| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						license: mit | 
					
					
						
						| 
							 | 
						tags: | 
					
					
						
						| 
							 | 
						- stable-diffusion | 
					
					
						
						| 
							 | 
						- stable-diffusion-diffusers | 
					
					
						
						| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						# Improved Autoencoders | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Utilizing | 
					
					
						
						| 
							 | 
						These weights are intended to be used with the [🧨 diffusers library](https://github.com/huggingface/diffusers). If you are looking for the model to use with the original [CompVis Stable Diffusion codebase](https://github.com/CompVis/stable-diffusion), [come here](https://huggingface.co/stabilityai/sd-vae-ft-mse-original). | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						#### How to use with 🧨 diffusers | 
					
					
						
						| 
							 | 
						You can integrate this fine-tuned VAE decoder to your existing `diffusers` workflows, by including a `vae` argument to the `StableDiffusionPipeline` | 
					
					
						
						| 
							 | 
						```py | 
					
					
						
						| 
							 | 
						from diffusers.models import AutoencoderKL | 
					
					
						
						| 
							 | 
						from diffusers import StableDiffusionPipeline | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						model = "CompVis/stable-diffusion-v1-4" | 
					
					
						
						| 
							 | 
						vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse") | 
					
					
						
						| 
							 | 
						pipe = StableDiffusionPipeline.from_pretrained(model, vae=vae) | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Decoder Finetuning | 
					
					
						
						| 
							 | 
						We publish two kl-f8 autoencoder versions, finetuned from the original [kl-f8 autoencoder](https://github.com/CompVis/latent-diffusion#pretrained-autoencoding-models) on a 1:1 ratio of [LAION-Aesthetics](https://laion.ai/blog/laion-aesthetics/) and LAION-Humans, an unreleased subset containing only SFW images of humans. The intent was to fine-tune on the Stable Diffusion training set (the autoencoder was originally trained on OpenImages) but also enrich the dataset with images of humans to improve the reconstruction of faces. | 
					
					
						
						| 
							 | 
						The first, _ft-EMA_, was resumed from the original checkpoint, trained for 313198 steps and uses EMA weights. It uses the same loss configuration as the original checkpoint (L1 + LPIPS). | 
					
					
						
						| 
							 | 
						The second, _ft-MSE_, was resumed from _ft-EMA_ and uses EMA weights and was trained for another 280k steps using a different loss, with more emphasis  | 
					
					
						
						| 
							 | 
						on MSE reconstruction (MSE + 0.1 * LPIPS). It produces somewhat ``smoother'' outputs. The batch size for both versions was 192 (16 A100s, batch size 12 per GPU). | 
					
					
						
						| 
							 | 
						To keep compatibility with existing models, only the decoder part was finetuned; the checkpoints can be used as a drop-in replacement for the existing autoencoder. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						_Original kl-f8 VAE vs f8-ft-EMA vs f8-ft-MSE_ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Evaluation  | 
					
					
						
						| 
							 | 
						### COCO 2017 (256x256, val, 5000 images) | 
					
					
						
						| 
							 | 
						| Model    | train steps | rFID | PSNR         | SSIM          | PSIM          | Link                                                                              | Comments                                                                                         | 
					
					
						
						| 
							 | 
						|----------|---------|------|--------------|---------------|---------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------| | 
					
					
						
						| 
							 | 
						|          |         |      |              |               |               |                                                                                   |                                                                                                 | | 
					
					
						
						| 
							 | 
						| original | 246803        | 4.99 | 23.4 +/- 3.8 | 0.69 +/- 0.14 | 1.01 +/- 0.28 | https://ommer-lab.com/files/latent-diffusion/kl-f8.zip                            | as used in SD                                                                                   | | 
					
					
						
						| 
							 | 
						| ft-EMA   | 560001        | 4.42 | 23.8 +/- 3.9 | 0.69 +/- 0.13 | 0.96 +/- 0.27 | https://huggingface.co/stabilityai/sd-vae-ft-ema-original/resolve/main/vae-ft-ema-560000-ema-pruned.ckpt | slightly better overall, with EMA                                                               | | 
					
					
						
						| 
							 | 
						| ft-MSE   | 840001        | 4.70 | 24.5 +/- 3.7 | 0.71 +/- 0.13 | 0.92 +/- 0.27 | https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt | resumed with EMA from ft-EMA, emphasis on MSE (rec. loss = MSE + 0.1 * LPIPS), smoother outputs | | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						### LAION-Aesthetics 5+ (256x256, subset, 10000 images) | 
					
					
						
						| 
							 | 
						| Model    | train steps | rFID | PSNR         | SSIM          | PSIM          | Link                                                                              | Comments                                                                                         | 
					
					
						
						| 
							 | 
						|----------|-----------|------|--------------|---------------|---------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------| | 
					
					
						
						| 
							 | 
						|          |           |      |              |               |               |                                                                                   |                                                                                                 | | 
					
					
						
						| 
							 | 
						| original | 246803         | 2.61 | 26.0 +/- 4.4 | 0.81 +/- 0.12 | 0.75 +/- 0.36 | https://ommer-lab.com/files/latent-diffusion/kl-f8.zip                            | as used in SD                                                                                   | | 
					
					
						
						| 
							 | 
						| ft-EMA   | 560001          | 1.77 | 26.7 +/- 4.8 | 0.82 +/- 0.12 | 0.67 +/- 0.34 | https://huggingface.co/stabilityai/sd-vae-ft-ema-original/resolve/main/vae-ft-ema-560000-ema-pruned.ckpt | slightly better overall, with EMA                                                               | | 
					
					
						
						| 
							 | 
						| ft-MSE   | 840001          | 1.88 | 27.3 +/- 4.7 | 0.83 +/- 0.11 | 0.65 +/- 0.34 | https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt | resumed with EMA from ft-EMA, emphasis on MSE (rec. loss = MSE + 0.1 * LPIPS), smoother outputs | | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						### Visual | 
					
					
						
						| 
							 | 
						_Visualization of reconstructions on  256x256 images from the COCO2017 validation dataset._  | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						<p align="center"> | 
					
					
						
						| 
							 | 
						  <br> | 
					
					
						
						| 
							 | 
						  <b> | 
					
					
						
						| 
							 | 
						256x256: ft-EMA (left), ft-MSE (middle), original (right)</b> | 
					
					
						
						| 
							 | 
						</p> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						<p align="center"> | 
					
					
						
						| 
							 | 
						<img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00025_merged.png /> | 
					
					
						
						| 
							 | 
						</p> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						<p align="center"> | 
					
					
						
						| 
							 | 
						<img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00011_merged.png /> | 
					
					
						
						| 
							 | 
						</p> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						<p align="center"> | 
					
					
						
						| 
							 | 
						<img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00037_merged.png /> | 
					
					
						
						| 
							 | 
						</p> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						<p align="center"> | 
					
					
						
						| 
							 | 
						<img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00043_merged.png /> | 
					
					
						
						| 
							 | 
						</p> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						<p align="center"> | 
					
					
						
						| 
							 | 
						<img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00053_merged.png /> | 
					
					
						
						| 
							 | 
						</p> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						<p align="center"> | 
					
					
						
						| 
							 | 
						<img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00029_merged.png /> | 
					
					
						
						| 
							 | 
						</p> | 
					
					
						
						| 
							 | 
						
 |