
+ - `fsdp`: []
238
+ - `fsdp_min_num_params`: 0
239
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
240
+ - `fsdp_transformer_layer_cls_to_wrap`: None
241
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
242
+ - `deepspeed`: None
243
+ - `label_smoothing_factor`: 0.0
244
+ - `optim`: adamw_torch
245
+ - `optim_args`: None
246
+ - `adafactor`: False
247
+ - `group_by_length`: False
248
+ - `length_column_name`: length
249
+ - `ddp_find_unused_parameters`: None
250
+ - `ddp_bucket_cap_mb`: None
251
+ - `ddp_broadcast_buffers`: False
252
+ - `dataloader_pin_memory`: True
253
+ - `dataloader_persistent_workers`: False
254
+ - `skip_memory_metrics`: True
255
+ - `use_legacy_prediction_loop`: False
256
+ - `push_to_hub`: False
257
+ - `resume_from_checkpoint`: None
258
+ - `hub_model_id`: None
259
+ - `hub_strategy`: every_save
260
+ - `hub_private_repo`: None
261
+ - `hub_always_push`: False
262
+ - `hub_revision`: None
263
+ - `gradient_checkpointing`: False
264
+ - `gradient_checkpointing_kwargs`: None
265
+ - `include_inputs_for_metrics`: False
266
+ - `include_for_metrics`: []
267
+ - `eval_do_concat_batches`: True
268
+ - `fp16_backend`: auto
269
+ - `push_to_hub_model_id`: None
270
+ - `push_to_hub_organization`: None
271
+ - `mp_parameters`:
272
+ - `auto_find_batch_size`: False
273
+ - `full_determinism`: False
274
+ - `torchdynamo`: None
275
+ - `ray_scope`: last
276
+ - `ddp_timeout`: 1800
277
+ - `torch_compile`: False
278
+ - `torch_compile_backend`: None
279
+ - `torch_compile_mode`: None
280
+ - `include_tokens_per_second`: False
281
+ - `include_num_input_tokens_seen`: False
282
+ - `neftune_noise_alpha`: None
283
+ - `optim_target_modules`: None
284
+ - `batch_eval_metrics`: False
285
+ - `eval_on_start`: False
286
+ - `use_liger_kernel`: False
287
+ - `liger_kernel_config`: None
288
+ - `eval_use_gather_object`: False
289
+ - `average_tokens_across_devices`: False
290
+ - `prompts`: None
291
+ - `batch_sampler`: batch_sampler
292
+ - `multi_dataset_batch_sampler`: round_robin
293
+ - `router_mapping`: {}
294
+ - `learning_rate_mapping`: {}
295
+
296
+ </details>
297
+
298
+ ### Training Logs
299
+ | Epoch | Step | Training Loss |
300
+ |:------:|:-----:|:-------------:|
301
+ | 0.1150 | 500 | 0.0288 |
302
+ | 0.2300 | 1000 | 0.0206 |
303
+ | 0.3450 | 1500 | 0.0161 |
304
+ | 0.4600 | 2000 | 0.0125 |
305
+ | 0.5750 | 2500 | 0.0095 |
306
+ | 0.6900 | 3000 | 0.0067 |
307
+ | 0.8050 | 3500 | 0.0047 |
308
+ | 0.9200 | 4000 | 0.0037 |
309
+ | 1.0350 | 4500 | 0.0032 |
310
+ | 1.1500 | 5000 | 0.0027 |
311
+ | 1.2649 | 5500 | 0.0024 |
312
+ | 1.3799 | 6000 | 0.0022 |
313
+ | 1.4949 | 6500 | 0.002 |
314
+ | 1.6099 | 7000 | 0.0018 |
315
+ | 1.7249 | 7500 | 0.0017 |
316
+ | 1.8399 | 8000 | 0.0016 |
317
+ | 1.9549 | 8500 | 0.0015 |
318
+ | 2.0699 | 9000 | 0.0014 |
319
+ | 2.1849 | 9500 | 0.0013 |
320
+ | 2.2999 | 10000 | 0.0013 |
321
+ | 2.4149 | 10500 | 0.0012 |
322
+ | 2.5299 | 11000 | 0.0012 |
323
+ | 2.6449 | 11500 | 0.0012 |
324
+ | 2.7599 | 12000 | 0.0012 |
325
+ | 2.8749 | 12500 | 0.0011 |
326
+ | 2.9899 | 13000 | 0.0011 |
327
+
328
+
329
+ ### Framework Versions
330
+ - Python: 3.13.1
331
+ - Sentence Transformers: 5.0.0
332
+ - Transformers: 4.53.2
333
+ - PyTorch: 2.7.1
334
+ - Accelerate: 1.9.0
335
+ - Datasets: 4.0.0
336
+ - Tokenizers: 0.21.2
337
+
338
+ ## Citation
339
+
340
+ ### BibTeX
341
+
342
+ #### Sentence Transformers
343
+ ```bibtex
344
+ @inproceedings{reimers-2019-sentence-bert,
345
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
346
+ author = "Reimers, Nils and Gurevych, Iryna",
347
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
348
+ month = "11",
349
+ year = "2019",
350
+ publisher = "Association for Computational Linguistics",
351
+ url = "https://arxiv.org/abs/1908.10084",
352
+ }
353
+ ```
354
+
355
+ <!--
356
+ ## Glossary
357
+
358
+ *Clearly define terms in order to be accessible across audiences.*
359
+ -->
360
+
361
+ <!--
362
+ ## Model Card Authors
363
+
364
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
365
+ -->
366
+
367
+ <!--
368
+ ## Model Card Contact
369
+
370
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
371
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 3,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.53.2",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "5.0.0",
4
+ "transformers": "4.53.2",
5
+ "pytorch": "2.7.1"
6
+ },
7
+ "model_type": "SentenceTransformer",
8
+ "prompts": {
9
+ "query": "",
10
+ "document": ""
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a940bfed36e547174f9474aed4a95b6bd0c18673d85a699bb32551108cead383
3
+ size 69565312
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 128,
51
+ "model_max_length": 128,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff