Trained classifier model on MIMIC-IV
Browse files
classification_log_2025-06-13_18-45-53.log
ADDED
@@ -0,0 +1,663 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2025-06-13 18:45:53,711 - INFO - ================================================================================ - [multilabel_classify.py:101:log_section]
|
2 |
+
2025-06-13 18:45:53,711 - INFO - = 📌 INITIALIZING TRAINING ENVIRONMENT = - [multilabel_classify.py:102:log_section]
|
3 |
+
2025-06-13 18:45:53,711 - INFO - ================================================================================ - [multilabel_classify.py:105:log_section]
|
4 |
+
2025-06-13 18:45:53,711 - INFO - 🚀 Setting up data paths and environment variables... - [multilabel_classify.py:3916:main]
|
5 |
+
2025-06-13 18:45:53,712 - INFO - 📂 Using output directory: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b - [multilabel_classify.py:3922:main]
|
6 |
+
2025-06-13 18:45:53,712 - INFO - 🛠️ Command-line Arguments: - [multilabel_classify.py:369:print_args]
|
7 |
+
2025-06-13 18:45:53,712 - INFO -
|
8 |
+
🔹 output_dir: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b
|
9 |
+
🔹 source_url: XURLs.MIMIC4_DEMO
|
10 |
+
🔹 data: mimic4_icd10_full
|
11 |
+
🔹 logfile: classification_log
|
12 |
+
🔹 base_dir: ../tmp/MIMIC4_DEMO
|
13 |
+
🔹 hub_model_id: deb101/mistral-7b-instruct-v0.3-mimic4-adapt
|
14 |
+
🔹 model_name: mistralai/Mistral-7B-Instruct-v0.3
|
15 |
+
🔹 max_length: 512
|
16 |
+
🔹 do_fresh_training: True
|
17 |
+
🔹 load_from_checkpoint: False
|
18 |
+
🔹 task: multilabel-classify
|
19 |
+
🔹 num_train_epochs: 1
|
20 |
+
🔹 per_device_train_batch_size: 8
|
21 |
+
🔹 per_device_eval_batch_size: 8
|
22 |
+
🔹 metric_for_best_model: precision_at_15
|
23 |
+
🔹 learning_rate: 0.0001
|
24 |
+
🔹 final_lr_scheduling: 1e-06
|
25 |
+
🔹 warmup_steps: 500
|
26 |
+
🔹 logfile_path: ../tmp/logs/classification_log_2025-06-13_18-45-53.log
|
27 |
+
🔹 source: /home/ubuntu/.xcube/data/mimic4_demo - [multilabel_classify.py:370:print_args]
|
28 |
+
2025-06-13 18:45:53,712 - INFO - ➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖ - [multilabel_classify.py:371:print_args]
|
29 |
+
2025-06-13 18:45:53,722 - INFO -
|
30 |
+
🚀 Quick Git Info: 📁 xcube | 🌿 plant | 🔍 0bd4309 | 👤 Debjyoti Saha Roy | ⚡ MIXED (1 staged, 2 unstaged) | 🔬 git show 0bd4309 - [multilabel_classify.py:3928:main]
|
31 |
+
2025-06-13 18:45:53,722 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:101:log_section]
|
32 |
+
2025-06-13 18:45:53,723 - INFO - + ✨ LOADING DATASETS + - [multilabel_classify.py:102:log_section]
|
33 |
+
2025-06-13 18:45:53,723 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:105:log_section]
|
34 |
+
2025-06-13 18:45:53,723 - INFO - 📊 Loading main datasets.... - [multilabel_classify.py:3931:main]
|
35 |
+
2025-06-13 18:46:02,259 - INFO - 🔍 Total unique labels in dataset: 7942 - [multilabel_classify.py:3707:sample_df_with_full_label_coverage]
|
36 |
+
2025-06-13 18:46:02,272 - INFO - 🧪 Attempt 1: Sampled 122 rows covering 863 labels. - [multilabel_classify.py:3721:sample_df_with_full_label_coverage]
|
37 |
+
2025-06-13 18:46:02,282 - INFO - 🧪 Attempt 2: Sampled 122 rows covering 816 labels. - [multilabel_classify.py:3721:sample_df_with_full_label_coverage]
|
38 |
+
2025-06-13 18:46:02,291 - INFO - 🧪 Attempt 3: Sampled 122 rows covering 885 labels. - [multilabel_classify.py:3721:sample_df_with_full_label_coverage]
|
39 |
+
2025-06-13 18:46:02,300 - INFO - 🧪 Attempt 4: Sampled 122 rows covering 828 labels. - [multilabel_classify.py:3721:sample_df_with_full_label_coverage]
|
40 |
+
2025-06-13 18:46:02,309 - INFO - 🧪 Attempt 5: Sampled 122 rows covering 879 labels. - [multilabel_classify.py:3721:sample_df_with_full_label_coverage]
|
41 |
+
2025-06-13 18:46:02,317 - INFO - 🧪 Attempt 6: Sampled 122 rows covering 852 labels. - [multilabel_classify.py:3721:sample_df_with_full_label_coverage]
|
42 |
+
2025-06-13 18:46:02,326 - INFO - 🧪 Attempt 7: Sampled 122 rows covering 838 labels. - [multilabel_classify.py:3721:sample_df_with_full_label_coverage]
|
43 |
+
2025-06-13 18:46:02,335 - INFO - 🧪 Attempt 8: Sampled 122 rows covering 851 labels. - [multilabel_classify.py:3721:sample_df_with_full_label_coverage]
|
44 |
+
2025-06-13 18:46:02,343 - INFO - 🧪 Attempt 9: Sampled 122 rows covering 825 labels. - [multilabel_classify.py:3721:sample_df_with_full_label_coverage]
|
45 |
+
2025-06-13 18:46:02,351 - INFO - 🧪 Attempt 10: Sampled 122 rows covering 833 labels. - [multilabel_classify.py:3721:sample_df_with_full_label_coverage]
|
46 |
+
2025-06-13 18:46:02,356 - INFO - 🛠️ Fixing missing labels: 7109 remaining... - [multilabel_classify.py:3754:sample_df_with_full_label_coverage]
|
47 |
+
2025-06-13 18:49:30,886 - INFO - ✅ Added 1648 rows to achieve full label coverage. - [multilabel_classify.py:3786:sample_df_with_full_label_coverage]
|
48 |
+
2025-06-13 18:49:30,889 - INFO - 📊 Final total labels: 7942 - [multilabel_classify.py:3789:sample_df_with_full_label_coverage]
|
49 |
+
2025-06-13 18:49:30,889 - INFO - ✅ Final row count: 1770 (Valid: 420, Not-valid: 1350) - [multilabel_classify.py:3797:sample_df_with_full_label_coverage]
|
50 |
+
2025-06-13 18:49:31,659 - INFO - ******************************************************************************** - [multilabel_classify.py:101:log_section]
|
51 |
+
2025-06-13 18:49:31,659 - INFO - * 🌟 STARTING MULTI_LABEL CLASSIFICATION MODEL TRAINING * - [multilabel_classify.py:102:log_section]
|
52 |
+
2025-06-13 18:49:31,659 - INFO - ******************************************************************************** - [multilabel_classify.py:105:log_section]
|
53 |
+
2025-06-13 18:49:31,659 - INFO - 🔐 Loaded authentication token from environment - [multilabel_classify.py:3958:main]
|
54 |
+
2025-06-13 18:49:31,659 - INFO - 🏷️ Hub Model ID for this Classification task: deb101/mistral-7b-instruct-v0.3-mimic4-adapt-multilabel-classify - [multilabel_classify.py:3962:main]
|
55 |
+
2025-06-13 18:49:31,659 - INFO - -------------------------------------------------------------------------------- - [multilabel_classify.py:101:log_section]
|
56 |
+
2025-06-13 18:49:31,659 - INFO - - 📋 MODEL EXISTENCE CHECK - - [multilabel_classify.py:102:log_section]
|
57 |
+
2025-06-13 18:49:31,659 - INFO - -------------------------------------------------------------------------------- - [multilabel_classify.py:105:log_section]
|
58 |
+
2025-06-13 18:49:31,659 - INFO - 🔍 Checking model existence locally and on Hugging Face Hub... - [multilabel_classify.py:3822:check_model_existence]
|
59 |
+
2025-06-13 18:49:31,659 - INFO - ❌ Model not found locally at: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b - [multilabel_classify.py:3829:check_model_existence]
|
60 |
+
2025-06-13 18:49:31,726 - INFO - ✅ Model exists on Hugging Face Hub with ID: deb101/mistral-7b-instruct-v0.3-mimic4-adapt-multilabel-classify - [multilabel_classify.py:3841:check_model_existence]
|
61 |
+
2025-06-13 18:49:31,726 - INFO - 📁 Model exists either locally or on Hub - [multilabel_classify.py:3867:check_model_existence]
|
62 |
+
2025-06-13 18:49:31,726 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:101:log_section]
|
63 |
+
2025-06-13 18:49:31,726 - INFO - + ✨ STARTING FRESH TRAINING + - [multilabel_classify.py:102:log_section]
|
64 |
+
2025-06-13 18:49:31,727 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:105:log_section]
|
65 |
+
2025-06-13 18:49:31,727 - INFO - 🔄 Starting fresh training (either forced or model not found)... - [multilabel_classify.py:3975:main]
|
66 |
+
2025-06-13 18:49:31,738 - WARNING - Note: Environment variable`HF_TOKEN` is set and is the current active token independently from the token you've just configured. - [_login.py:415:_login]
|
67 |
+
2025-06-13 18:49:31,738 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:101:log_section]
|
68 |
+
2025-06-13 18:49:31,738 - INFO - + ✨ LOADING BASE MODEL + - [multilabel_classify.py:102:log_section]
|
69 |
+
2025-06-13 18:49:31,738 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:105:log_section]
|
70 |
+
2025-06-13 18:49:31,738 - INFO - 📥 Loading pretrained model and tokenizer... - [multilabel_classify.py:4007:main]
|
71 |
+
2025-06-13 18:49:31,738 - INFO - 🚀 Starting model and tokenizer loading process... - [multilabel_classify.py:1579:load_base_model_and_tokenizer]
|
72 |
+
2025-06-13 18:49:31,739 - INFO - 📊 Quantization config: 4-bit, nf4, double_quant, bfloat16 - [multilabel_classify.py:1588:load_base_model_and_tokenizer]
|
73 |
+
2025-06-13 18:49:31,739 - INFO - 🔤 Loading tokenizer for model: deb101/mistral-7b-instruct-v0.3-mimic4-adapt... - [multilabel_classify.py:1592:load_base_model_and_tokenizer]
|
74 |
+
2025-06-13 18:49:32,680 - INFO - 🔍 Checking if deb101/mistral-7b-instruct-v0.3-mimic4-adapt is a PEFT model... - [multilabel_classify.py:1603:load_base_model_and_tokenizer]
|
75 |
+
2025-06-13 18:49:32,735 - INFO - ✅ Detected PEFT model. Base model: mistralai/Mistral-7B-Instruct-v0.3 - [multilabel_classify.py:1607:load_base_model_and_tokenizer]
|
76 |
+
2025-06-13 18:49:32,735 - INFO - 🔍 Loading model configuration for mistralai/Mistral-7B-Instruct-v0.3... - [multilabel_classify.py:1615:load_base_model_and_tokenizer]
|
77 |
+
2025-06-13 18:49:32,810 - INFO - Model type: mistral, Architectures: ['MistralForCausalLM'] - [multilabel_classify.py:1630:load_base_model_and_tokenizer]
|
78 |
+
2025-06-13 18:49:32,810 - INFO - 🧠 Loading base model: mistralai/Mistral-7B-Instruct-v0.3... - [multilabel_classify.py:1698:load_base_model_and_tokenizer]
|
79 |
+
2025-06-13 18:49:33,322 - INFO - We will use 90% of the memory on device 0 for storing the model, and 10% for the buffer to avoid OOM. You can set `max_memory` in to a higher value to use more memory (at your own risk). - [modeling.py:991:get_balanced_memory]
|
80 |
+
2025-06-13 18:49:38,581 - INFO - 🧩 Loading PEFT adapters for deb101/mistral-7b-instruct-v0.3-mimic4-adapt... - [multilabel_classify.py:1718:load_base_model_and_tokenizer]
|
81 |
+
2025-06-13 18:49:39,365 - INFO - 🔧 Before enabling PEFT adapters - [multilabel_classify.py:1720:load_base_model_and_tokenizer]
|
82 |
+
2025-06-13 18:49:39,367 - INFO - 📊 trainable params: 0 || all params: 7,254,839,296 || trainable%: 0.0000 - [multilabel_classify.py:160:log_print_output]
|
83 |
+
2025-06-13 18:49:39,370 - INFO - Enabled gradients for parameters: ['base_model.model.model.layers.0.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.0.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.0.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.0.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.1.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.1.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.1.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.1.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.2.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.2.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.2.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.2.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.3.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.3.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.3.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.3.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.4.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.4.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.4.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.4.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.5.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.5.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.5.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.5.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.6.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.6.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.6.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.6.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.7.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.7.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.7.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.7.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.8.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.8.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.8.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.8.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.9.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.9.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.9.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.9.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.10.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.10.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.10.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.10.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.11.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.11.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.11.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.11.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.12.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.12.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.12.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.12.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.13.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.13.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.13.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.13.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.14.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.14.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.14.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.14.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.15.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.15.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.15.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.15.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.16.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.16.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.16.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.16.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.17.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.17.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.17.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.17.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.18.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.18.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.18.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.18.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.19.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.19.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.19.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.19.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.20.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.20.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.20.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.20.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.21.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.21.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.21.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.21.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.22.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.22.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.22.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.22.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.23.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.23.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.23.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.23.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.24.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.24.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.24.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.24.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.25.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.25.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.25.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.25.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.26.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.26.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.26.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.26.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.27.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.27.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.27.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.27.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.28.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.28.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.28.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.28.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.29.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.29.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.29.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.29.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.30.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.30.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.30.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.30.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.31.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.31.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.31.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.31.self_attn.v_proj.lora_B.default.weight'] - [multilabel_classify.py:1730:load_base_model_and_tokenizer]
|
84 |
+
2025-06-13 18:49:39,370 - INFO - 🔧 After enabling PEFT adapters - [multilabel_classify.py:1731:load_base_model_and_tokenizer]
|
85 |
+
2025-06-13 18:49:39,372 - INFO - 📊 trainable params: 6,815,744 || all params: 7,254,839,296 || trainable%: 0.0939 - [multilabel_classify.py:160:log_print_output]
|
86 |
+
2025-06-13 18:49:39,374 - INFO - ✅ Model and tokenizer successfully loaded! - [multilabel_classify.py:1769:load_base_model_and_tokenizer]
|
87 |
+
2025-06-13 18:49:39,374 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:101:log_section]
|
88 |
+
2025-06-13 18:49:39,374 - INFO - + ✨ DATA PREPROCESSING + - [multilabel_classify.py:102:log_section]
|
89 |
+
2025-06-13 18:49:39,374 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:105:log_section]
|
90 |
+
2025-06-13 18:49:39,374 - INFO - 🔄 Loading and preprocessing training data... - [multilabel_classify.py:4017:main]
|
91 |
+
2025-06-13 18:49:39,553 - INFO - Total number of labels: 7942 - [multilabel_classify.py:1172:preprocess_data]
|
92 |
+
2025-06-13 18:49:39,553 - INFO - Rare labels (freq < 50): 7817 - [multilabel_classify.py:1173:preprocess_data]
|
93 |
+
2025-06-13 18:49:39,553 - INFO - Not rare labels (freq >= 50): 125 - [multilabel_classify.py:1174:preprocess_data]
|
94 |
+
2025-06-13 18:49:39,553 - INFO - Label partitions and classes saved to ../tmp/MIMIC4_DEMO/labels_partition.json - [multilabel_classify.py:1175:preprocess_data]
|
95 |
+
2025-06-13 18:50:36,704 - INFO - The size of training set: 8393 - [multilabel_classify.py:1271:preprocess_data]
|
96 |
+
2025-06-13 18:50:36,704 - INFO - The size of Evaluation set: 2528 - [multilabel_classify.py:1272:preprocess_data]
|
97 |
+
2025-06-13 18:50:37,110 - INFO - Number of unique ICD-10 codes: 7942 - [multilabel_classify.py:4023:main]
|
98 |
+
2025-06-13 18:50:37,112 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:101:log_section]
|
99 |
+
2025-06-13 18:50:37,112 - INFO - + ✨ MODEL INITIALIZATION + - [multilabel_classify.py:102:log_section]
|
100 |
+
2025-06-13 18:50:37,112 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:105:log_section]
|
101 |
+
2025-06-13 18:50:37,112 - INFO - 🧠 Initializing custom L2R model for outputting per-token relevance scores per ICD-10 codes. - [multilabel_classify.py:4026:main]
|
102 |
+
2025-06-13 18:50:37,113 - INFO - 🏥📊 Creating MultilabelICDClassifier - Standard multilabel medical classifier! 🔬💫 - [multilabel_classify.py:860:define_model]
|
103 |
+
2025-06-13 18:50:37,113 - INFO - Will now start to create Multilabel-Classification Model from the base model - [multilabel_classify.py:565:__init__]
|
104 |
+
2025-06-13 18:50:37,117 - INFO - 📊 trainable params: 6,815,744 || all params: 3,765,178,368 || trainable%: 0.1810 - [multilabel_classify.py:619:compute_trainable_params]
|
105 |
+
2025-06-13 18:50:38,856 - INFO - Creating the Multi-Label Classification Model from base model mistralai/Mistral-7B-Instruct-v0.3 completed!!! - [multilabel_classify.py:607:__init__]
|
106 |
+
2025-06-13 18:50:38,860 - INFO - 📊 trainable params: 171,532,417 || all params: 3,929,895,041 || trainable%: 4.3648 - [multilabel_classify.py:619:compute_trainable_params]
|
107 |
+
2025-06-13 18:50:38,860 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:101:log_section]
|
108 |
+
2025-06-13 18:50:38,860 - INFO - + ✨ TRAINING PREPARATION + - [multilabel_classify.py:102:log_section]
|
109 |
+
2025-06-13 18:50:38,860 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:105:log_section]
|
110 |
+
2025-06-13 18:50:38,861 - INFO - ⚙️ Preparing training components and optimizers... - [multilabel_classify.py:4033:main]
|
111 |
+
2025-06-13 18:50:38,945 - INFO - 🖥️ Device: NVIDIA GH200 480GB - [multilabel_classify.py:1019:log_training_configuration]
|
112 |
+
2025-06-13 18:50:38,945 - INFO - 🔋 CUDA Available: True - [multilabel_classify.py:1022:log_training_configuration]
|
113 |
+
2025-06-13 18:50:38,945 - INFO - 💾 CUDA Device Count: 1 - [multilabel_classify.py:1023:log_training_configuration]
|
114 |
+
2025-06-13 18:50:38,947 - INFO -
|
115 |
+
📋 Training Configuration 📋
|
116 |
+
+----------+-----------------------------+------------------------------------------------------------------+
|
117 |
+
| 🌟 Emoji | 🏷️ Parameter | 📊 Value |
|
118 |
+
+----------+-----------------------------+------------------------------------------------------------------+
|
119 |
+
| 📁 | Output Directory | ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b |
|
120 |
+
| 🔁 | Training Epochs | 1 |
|
121 |
+
| 🏋️ | Train Batch Size | 8 |
|
122 |
+
| 🔍 | Eval Batch Size | 8 |
|
123 |
+
| 📊 | Gradient Accumulation Steps | 4 |
|
124 |
+
| 🚀 | Learning Rate | 0.0001 |
|
125 |
+
| 🌅 | Warmup Steps | 500 |
|
126 |
+
| 💾 | Save Strategy | epoch |
|
127 |
+
| 💾 | Save Total Limit | 10 |
|
128 |
+
| 📊 | Evaluation Strategy | epoch |
|
129 |
+
| 🎯 | Best Model Metric | precision_at_15 |
|
130 |
+
| 📝 | Logging Strategy | steps (every 10 steps) |
|
131 |
+
| 🌐 | Push to Hub | True |
|
132 |
+
| 🌐 | Hub Model ID | deb101/mistral-7b-instruct-v0.3-mimic4-adapt-multilabel-classify |
|
133 |
+
| 🔢 | Steps per Epoch | 262 |
|
134 |
+
| 🔢 | Total Training Steps | 262 |
|
135 |
+
| 🔢 | Evaluation Steps | 316 |
|
136 |
+
| 📊 | Training Dataset Size | 8393 samples 🏋️ |
|
137 |
+
| 📊 | Evaluation Dataset Size | 2528 samples 🔍 |
|
138 |
+
+----------+-----------------------------+------------------------------------------------------------------+ - [multilabel_classify.py:1011:log_training_args]
|
139 |
+
2025-06-13 18:50:38,947 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:101:log_section]
|
140 |
+
2025-06-13 18:50:38,948 - INFO - + ✨ MODEL TRAINING + - [multilabel_classify.py:102:log_section]
|
141 |
+
2025-06-13 18:50:38,948 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:105:log_section]
|
142 |
+
2025-06-13 18:50:38,948 - INFO - 🏋️ Starting model training process... - [multilabel_classify.py:4055:main]
|
143 |
+
2025-06-13 18:50:38,998 - INFO - We are registering the tokenizer deb101/mistral-7b-instruct-v0.3-mimic4-adapt in Custom Trainer - [multilabel_classify.py:2340:__init__]
|
144 |
+
2025-06-13 18:50:39,246 - INFO - 🚀 Starting Training... - [multilabel_classify.py:1994:on_train_begin]
|
145 |
+
2025-06-13 18:51:01,764 - INFO -
|
146 |
+
[36m🚂 Training Metrics (Step 10) 🚂
|
147 |
+
+---------------+----------+
|
148 |
+
| Metric | Value |
|
149 |
+
+===============+==========+
|
150 |
+
| loss | 0.6752 |
|
151 |
+
+---------------+----------+
|
152 |
+
| grad_norm | 7.27432 |
|
153 |
+
+---------------+----------+
|
154 |
+
| learning_rate | 2e-06 |
|
155 |
+
+---------------+----------+
|
156 |
+
| epoch | 0.038095 |
|
157 |
+
+---------------+----------+[0m - [multilabel_classify.py:2188:on_log]
|
158 |
+
2025-06-13 18:51:21,360 - INFO -
|
159 |
+
[36m🚂 Training Metrics (Step 20) 🚂
|
160 |
+
+---------------+---------+
|
161 |
+
| Metric | Value |
|
162 |
+
+===============+=========+
|
163 |
+
| loss | 0.3475 |
|
164 |
+
+---------------+---------+
|
165 |
+
| grad_norm | 2.94909 |
|
166 |
+
+---------------+---------+
|
167 |
+
| learning_rate | 4e-06 |
|
168 |
+
+---------------+---------+
|
169 |
+
| epoch | 0.07619 |
|
170 |
+
+---------------+---------+[0m - [multilabel_classify.py:2188:on_log]
|
171 |
+
2025-06-13 18:51:40,988 - INFO -
|
172 |
+
[36m🚂 Training Metrics (Step 30) 🚂
|
173 |
+
+---------------+----------+
|
174 |
+
| Metric | Value |
|
175 |
+
+===============+==========+
|
176 |
+
| loss | 0.0737 |
|
177 |
+
+---------------+----------+
|
178 |
+
| grad_norm | 0.276477 |
|
179 |
+
+---------------+----------+
|
180 |
+
| learning_rate | 6e-06 |
|
181 |
+
+---------------+----------+
|
182 |
+
| epoch | 0.114286 |
|
183 |
+
+---------------+----------+[0m - [multilabel_classify.py:2188:on_log]
|
184 |
+
2025-06-13 18:52:00,566 - INFO -
|
185 |
+
[36m🚂 Training Metrics (Step 40) 🚂
|
186 |
+
+---------------+----------+
|
187 |
+
| Metric | Value |
|
188 |
+
+===============+==========+
|
189 |
+
| loss | 0.0233 |
|
190 |
+
+---------------+----------+
|
191 |
+
| grad_norm | 0.104187 |
|
192 |
+
+---------------+----------+
|
193 |
+
| learning_rate | 8e-06 |
|
194 |
+
+---------------+----------+
|
195 |
+
| epoch | 0.152381 |
|
196 |
+
+---------------+----------+[0m - [multilabel_classify.py:2188:on_log]
|
197 |
+
2025-06-13 18:52:20,179 - INFO -
|
198 |
+
[36m🚂 Training Metrics (Step 50) 🚂
|
199 |
+
+---------------+----------+
|
200 |
+
| Metric | Value |
|
201 |
+
+===============+==========+
|
202 |
+
| loss | 0.0282 |
|
203 |
+
+---------------+----------+
|
204 |
+
| grad_norm | 0.154837 |
|
205 |
+
+---------------+----------+
|
206 |
+
| learning_rate | 1e-05 |
|
207 |
+
+---------------+----------+
|
208 |
+
| epoch | 0.190476 |
|
209 |
+
+---------------+----------+[0m - [multilabel_classify.py:2188:on_log]
|
210 |
+
2025-06-13 18:52:39,823 - INFO -
|
211 |
+
[36m🚂 Training Metrics (Step 60) 🚂
|
212 |
+
+---------------+----------+
|
213 |
+
| Metric | Value |
|
214 |
+
+===============+==========+
|
215 |
+
| loss | 0.027 |
|
216 |
+
+---------------+----------+
|
217 |
+
| grad_norm | 0.136466 |
|
218 |
+
+---------------+----------+
|
219 |
+
| learning_rate | 1.2e-05 |
|
220 |
+
+---------------+----------+
|
221 |
+
| epoch | 0.228571 |
|
222 |
+
+---------------+----------+[0m - [multilabel_classify.py:2188:on_log]
|
223 |
+
2025-06-13 18:52:59,512 - INFO -
|
224 |
+
[36m🚂 Training Metrics (Step 70) 🚂
|
225 |
+
+---------------+----------+
|
226 |
+
| Metric | Value |
|
227 |
+
+===============+==========+
|
228 |
+
| loss | 0.0244 |
|
229 |
+
+---------------+----------+
|
230 |
+
| grad_norm | 0.029749 |
|
231 |
+
+---------------+----------+
|
232 |
+
| learning_rate | 1.4e-05 |
|
233 |
+
+---------------+----------+
|
234 |
+
| epoch | 0.266667 |
|
235 |
+
+---------------+----------+[0m - [multilabel_classify.py:2188:on_log]
|
236 |
+
2025-06-13 18:53:19,196 - INFO -
|
237 |
+
[36m🚂 Training Metrics (Step 80) 🚂
|
238 |
+
+---------------+----------+
|
239 |
+
| Metric | Value |
|
240 |
+
+===============+==========+
|
241 |
+
| loss | 0.0234 |
|
242 |
+
+---------------+----------+
|
243 |
+
| grad_norm | 0.042736 |
|
244 |
+
+---------------+----------+
|
245 |
+
| learning_rate | 1.6e-05 |
|
246 |
+
+---------------+----------+
|
247 |
+
| epoch | 0.304762 |
|
248 |
+
+---------------+----------+[0m - [multilabel_classify.py:2188:on_log]
|
249 |
+
2025-06-13 18:53:38,910 - INFO -
|
250 |
+
[36m🚂 Training Metrics (Step 90) 🚂
|
251 |
+
+---------------+----------+
|
252 |
+
| Metric | Value |
|
253 |
+
+===============+==========+
|
254 |
+
| loss | 0.0235 |
|
255 |
+
+---------------+----------+
|
256 |
+
| grad_norm | 0.035706 |
|
257 |
+
+---------------+----------+
|
258 |
+
| learning_rate | 1.8e-05 |
|
259 |
+
+---------------+----------+
|
260 |
+
| epoch | 0.342857 |
|
261 |
+
+---------------+----------+[0m - [multilabel_classify.py:2188:on_log]
|
262 |
+
2025-06-13 18:53:58,615 - INFO -
|
263 |
+
[36m🚂 Training Metrics (Step 100) 🚂
|
264 |
+
+---------------+----------+
|
265 |
+
| Metric | Value |
|
266 |
+
+===============+==========+
|
267 |
+
| loss | 0.0243 |
|
268 |
+
+---------------+----------+
|
269 |
+
| grad_norm | 0.230328 |
|
270 |
+
+---------------+----------+
|
271 |
+
| learning_rate | 2e-05 |
|
272 |
+
+---------------+----------+
|
273 |
+
| epoch | 0.380952 |
|
274 |
+
+---------------+----------+[0m - [multilabel_classify.py:2188:on_log]
|
275 |
+
2025-06-13 18:54:18,318 - INFO -
|
276 |
+
[36m🚂 Training Metrics (Step 110) 🚂
|
277 |
+
+---------------+----------+
|
278 |
+
| Metric | Value |
|
279 |
+
+===============+==========+
|
280 |
+
| loss | 0.023 |
|
281 |
+
+---------------+----------+
|
282 |
+
| grad_norm | 0.011574 |
|
283 |
+
+---------------+----------+
|
284 |
+
| learning_rate | 2.2e-05 |
|
285 |
+
+---------------+----------+
|
286 |
+
| epoch | 0.419048 |
|
287 |
+
+---------------+----------+[0m - [multilabel_classify.py:2188:on_log]
|
288 |
+
2025-06-13 18:54:38,052 - INFO -
|
289 |
+
[36m🚂 Training Metrics (Step 120) 🚂
|
290 |
+
+---------------+----------+
|
291 |
+
| Metric | Value |
|
292 |
+
+===============+==========+
|
293 |
+
| loss | 0.0223 |
|
294 |
+
+---------------+----------+
|
295 |
+
| grad_norm | 0.01187 |
|
296 |
+
+---------------+----------+
|
297 |
+
| learning_rate | 2.4e-05 |
|
298 |
+
+---------------+----------+
|
299 |
+
| epoch | 0.457143 |
|
300 |
+
+---------------+----------+[0m - [multilabel_classify.py:2188:on_log]
|
301 |
+
2025-06-13 18:54:57,782 - INFO -
|
302 |
+
[36m🚂 Training Metrics (Step 130) 🚂
|
303 |
+
+---------------+----------+
|
304 |
+
| Metric | Value |
|
305 |
+
+===============+==========+
|
306 |
+
| loss | 0.0234 |
|
307 |
+
+---------------+----------+
|
308 |
+
| grad_norm | 0.008039 |
|
309 |
+
+---------------+----------+
|
310 |
+
| learning_rate | 2.6e-05 |
|
311 |
+
+---------------+----------+
|
312 |
+
| epoch | 0.495238 |
|
313 |
+
+---------------+----------+[0m - [multilabel_classify.py:2188:on_log]
|
314 |
+
2025-06-13 18:55:17,523 - INFO -
|
315 |
+
[36m🚂 Training Metrics (Step 140) 🚂
|
316 |
+
+---------------+----------+
|
317 |
+
| Metric | Value |
|
318 |
+
+===============+==========+
|
319 |
+
| loss | 0.0233 |
|
320 |
+
+---------------+----------+
|
321 |
+
| grad_norm | 0.007428 |
|
322 |
+
+---------------+----------+
|
323 |
+
| learning_rate | 2.8e-05 |
|
324 |
+
+---------------+----------+
|
325 |
+
| epoch | 0.533333 |
|
326 |
+
+---------------+----------+[0m - [multilabel_classify.py:2188:on_log]
|
327 |
+
2025-06-13 18:55:37,253 - INFO -
|
328 |
+
[36m🚂 Training Metrics (Step 150) 🚂
|
329 |
+
+---------------+----------+
|
330 |
+
| Metric | Value |
|
331 |
+
+===============+==========+
|
332 |
+
| loss | 0.0227 |
|
333 |
+
+---------------+----------+
|
334 |
+
| grad_norm | 0.025854 |
|
335 |
+
+---------------+----------+
|
336 |
+
| learning_rate | 3e-05 |
|
337 |
+
+---------------+----------+
|
338 |
+
| epoch | 0.571429 |
|
339 |
+
+---------------+----------+[0m - [multilabel_classify.py:2188:on_log]
|
340 |
+
2025-06-13 18:55:56,990 - INFO -
|
341 |
+
[36m🚂 Training Metrics (Step 160) 🚂
|
342 |
+
+---------------+----------+
|
343 |
+
| Metric | Value |
|
344 |
+
+===============+==========+
|
345 |
+
| loss | 0.0218 |
|
346 |
+
+---------------+----------+
|
347 |
+
| grad_norm | 0.015084 |
|
348 |
+
+---------------+----------+
|
349 |
+
| learning_rate | 3.2e-05 |
|
350 |
+
+---------------+----------+
|
351 |
+
| epoch | 0.609524 |
|
352 |
+
+---------------+----------+[0m - [multilabel_classify.py:2188:on_log]
|
353 |
+
2025-06-13 18:56:16,703 - INFO -
|
354 |
+
[36m🚂 Training Metrics (Step 170) 🚂
|
355 |
+
+---------------+----------+
|
356 |
+
| Metric | Value |
|
357 |
+
+===============+==========+
|
358 |
+
| loss | 0.0216 |
|
359 |
+
+---------------+----------+
|
360 |
+
| grad_norm | 0.011318 |
|
361 |
+
+---------------+----------+
|
362 |
+
| learning_rate | 3.4e-05 |
|
363 |
+
+---------------+----------+
|
364 |
+
| epoch | 0.647619 |
|
365 |
+
+---------------+----------+[0m - [multilabel_classify.py:2188:on_log]
|
366 |
+
2025-06-13 18:56:36,435 - INFO -
|
367 |
+
[36m🚂 Training Metrics (Step 180) 🚂
|
368 |
+
+---------------+----------+
|
369 |
+
| Metric | Value |
|
370 |
+
+===============+==========+
|
371 |
+
| loss | 0.0231 |
|
372 |
+
+---------------+----------+
|
373 |
+
| grad_norm | 0.021338 |
|
374 |
+
+---------------+----------+
|
375 |
+
| learning_rate | 3.6e-05 |
|
376 |
+
+---------------+----------+
|
377 |
+
| epoch | 0.685714 |
|
378 |
+
+---------------+----------+[0m - [multilabel_classify.py:2188:on_log]
|
379 |
+
2025-06-13 18:56:56,191 - INFO -
|
380 |
+
[36m🚂 Training Metrics (Step 190) 🚂
|
381 |
+
+---------------+----------+
|
382 |
+
| Metric | Value |
|
383 |
+
+===============+==========+
|
384 |
+
| loss | 0.0236 |
|
385 |
+
+---------------+----------+
|
386 |
+
| grad_norm | 0.004745 |
|
387 |
+
+---------------+----------+
|
388 |
+
| learning_rate | 3.8e-05 |
|
389 |
+
+---------------+----------+
|
390 |
+
| epoch | 0.72381 |
|
391 |
+
+---------------+----------+[0m - [multilabel_classify.py:2188:on_log]
|
392 |
+
2025-06-13 18:57:15,942 - INFO -
|
393 |
+
[36m🚂 Training Metrics (Step 200) 🚂
|
394 |
+
+---------------+----------+
|
395 |
+
| Metric | Value |
|
396 |
+
+===============+==========+
|
397 |
+
| loss | 0.0231 |
|
398 |
+
+---------------+----------+
|
399 |
+
| grad_norm | 0.025924 |
|
400 |
+
+---------------+----------+
|
401 |
+
| learning_rate | 4e-05 |
|
402 |
+
+---------------+----------+
|
403 |
+
| epoch | 0.761905 |
|
404 |
+
+---------------+----------+[0m - [multilabel_classify.py:2188:on_log]
|
405 |
+
2025-06-13 18:57:35,695 - INFO -
|
406 |
+
[36m🚂 Training Metrics (Step 210) 🚂
|
407 |
+
+---------------+----------+
|
408 |
+
| Metric | Value |
|
409 |
+
+===============+==========+
|
410 |
+
| loss | 0.0222 |
|
411 |
+
+---------------+----------+
|
412 |
+
| grad_norm | 0.007095 |
|
413 |
+
+---------------+----------+
|
414 |
+
| learning_rate | 4.2e-05 |
|
415 |
+
+---------------+----------+
|
416 |
+
| epoch | 0.8 |
|
417 |
+
+---------------+----------+[0m - [multilabel_classify.py:2188:on_log]
|
418 |
+
2025-06-13 18:57:55,463 - INFO -
|
419 |
+
[36m🚂 Training Metrics (Step 220) 🚂
|
420 |
+
+---------------+----------+
|
421 |
+
| Metric | Value |
|
422 |
+
+===============+==========+
|
423 |
+
| loss | 0.0225 |
|
424 |
+
+---------------+----------+
|
425 |
+
| grad_norm | 0.012384 |
|
426 |
+
+---------------+----------+
|
427 |
+
| learning_rate | 4.4e-05 |
|
428 |
+
+---------------+----------+
|
429 |
+
| epoch | 0.838095 |
|
430 |
+
+---------------+----------+[0m - [multilabel_classify.py:2188:on_log]
|
431 |
+
2025-06-13 18:58:15,215 - INFO -
|
432 |
+
[36m🚂 Training Metrics (Step 230) 🚂
|
433 |
+
+---------------+---------+
|
434 |
+
| Metric | Value |
|
435 |
+
+===============+=========+
|
436 |
+
| loss | 0.0238 |
|
437 |
+
+---------------+---------+
|
438 |
+
| grad_norm | 0.00828 |
|
439 |
+
+---------------+---------+
|
440 |
+
| learning_rate | 4.6e-05 |
|
441 |
+
+---------------+---------+
|
442 |
+
| epoch | 0.87619 |
|
443 |
+
+---------------+---------+[0m - [multilabel_classify.py:2188:on_log]
|
444 |
+
2025-06-13 18:58:34,964 - INFO -
|
445 |
+
[36m🚂 Training Metrics (Step 240) 🚂
|
446 |
+
+---------------+----------+
|
447 |
+
| Metric | Value |
|
448 |
+
+===============+==========+
|
449 |
+
| loss | 0.0222 |
|
450 |
+
+---------------+----------+
|
451 |
+
| grad_norm | 0.006233 |
|
452 |
+
+---------------+----------+
|
453 |
+
| learning_rate | 4.8e-05 |
|
454 |
+
+---------------+----------+
|
455 |
+
| epoch | 0.914286 |
|
456 |
+
+---------------+----------+[0m - [multilabel_classify.py:2188:on_log]
|
457 |
+
2025-06-13 18:58:54,736 - INFO -
|
458 |
+
[36m🚂 Training Metrics (Step 250) 🚂
|
459 |
+
+---------------+----------+
|
460 |
+
| Metric | Value |
|
461 |
+
+===============+==========+
|
462 |
+
| loss | 0.0232 |
|
463 |
+
+---------------+----------+
|
464 |
+
| grad_norm | 0.011117 |
|
465 |
+
+---------------+----------+
|
466 |
+
| learning_rate | 5e-05 |
|
467 |
+
+---------------+----------+
|
468 |
+
| epoch | 0.952381 |
|
469 |
+
+---------------+----------+[0m - [multilabel_classify.py:2188:on_log]
|
470 |
+
2025-06-13 18:59:14,504 - INFO -
|
471 |
+
[36m🚂 Training Metrics (Step 260) 🚂
|
472 |
+
+---------------+----------+
|
473 |
+
| Metric | Value |
|
474 |
+
+===============+==========+
|
475 |
+
| loss | 0.023 |
|
476 |
+
+---------------+----------+
|
477 |
+
| grad_norm | 0.008961 |
|
478 |
+
+---------------+----------+
|
479 |
+
| learning_rate | 5.2e-05 |
|
480 |
+
+---------------+----------+
|
481 |
+
| epoch | 0.990476 |
|
482 |
+
+---------------+----------+[0m - [multilabel_classify.py:2188:on_log]
|
483 |
+
2025-06-13 18:59:19,754 - INFO - 💾 Model weights saved in safetensors format: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-262 - [multilabel_classify.py:2445:_save]
|
484 |
+
2025-06-13 18:59:19,756 - INFO - ⚙️ Config saved in checkpoint: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-262 - [multilabel_classify.py:2450:_save]
|
485 |
+
2025-06-13 18:59:19,757 - INFO - 📋 Saved files in ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-262:
|
486 |
+
+---------+-------------------+------------+
|
487 |
+
| Index | Saved File | Size |
|
488 |
+
+=========+===================+============+
|
489 |
+
| 1 | training_args.bin | 0.01 MB |
|
490 |
+
+---------+-------------------+------------+
|
491 |
+
| 2 | model.safetensors | 4600.97 MB |
|
492 |
+
+---------+-------------------+------------+
|
493 |
+
| 3 | config.json | 0.00 MB |
|
494 |
+
+---------+-------------------+------------+ - [multilabel_classify.py:2467:_save]
|
495 |
+
2025-06-13 18:59:20,381 - INFO - Removing 'token_type_ids' from eval_dataset as they are not needed. - [multilabel_classify.py:2352:evaluate]
|
496 |
+
2025-06-13 19:12:32,601 - INFO -
|
497 |
+
[33m🔍 Evaluation Metrics 🔍
|
498 |
+
+-------------------------------+----------+
|
499 |
+
| Metric | Value |
|
500 |
+
+===============================+==========+
|
501 |
+
| eval_f1_micro | 0 |
|
502 |
+
+-------------------------------+----------+
|
503 |
+
| eval_f1_macro | 0 |
|
504 |
+
+-------------------------------+----------+
|
505 |
+
| eval_precision_at_5 | 0.274921 |
|
506 |
+
+-------------------------------+----------+
|
507 |
+
| eval_recall_at_5 | 0.063731 |
|
508 |
+
+-------------------------------+----------+
|
509 |
+
| eval_precision_at_8 | 0.253956 |
|
510 |
+
+-------------------------------+----------+
|
511 |
+
| eval_recall_at_8 | 0.090858 |
|
512 |
+
+-------------------------------+----------+
|
513 |
+
| eval_precision_at_15 | 0.190533 |
|
514 |
+
+-------------------------------+----------+
|
515 |
+
| eval_recall_at_15 | 0.122413 |
|
516 |
+
+-------------------------------+----------+
|
517 |
+
| eval_rare_f1_micro | 0 |
|
518 |
+
+-------------------------------+----------+
|
519 |
+
| eval_rare_f1_macro | 0 |
|
520 |
+
+-------------------------------+----------+
|
521 |
+
| eval_rare_precision | 0 |
|
522 |
+
+-------------------------------+----------+
|
523 |
+
| eval_rare_recall | 0 |
|
524 |
+
+-------------------------------+----------+
|
525 |
+
| eval_rare_precision_at_5 | 0.003718 |
|
526 |
+
+-------------------------------+----------+
|
527 |
+
| eval_rare_recall_at_5 | 0.001292 |
|
528 |
+
+-------------------------------+----------+
|
529 |
+
| eval_rare_precision_at_8 | 0.004302 |
|
530 |
+
+-------------------------------+----------+
|
531 |
+
| eval_rare_recall_at_8 | 0.002289 |
|
532 |
+
+-------------------------------+----------+
|
533 |
+
| eval_rare_precision_at_15 | 0.004905 |
|
534 |
+
+-------------------------------+----------+
|
535 |
+
| eval_rare_recall_at_15 | 0.00478 |
|
536 |
+
+-------------------------------+----------+
|
537 |
+
| eval_not_rare_f1_micro | 0 |
|
538 |
+
+-------------------------------+----------+
|
539 |
+
| eval_not_rare_f1_macro | 0 |
|
540 |
+
+-------------------------------+----------+
|
541 |
+
| eval_not_rare_precision | 0 |
|
542 |
+
+-------------------------------+----------+
|
543 |
+
| eval_not_rare_recall | 0 |
|
544 |
+
+-------------------------------+----------+
|
545 |
+
| eval_not_rare_precision_at_5 | 0.274209 |
|
546 |
+
+-------------------------------+----------+
|
547 |
+
| eval_not_rare_recall_at_5 | 0.168014 |
|
548 |
+
+-------------------------------+----------+
|
549 |
+
| eval_not_rare_precision_at_8 | 0.254005 |
|
550 |
+
+-------------------------------+----------+
|
551 |
+
| eval_not_rare_recall_at_8 | 0.239598 |
|
552 |
+
+-------------------------------+----------+
|
553 |
+
| eval_not_rare_precision_at_15 | 0.190585 |
|
554 |
+
+-------------------------------+----------+
|
555 |
+
| eval_not_rare_recall_at_15 | 0.324765 |
|
556 |
+
+-------------------------------+----------+
|
557 |
+
| eval_loss | 0.020932 |
|
558 |
+
+-------------------------------+----------+[0m - [multilabel_classify.py:2207:on_evaluate]
|
559 |
+
2025-06-13 19:12:36,537 - INFO - 💾 Model weights saved in safetensors format: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-262 - [multilabel_classify.py:2445:_save]
|
560 |
+
2025-06-13 19:12:36,538 - INFO - ⚙️ Config saved in checkpoint: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-262 - [multilabel_classify.py:2450:_save]
|
561 |
+
2025-06-13 19:12:36,540 - INFO - 📋 Saved files in ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-262:
|
562 |
+
+---------+--------------------+------------+
|
563 |
+
| Index | Saved File | Size |
|
564 |
+
+=========+====================+============+
|
565 |
+
| 1 | training_args.bin | 0.01 MB |
|
566 |
+
+---------+--------------------+------------+
|
567 |
+
| 2 | optimizer.pt | 1308.77 MB |
|
568 |
+
+---------+--------------------+------------+
|
569 |
+
| 3 | model.safetensors | 4600.97 MB |
|
570 |
+
+---------+--------------------+------------+
|
571 |
+
| 4 | scaler.pt | 0.00 MB |
|
572 |
+
+---------+--------------------+------------+
|
573 |
+
| 5 | config.json | 0.00 MB |
|
574 |
+
+---------+--------------------+------------+
|
575 |
+
| 6 | scheduler.pt | 0.00 MB |
|
576 |
+
+---------+--------------------+------------+
|
577 |
+
| 7 | trainer_state.json | 0.00 MB |
|
578 |
+
+---------+--------------------+------------+
|
579 |
+
| 8 | rng_state.pth | 0.01 MB |
|
580 |
+
+---------+--------------------+------------+ - [multilabel_classify.py:2467:_save]
|
581 |
+
2025-06-13 19:12:37,957 - INFO - 📂 Loading best model from ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-262 - [multilabel_classify.py:2519:_load_best_model]
|
582 |
+
2025-06-13 19:12:37,957 - INFO - 🖥️ Model is on device: cuda:0 - [multilabel_classify.py:2529:_load_best_model]
|
583 |
+
2025-06-13 19:12:38,014 - INFO - 🔑 Key order comparison:
|
584 |
+
+---------+--------------------------------------------+--------------------------------------------------------------------------------------+
|
585 |
+
| Index | Saved state_dict Keys | Model state_dict Keys |
|
586 |
+
+=========+============================================+======================================================================================+
|
587 |
+
| 1 | attention.in_proj_bias | boost_mul |
|
588 |
+
+---------+--------------------------------------------+--------------------------------------------------------------------------------------+
|
589 |
+
| 2 | attention.in_proj_weight | boost_add |
|
590 |
+
+---------+--------------------------------------------+--------------------------------------------------------------------------------------+
|
591 |
+
| 3 | attention.out_proj.bias | base_model.base_model.model.model.embed_tokens.weight |
|
592 |
+
+---------+--------------------------------------------+--------------------------------------------------------------------------------------+
|
593 |
+
| 4 | attention.out_proj.weight | base_model.base_model.model.model.layers.0.self_attn.q_proj.base_layer.weight |
|
594 |
+
+---------+--------------------------------------------+--------------------------------------------------------------------------------------+
|
595 |
+
| 5 | base_model.base_model.model.lm_head.weight | base_model.base_model.model.model.layers.0.self_attn.q_proj.base_layer.weight.absmax |
|
596 |
+
+---------+--------------------------------------------+--------------------------------------------------------------------------------------+ - [multilabel_classify.py:2553:_load_best_model]
|
597 |
+
2025-06-13 19:12:39,020 - INFO - ✅ Loaded best model weights from ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-262/model.safetensors - [multilabel_classify.py:2570:_load_best_model]
|
598 |
+
2025-06-13 19:12:39,059 - INFO - ✔️ Weight for boost_mul matches between saved and loaded state_dict - [multilabel_classify.py:2582:_load_best_model]
|
599 |
+
2025-06-13 19:12:39,091 - INFO - ✔️ Weight for boost_add matches between saved and loaded state_dict - [multilabel_classify.py:2582:_load_best_model]
|
600 |
+
2025-06-13 19:12:39,108 - INFO -
|
601 |
+
[36m🚂 Training Metrics (Step 262) 🚂
|
602 |
+
+--------------------------+----------+
|
603 |
+
| Metric | Value |
|
604 |
+
+==========================+==========+
|
605 |
+
| train_runtime | 1319.86 |
|
606 |
+
+--------------------------+----------+
|
607 |
+
| train_samples_per_second | 6.359 |
|
608 |
+
+--------------------------+----------+
|
609 |
+
| train_steps_per_second | 0.199 |
|
610 |
+
+--------------------------+----------+
|
611 |
+
| total_flos | 0 |
|
612 |
+
+--------------------------+----------+
|
613 |
+
| train_loss | 0.062579 |
|
614 |
+
+--------------------------+----------+
|
615 |
+
| epoch | 0.998095 |
|
616 |
+
+--------------------------+----------+[0m - [multilabel_classify.py:2188:on_log]
|
617 |
+
2025-06-13 19:12:39,108 - INFO - ✨ Training Completed! ✨ - [multilabel_classify.py:2061:on_train_end]
|
618 |
+
2025-06-13 19:12:39,183 - INFO - 📊 Training loss plot saved as '../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/train_loss_plot.png' - [multilabel_classify.py:2257:on_train_end]
|
619 |
+
2025-06-13 19:12:39,237 - INFO - 📊 Evaluation loss plot saved as '../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/eval_loss_plot.png' - [multilabel_classify.py:2271:on_train_end]
|
620 |
+
2025-06-13 19:12:39,297 - INFO - 📊 Evaluation metric plot saved as '../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/eval_precision_at_15_plot.png' - [multilabel_classify.py:2292:on_train_end]
|
621 |
+
2025-06-13 19:12:39,298 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:101:log_section]
|
622 |
+
2025-06-13 19:12:39,298 - INFO - + ✨ MODEL SAVING + - [multilabel_classify.py:102:log_section]
|
623 |
+
2025-06-13 19:12:39,298 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:105:log_section]
|
624 |
+
2025-06-13 19:12:39,298 - INFO - 💾 Saving trained model and pushing to Hugging Face Hub... - [multilabel_classify.py:4069:main]
|
625 |
+
2025-06-13 19:12:39,298 - INFO - 📁 Creating/using output directory: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b - [multilabel_classify.py:3045:save_and_push]
|
626 |
+
2025-06-13 19:12:40,623 - INFO - 💾 Model weights saved in safetensors format: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b - [multilabel_classify.py:2445:_save]
|
627 |
+
2025-06-13 19:12:40,625 - INFO - ⚙️ Config saved in checkpoint: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b - [multilabel_classify.py:2450:_save]
|
628 |
+
2025-06-13 19:12:40,626 - INFO - 📋 Saved files in ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b:
|
629 |
+
+---------+-------------------------------+------------+
|
630 |
+
| Index | Saved File | Size |
|
631 |
+
+=========+===============================+============+
|
632 |
+
| 1 | eval_loss_plot.png | 0.02 MB |
|
633 |
+
+---------+-------------------------------+------------+
|
634 |
+
| 2 | training_args.bin | 0.01 MB |
|
635 |
+
+---------+-------------------------------+------------+
|
636 |
+
| 3 | model.safetensors | 4600.97 MB |
|
637 |
+
+---------+-------------------------------+------------+
|
638 |
+
| 4 | config.json | 0.00 MB |
|
639 |
+
+---------+-------------------------------+------------+
|
640 |
+
| 5 | train_loss_plot.png | 0.02 MB |
|
641 |
+
+---------+-------------------------------+------------+
|
642 |
+
| 6 | eval_precision_at_15_plot.png | 0.03 MB |
|
643 |
+
+---------+-------------------------------+------------+ - [multilabel_classify.py:2467:_save]
|
644 |
+
2025-06-13 19:12:44,632 - INFO - 💾 Model weights saved in safetensors format: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b - [multilabel_classify.py:2445:_save]
|
645 |
+
2025-06-13 19:12:44,634 - INFO - ⚙️ Config saved in checkpoint: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b - [multilabel_classify.py:2450:_save]
|
646 |
+
2025-06-13 19:12:44,635 - INFO - 📋 Saved files in ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b:
|
647 |
+
+---------+-------------------------------+------------+
|
648 |
+
| Index | Saved File | Size |
|
649 |
+
+=========+===============================+============+
|
650 |
+
| 1 | eval_loss_plot.png | 0.02 MB |
|
651 |
+
+---------+-------------------------------+------------+
|
652 |
+
| 2 | training_args.bin | 0.01 MB |
|
653 |
+
+---------+-------------------------------+------------+
|
654 |
+
| 3 | model.safetensors | 4600.97 MB |
|
655 |
+
+---------+-------------------------------+------------+
|
656 |
+
| 4 | config.json | 0.00 MB |
|
657 |
+
+---------+-------------------------------+------------+
|
658 |
+
| 5 | train_loss_plot.png | 0.02 MB |
|
659 |
+
+---------+-------------------------------+------------+
|
660 |
+
| 6 | eval_precision_at_15_plot.png | 0.03 MB |
|
661 |
+
+---------+-------------------------------+------------+ - [multilabel_classify.py:2467:_save]
|
662 |
+
2025-06-13 19:14:09,684 - INFO - 💾 Model saved to: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b - [multilabel_classify.py:3049:save_and_push]
|
663 |
+
2025-06-13 19:14:09,714 - INFO - 🖌️ Tokenizer saved to: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b - [multilabel_classify.py:3053:save_and_push]
|