|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: toxicity-type-detection |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# toxicity-type-detection |
|
|
|
This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.2337 |
|
- Accuracy: 0.4214 |
|
- F1: 0.7645 |
|
- Precision: 0.8180 |
|
- Recall: 0.7230 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 7.044186985160909e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 1993 |
|
- optimizer: Adam with betas=(0.9339215524915885,0.9916979096990963) and epsilon=3.4435900142455904e-07 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 1.1107 | 1.0 | 534 | 0.9282 | 0.2823 | 0.6762 | 0.7419 | 0.6630 | |
|
| 0.8974 | 2.0 | 1068 | 0.8605 | 0.2754 | 0.6324 | 0.7759 | 0.5913 | |
|
| 0.7436 | 3.0 | 1602 | 1.0151 | 0.3150 | 0.6870 | 0.7828 | 0.6512 | |
|
| 0.644 | 4.0 | 2136 | 1.1455 | 0.3519 | 0.7114 | 0.7857 | 0.6865 | |
|
| 0.4704 | 5.0 | 2670 | 1.4827 | 0.3387 | 0.7109 | 0.7814 | 0.6843 | |
|
| 0.3316 | 6.0 | 3204 | 1.6275 | 0.3602 | 0.7217 | 0.8020 | 0.6816 | |
|
| 0.2717 | 7.0 | 3738 | 2.2337 | 0.4214 | 0.7645 | 0.8180 | 0.7230 | |
|
| 0.231 | 8.0 | 4272 | 2.0275 | 0.3651 | 0.7194 | 0.8271 | 0.6528 | |
|
| 0.197 | 9.0 | 4806 | 1.9878 | 0.4033 | 0.7409 | 0.8240 | 0.6812 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0 |
|
- Pytorch 1.10.2+cu113 |
|
- Datasets 2.9.0 |
|
- Tokenizers 0.13.2 |
|
|