deb101 commited on
Commit
1291b75
·
verified ·
1 Parent(s): 844befc

Trained classifier model on MIMIC-IV

Browse files
classification_log_2025-06-13_18-45-53.log ADDED
@@ -0,0 +1,663 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2025-06-13 18:45:53,711 - INFO - ================================================================================ - [multilabel_classify.py:101:log_section]
2
+ 2025-06-13 18:45:53,711 - INFO - = 📌 INITIALIZING TRAINING ENVIRONMENT = - [multilabel_classify.py:102:log_section]
3
+ 2025-06-13 18:45:53,711 - INFO - ================================================================================ - [multilabel_classify.py:105:log_section]
4
+ 2025-06-13 18:45:53,711 - INFO - 🚀 Setting up data paths and environment variables... - [multilabel_classify.py:3916:main]
5
+ 2025-06-13 18:45:53,712 - INFO - 📂 Using output directory: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b - [multilabel_classify.py:3922:main]
6
+ 2025-06-13 18:45:53,712 - INFO - 🛠️ Command-line Arguments: - [multilabel_classify.py:369:print_args]
7
+ 2025-06-13 18:45:53,712 - INFO -
8
+ 🔹 output_dir: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b
9
+ 🔹 source_url: XURLs.MIMIC4_DEMO
10
+ 🔹 data: mimic4_icd10_full
11
+ 🔹 logfile: classification_log
12
+ 🔹 base_dir: ../tmp/MIMIC4_DEMO
13
+ 🔹 hub_model_id: deb101/mistral-7b-instruct-v0.3-mimic4-adapt
14
+ 🔹 model_name: mistralai/Mistral-7B-Instruct-v0.3
15
+ 🔹 max_length: 512
16
+ 🔹 do_fresh_training: True
17
+ 🔹 load_from_checkpoint: False
18
+ 🔹 task: multilabel-classify
19
+ 🔹 num_train_epochs: 1
20
+ 🔹 per_device_train_batch_size: 8
21
+ 🔹 per_device_eval_batch_size: 8
22
+ 🔹 metric_for_best_model: precision_at_15
23
+ 🔹 learning_rate: 0.0001
24
+ 🔹 final_lr_scheduling: 1e-06
25
+ 🔹 warmup_steps: 500
26
+ 🔹 logfile_path: ../tmp/logs/classification_log_2025-06-13_18-45-53.log
27
+ 🔹 source: /home/ubuntu/.xcube/data/mimic4_demo - [multilabel_classify.py:370:print_args]
28
+ 2025-06-13 18:45:53,712 - INFO - ➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖ - [multilabel_classify.py:371:print_args]
29
+ 2025-06-13 18:45:53,722 - INFO -
30
+ 🚀 Quick Git Info: 📁 xcube | 🌿 plant | 🔍 0bd4309 | 👤 Debjyoti Saha Roy | ⚡ MIXED (1 staged, 2 unstaged) | 🔬 git show 0bd4309 - [multilabel_classify.py:3928:main]
31
+ 2025-06-13 18:45:53,722 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:101:log_section]
32
+ 2025-06-13 18:45:53,723 - INFO - + ✨ LOADING DATASETS + - [multilabel_classify.py:102:log_section]
33
+ 2025-06-13 18:45:53,723 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:105:log_section]
34
+ 2025-06-13 18:45:53,723 - INFO - 📊 Loading main datasets.... - [multilabel_classify.py:3931:main]
35
+ 2025-06-13 18:46:02,259 - INFO - 🔍 Total unique labels in dataset: 7942 - [multilabel_classify.py:3707:sample_df_with_full_label_coverage]
36
+ 2025-06-13 18:46:02,272 - INFO - 🧪 Attempt 1: Sampled 122 rows covering 863 labels. - [multilabel_classify.py:3721:sample_df_with_full_label_coverage]
37
+ 2025-06-13 18:46:02,282 - INFO - 🧪 Attempt 2: Sampled 122 rows covering 816 labels. - [multilabel_classify.py:3721:sample_df_with_full_label_coverage]
38
+ 2025-06-13 18:46:02,291 - INFO - 🧪 Attempt 3: Sampled 122 rows covering 885 labels. - [multilabel_classify.py:3721:sample_df_with_full_label_coverage]
39
+ 2025-06-13 18:46:02,300 - INFO - 🧪 Attempt 4: Sampled 122 rows covering 828 labels. - [multilabel_classify.py:3721:sample_df_with_full_label_coverage]
40
+ 2025-06-13 18:46:02,309 - INFO - 🧪 Attempt 5: Sampled 122 rows covering 879 labels. - [multilabel_classify.py:3721:sample_df_with_full_label_coverage]
41
+ 2025-06-13 18:46:02,317 - INFO - 🧪 Attempt 6: Sampled 122 rows covering 852 labels. - [multilabel_classify.py:3721:sample_df_with_full_label_coverage]
42
+ 2025-06-13 18:46:02,326 - INFO - 🧪 Attempt 7: Sampled 122 rows covering 838 labels. - [multilabel_classify.py:3721:sample_df_with_full_label_coverage]
43
+ 2025-06-13 18:46:02,335 - INFO - 🧪 Attempt 8: Sampled 122 rows covering 851 labels. - [multilabel_classify.py:3721:sample_df_with_full_label_coverage]
44
+ 2025-06-13 18:46:02,343 - INFO - 🧪 Attempt 9: Sampled 122 rows covering 825 labels. - [multilabel_classify.py:3721:sample_df_with_full_label_coverage]
45
+ 2025-06-13 18:46:02,351 - INFO - 🧪 Attempt 10: Sampled 122 rows covering 833 labels. - [multilabel_classify.py:3721:sample_df_with_full_label_coverage]
46
+ 2025-06-13 18:46:02,356 - INFO - 🛠️ Fixing missing labels: 7109 remaining... - [multilabel_classify.py:3754:sample_df_with_full_label_coverage]
47
+ 2025-06-13 18:49:30,886 - INFO - ✅ Added 1648 rows to achieve full label coverage. - [multilabel_classify.py:3786:sample_df_with_full_label_coverage]
48
+ 2025-06-13 18:49:30,889 - INFO - 📊 Final total labels: 7942 - [multilabel_classify.py:3789:sample_df_with_full_label_coverage]
49
+ 2025-06-13 18:49:30,889 - INFO - ✅ Final row count: 1770 (Valid: 420, Not-valid: 1350) - [multilabel_classify.py:3797:sample_df_with_full_label_coverage]
50
+ 2025-06-13 18:49:31,659 - INFO - ******************************************************************************** - [multilabel_classify.py:101:log_section]
51
+ 2025-06-13 18:49:31,659 - INFO - * 🌟 STARTING MULTI_LABEL CLASSIFICATION MODEL TRAINING * - [multilabel_classify.py:102:log_section]
52
+ 2025-06-13 18:49:31,659 - INFO - ******************************************************************************** - [multilabel_classify.py:105:log_section]
53
+ 2025-06-13 18:49:31,659 - INFO - 🔐 Loaded authentication token from environment - [multilabel_classify.py:3958:main]
54
+ 2025-06-13 18:49:31,659 - INFO - 🏷️ Hub Model ID for this Classification task: deb101/mistral-7b-instruct-v0.3-mimic4-adapt-multilabel-classify - [multilabel_classify.py:3962:main]
55
+ 2025-06-13 18:49:31,659 - INFO - -------------------------------------------------------------------------------- - [multilabel_classify.py:101:log_section]
56
+ 2025-06-13 18:49:31,659 - INFO - - 📋 MODEL EXISTENCE CHECK - - [multilabel_classify.py:102:log_section]
57
+ 2025-06-13 18:49:31,659 - INFO - -------------------------------------------------------------------------------- - [multilabel_classify.py:105:log_section]
58
+ 2025-06-13 18:49:31,659 - INFO - 🔍 Checking model existence locally and on Hugging Face Hub... - [multilabel_classify.py:3822:check_model_existence]
59
+ 2025-06-13 18:49:31,659 - INFO - ❌ Model not found locally at: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b - [multilabel_classify.py:3829:check_model_existence]
60
+ 2025-06-13 18:49:31,726 - INFO - ✅ Model exists on Hugging Face Hub with ID: deb101/mistral-7b-instruct-v0.3-mimic4-adapt-multilabel-classify - [multilabel_classify.py:3841:check_model_existence]
61
+ 2025-06-13 18:49:31,726 - INFO - 📁 Model exists either locally or on Hub - [multilabel_classify.py:3867:check_model_existence]
62
+ 2025-06-13 18:49:31,726 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:101:log_section]
63
+ 2025-06-13 18:49:31,726 - INFO - + ✨ STARTING FRESH TRAINING + - [multilabel_classify.py:102:log_section]
64
+ 2025-06-13 18:49:31,727 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:105:log_section]
65
+ 2025-06-13 18:49:31,727 - INFO - 🔄 Starting fresh training (either forced or model not found)... - [multilabel_classify.py:3975:main]
66
+ 2025-06-13 18:49:31,738 - WARNING - Note: Environment variable`HF_TOKEN` is set and is the current active token independently from the token you've just configured. - [_login.py:415:_login]
67
+ 2025-06-13 18:49:31,738 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:101:log_section]
68
+ 2025-06-13 18:49:31,738 - INFO - + ✨ LOADING BASE MODEL + - [multilabel_classify.py:102:log_section]
69
+ 2025-06-13 18:49:31,738 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:105:log_section]
70
+ 2025-06-13 18:49:31,738 - INFO - 📥 Loading pretrained model and tokenizer... - [multilabel_classify.py:4007:main]
71
+ 2025-06-13 18:49:31,738 - INFO - 🚀 Starting model and tokenizer loading process... - [multilabel_classify.py:1579:load_base_model_and_tokenizer]
72
+ 2025-06-13 18:49:31,739 - INFO - 📊 Quantization config: 4-bit, nf4, double_quant, bfloat16 - [multilabel_classify.py:1588:load_base_model_and_tokenizer]
73
+ 2025-06-13 18:49:31,739 - INFO - 🔤 Loading tokenizer for model: deb101/mistral-7b-instruct-v0.3-mimic4-adapt... - [multilabel_classify.py:1592:load_base_model_and_tokenizer]
74
+ 2025-06-13 18:49:32,680 - INFO - 🔍 Checking if deb101/mistral-7b-instruct-v0.3-mimic4-adapt is a PEFT model... - [multilabel_classify.py:1603:load_base_model_and_tokenizer]
75
+ 2025-06-13 18:49:32,735 - INFO - ✅ Detected PEFT model. Base model: mistralai/Mistral-7B-Instruct-v0.3 - [multilabel_classify.py:1607:load_base_model_and_tokenizer]
76
+ 2025-06-13 18:49:32,735 - INFO - 🔍 Loading model configuration for mistralai/Mistral-7B-Instruct-v0.3... - [multilabel_classify.py:1615:load_base_model_and_tokenizer]
77
+ 2025-06-13 18:49:32,810 - INFO - Model type: mistral, Architectures: ['MistralForCausalLM'] - [multilabel_classify.py:1630:load_base_model_and_tokenizer]
78
+ 2025-06-13 18:49:32,810 - INFO - 🧠 Loading base model: mistralai/Mistral-7B-Instruct-v0.3... - [multilabel_classify.py:1698:load_base_model_and_tokenizer]
79
+ 2025-06-13 18:49:33,322 - INFO - We will use 90% of the memory on device 0 for storing the model, and 10% for the buffer to avoid OOM. You can set `max_memory` in to a higher value to use more memory (at your own risk). - [modeling.py:991:get_balanced_memory]
80
+ 2025-06-13 18:49:38,581 - INFO - 🧩 Loading PEFT adapters for deb101/mistral-7b-instruct-v0.3-mimic4-adapt... - [multilabel_classify.py:1718:load_base_model_and_tokenizer]
81
+ 2025-06-13 18:49:39,365 - INFO - 🔧 Before enabling PEFT adapters - [multilabel_classify.py:1720:load_base_model_and_tokenizer]
82
+ 2025-06-13 18:49:39,367 - INFO - 📊 trainable params: 0 || all params: 7,254,839,296 || trainable%: 0.0000 - [multilabel_classify.py:160:log_print_output]
83
+ 2025-06-13 18:49:39,370 - INFO - Enabled gradients for parameters: ['base_model.model.model.layers.0.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.0.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.0.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.0.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.1.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.1.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.1.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.1.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.2.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.2.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.2.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.2.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.3.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.3.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.3.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.3.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.4.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.4.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.4.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.4.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.5.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.5.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.5.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.5.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.6.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.6.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.6.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.6.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.7.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.7.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.7.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.7.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.8.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.8.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.8.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.8.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.9.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.9.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.9.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.9.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.10.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.10.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.10.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.10.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.11.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.11.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.11.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.11.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.12.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.12.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.12.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.12.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.13.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.13.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.13.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.13.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.14.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.14.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.14.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.14.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.15.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.15.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.15.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.15.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.16.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.16.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.16.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.16.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.17.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.17.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.17.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.17.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.18.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.18.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.18.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.18.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.19.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.19.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.19.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.19.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.20.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.20.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.20.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.20.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.21.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.21.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.21.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.21.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.22.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.22.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.22.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.22.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.23.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.23.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.23.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.23.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.24.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.24.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.24.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.24.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.25.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.25.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.25.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.25.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.26.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.26.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.26.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.26.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.27.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.27.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.27.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.27.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.28.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.28.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.28.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.28.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.29.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.29.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.29.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.29.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.30.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.30.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.30.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.30.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.31.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.31.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.31.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.31.self_attn.v_proj.lora_B.default.weight'] - [multilabel_classify.py:1730:load_base_model_and_tokenizer]
84
+ 2025-06-13 18:49:39,370 - INFO - 🔧 After enabling PEFT adapters - [multilabel_classify.py:1731:load_base_model_and_tokenizer]
85
+ 2025-06-13 18:49:39,372 - INFO - 📊 trainable params: 6,815,744 || all params: 7,254,839,296 || trainable%: 0.0939 - [multilabel_classify.py:160:log_print_output]
86
+ 2025-06-13 18:49:39,374 - INFO - ✅ Model and tokenizer successfully loaded! - [multilabel_classify.py:1769:load_base_model_and_tokenizer]
87
+ 2025-06-13 18:49:39,374 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:101:log_section]
88
+ 2025-06-13 18:49:39,374 - INFO - + ✨ DATA PREPROCESSING + - [multilabel_classify.py:102:log_section]
89
+ 2025-06-13 18:49:39,374 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:105:log_section]
90
+ 2025-06-13 18:49:39,374 - INFO - 🔄 Loading and preprocessing training data... - [multilabel_classify.py:4017:main]
91
+ 2025-06-13 18:49:39,553 - INFO - Total number of labels: 7942 - [multilabel_classify.py:1172:preprocess_data]
92
+ 2025-06-13 18:49:39,553 - INFO - Rare labels (freq < 50): 7817 - [multilabel_classify.py:1173:preprocess_data]
93
+ 2025-06-13 18:49:39,553 - INFO - Not rare labels (freq >= 50): 125 - [multilabel_classify.py:1174:preprocess_data]
94
+ 2025-06-13 18:49:39,553 - INFO - Label partitions and classes saved to ../tmp/MIMIC4_DEMO/labels_partition.json - [multilabel_classify.py:1175:preprocess_data]
95
+ 2025-06-13 18:50:36,704 - INFO - The size of training set: 8393 - [multilabel_classify.py:1271:preprocess_data]
96
+ 2025-06-13 18:50:36,704 - INFO - The size of Evaluation set: 2528 - [multilabel_classify.py:1272:preprocess_data]
97
+ 2025-06-13 18:50:37,110 - INFO - Number of unique ICD-10 codes: 7942 - [multilabel_classify.py:4023:main]
98
+ 2025-06-13 18:50:37,112 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:101:log_section]
99
+ 2025-06-13 18:50:37,112 - INFO - + ✨ MODEL INITIALIZATION + - [multilabel_classify.py:102:log_section]
100
+ 2025-06-13 18:50:37,112 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:105:log_section]
101
+ 2025-06-13 18:50:37,112 - INFO - 🧠 Initializing custom L2R model for outputting per-token relevance scores per ICD-10 codes. - [multilabel_classify.py:4026:main]
102
+ 2025-06-13 18:50:37,113 - INFO - 🏥📊 Creating MultilabelICDClassifier - Standard multilabel medical classifier! 🔬💫 - [multilabel_classify.py:860:define_model]
103
+ 2025-06-13 18:50:37,113 - INFO - Will now start to create Multilabel-Classification Model from the base model - [multilabel_classify.py:565:__init__]
104
+ 2025-06-13 18:50:37,117 - INFO - 📊 trainable params: 6,815,744 || all params: 3,765,178,368 || trainable%: 0.1810 - [multilabel_classify.py:619:compute_trainable_params]
105
+ 2025-06-13 18:50:38,856 - INFO - Creating the Multi-Label Classification Model from base model mistralai/Mistral-7B-Instruct-v0.3 completed!!! - [multilabel_classify.py:607:__init__]
106
+ 2025-06-13 18:50:38,860 - INFO - 📊 trainable params: 171,532,417 || all params: 3,929,895,041 || trainable%: 4.3648 - [multilabel_classify.py:619:compute_trainable_params]
107
+ 2025-06-13 18:50:38,860 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:101:log_section]
108
+ 2025-06-13 18:50:38,860 - INFO - + ✨ TRAINING PREPARATION + - [multilabel_classify.py:102:log_section]
109
+ 2025-06-13 18:50:38,860 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:105:log_section]
110
+ 2025-06-13 18:50:38,861 - INFO - ⚙️ Preparing training components and optimizers... - [multilabel_classify.py:4033:main]
111
+ 2025-06-13 18:50:38,945 - INFO - 🖥️ Device: NVIDIA GH200 480GB - [multilabel_classify.py:1019:log_training_configuration]
112
+ 2025-06-13 18:50:38,945 - INFO - 🔋 CUDA Available: True - [multilabel_classify.py:1022:log_training_configuration]
113
+ 2025-06-13 18:50:38,945 - INFO - 💾 CUDA Device Count: 1 - [multilabel_classify.py:1023:log_training_configuration]
114
+ 2025-06-13 18:50:38,947 - INFO -
115
+ 📋 Training Configuration 📋
116
+ +----------+-----------------------------+------------------------------------------------------------------+
117
+ | 🌟 Emoji | 🏷️ Parameter | 📊 Value |
118
+ +----------+-----------------------------+------------------------------------------------------------------+
119
+ | 📁 | Output Directory | ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b |
120
+ | 🔁 | Training Epochs | 1 |
121
+ | 🏋️ | Train Batch Size | 8 |
122
+ | 🔍 | Eval Batch Size | 8 |
123
+ | 📊 | Gradient Accumulation Steps | 4 |
124
+ | 🚀 | Learning Rate | 0.0001 |
125
+ | 🌅 | Warmup Steps | 500 |
126
+ | 💾 | Save Strategy | epoch |
127
+ | 💾 | Save Total Limit | 10 |
128
+ | 📊 | Evaluation Strategy | epoch |
129
+ | 🎯 | Best Model Metric | precision_at_15 |
130
+ | 📝 | Logging Strategy | steps (every 10 steps) |
131
+ | 🌐 | Push to Hub | True |
132
+ | 🌐 | Hub Model ID | deb101/mistral-7b-instruct-v0.3-mimic4-adapt-multilabel-classify |
133
+ | 🔢 | Steps per Epoch | 262 |
134
+ | 🔢 | Total Training Steps | 262 |
135
+ | 🔢 | Evaluation Steps | 316 |
136
+ | 📊 | Training Dataset Size | 8393 samples 🏋️ |
137
+ | 📊 | Evaluation Dataset Size | 2528 samples 🔍 |
138
+ +----------+-----------------------------+------------------------------------------------------------------+ - [multilabel_classify.py:1011:log_training_args]
139
+ 2025-06-13 18:50:38,947 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:101:log_section]
140
+ 2025-06-13 18:50:38,948 - INFO - + ✨ MODEL TRAINING + - [multilabel_classify.py:102:log_section]
141
+ 2025-06-13 18:50:38,948 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:105:log_section]
142
+ 2025-06-13 18:50:38,948 - INFO - 🏋️ Starting model training process... - [multilabel_classify.py:4055:main]
143
+ 2025-06-13 18:50:38,998 - INFO - We are registering the tokenizer deb101/mistral-7b-instruct-v0.3-mimic4-adapt in Custom Trainer - [multilabel_classify.py:2340:__init__]
144
+ 2025-06-13 18:50:39,246 - INFO - 🚀 Starting Training... - [multilabel_classify.py:1994:on_train_begin]
145
+ 2025-06-13 18:51:01,764 - INFO -
146
+ 🚂 Training Metrics (Step 10) 🚂
147
+ +---------------+----------+
148
+ | Metric | Value |
149
+ +===============+==========+
150
+ | loss | 0.6752 |
151
+ +---------------+----------+
152
+ | grad_norm | 7.27432 |
153
+ +---------------+----------+
154
+ | learning_rate | 2e-06 |
155
+ +---------------+----------+
156
+ | epoch | 0.038095 |
157
+ +---------------+----------+ - [multilabel_classify.py:2188:on_log]
158
+ 2025-06-13 18:51:21,360 - INFO -
159
+ 🚂 Training Metrics (Step 20) 🚂
160
+ +---------------+---------+
161
+ | Metric | Value |
162
+ +===============+=========+
163
+ | loss | 0.3475 |
164
+ +---------------+---------+
165
+ | grad_norm | 2.94909 |
166
+ +---------------+---------+
167
+ | learning_rate | 4e-06 |
168
+ +---------------+---------+
169
+ | epoch | 0.07619 |
170
+ +---------------+---------+ - [multilabel_classify.py:2188:on_log]
171
+ 2025-06-13 18:51:40,988 - INFO -
172
+ 🚂 Training Metrics (Step 30) 🚂
173
+ +---------------+----------+
174
+ | Metric | Value |
175
+ +===============+==========+
176
+ | loss | 0.0737 |
177
+ +---------------+----------+
178
+ | grad_norm | 0.276477 |
179
+ +---------------+----------+
180
+ | learning_rate | 6e-06 |
181
+ +---------------+----------+
182
+ | epoch | 0.114286 |
183
+ +---------------+----------+ - [multilabel_classify.py:2188:on_log]
184
+ 2025-06-13 18:52:00,566 - INFO -
185
+ 🚂 Training Metrics (Step 40) 🚂
186
+ +---------------+----------+
187
+ | Metric | Value |
188
+ +===============+==========+
189
+ | loss | 0.0233 |
190
+ +---------------+----------+
191
+ | grad_norm | 0.104187 |
192
+ +---------------+----------+
193
+ | learning_rate | 8e-06 |
194
+ +---------------+----------+
195
+ | epoch | 0.152381 |
196
+ +---------------+----------+ - [multilabel_classify.py:2188:on_log]
197
+ 2025-06-13 18:52:20,179 - INFO -
198
+ 🚂 Training Metrics (Step 50) 🚂
199
+ +---------------+----------+
200
+ | Metric | Value |
201
+ +===============+==========+
202
+ | loss | 0.0282 |
203
+ +---------------+----------+
204
+ | grad_norm | 0.154837 |
205
+ +---------------+----------+
206
+ | learning_rate | 1e-05 |
207
+ +---------------+----------+
208
+ | epoch | 0.190476 |
209
+ +---------------+----------+ - [multilabel_classify.py:2188:on_log]
210
+ 2025-06-13 18:52:39,823 - INFO -
211
+ 🚂 Training Metrics (Step 60) 🚂
212
+ +---------------+----------+
213
+ | Metric | Value |
214
+ +===============+==========+
215
+ | loss | 0.027 |
216
+ +---------------+----------+
217
+ | grad_norm | 0.136466 |
218
+ +---------------+----------+
219
+ | learning_rate | 1.2e-05 |
220
+ +---------------+----------+
221
+ | epoch | 0.228571 |
222
+ +---------------+----------+ - [multilabel_classify.py:2188:on_log]
223
+ 2025-06-13 18:52:59,512 - INFO -
224
+ 🚂 Training Metrics (Step 70) 🚂
225
+ +---------------+----------+
226
+ | Metric | Value |
227
+ +===============+==========+
228
+ | loss | 0.0244 |
229
+ +---------------+----------+
230
+ | grad_norm | 0.029749 |
231
+ +---------------+----------+
232
+ | learning_rate | 1.4e-05 |
233
+ +---------------+----------+
234
+ | epoch | 0.266667 |
235
+ +---------------+----------+ - [multilabel_classify.py:2188:on_log]
236
+ 2025-06-13 18:53:19,196 - INFO -
237
+ 🚂 Training Metrics (Step 80) 🚂
238
+ +---------------+----------+
239
+ | Metric | Value |
240
+ +===============+==========+
241
+ | loss | 0.0234 |
242
+ +---------------+----------+
243
+ | grad_norm | 0.042736 |
244
+ +---------------+----------+
245
+ | learning_rate | 1.6e-05 |
246
+ +---------------+----------+
247
+ | epoch | 0.304762 |
248
+ +---------------+----------+ - [multilabel_classify.py:2188:on_log]
249
+ 2025-06-13 18:53:38,910 - INFO -
250
+ 🚂 Training Metrics (Step 90) 🚂
251
+ +---------------+----------+
252
+ | Metric | Value |
253
+ +===============+==========+
254
+ | loss | 0.0235 |
255
+ +---------------+----------+
256
+ | grad_norm | 0.035706 |
257
+ +---------------+----------+
258
+ | learning_rate | 1.8e-05 |
259
+ +---------------+----------+
260
+ | epoch | 0.342857 |
261
+ +---------------+----------+ - [multilabel_classify.py:2188:on_log]
262
+ 2025-06-13 18:53:58,615 - INFO -
263
+ 🚂 Training Metrics (Step 100) 🚂
264
+ +---------------+----------+
265
+ | Metric | Value |
266
+ +===============+==========+
267
+ | loss | 0.0243 |
268
+ +---------------+----------+
269
+ | grad_norm | 0.230328 |
270
+ +---------------+----------+
271
+ | learning_rate | 2e-05 |
272
+ +---------------+----------+
273
+ | epoch | 0.380952 |
274
+ +---------------+----------+ - [multilabel_classify.py:2188:on_log]
275
+ 2025-06-13 18:54:18,318 - INFO -
276
+ 🚂 Training Metrics (Step 110) 🚂
277
+ +---------------+----------+
278
+ | Metric | Value |
279
+ +===============+==========+
280
+ | loss | 0.023 |
281
+ +---------------+----------+
282
+ | grad_norm | 0.011574 |
283
+ +---------------+----------+
284
+ | learning_rate | 2.2e-05 |
285
+ +---------------+----------+
286
+ | epoch | 0.419048 |
287
+ +---------------+----------+ - [multilabel_classify.py:2188:on_log]
288
+ 2025-06-13 18:54:38,052 - INFO -
289
+ 🚂 Training Metrics (Step 120) 🚂
290
+ +---------------+----------+
291
+ | Metric | Value |
292
+ +===============+==========+
293
+ | loss | 0.0223 |
294
+ +---------------+----------+
295
+ | grad_norm | 0.01187 |
296
+ +---------------+----------+
297
+ | learning_rate | 2.4e-05 |
298
+ +---------------+----------+
299
+ | epoch | 0.457143 |
300
+ +---------------+----------+ - [multilabel_classify.py:2188:on_log]
301
+ 2025-06-13 18:54:57,782 - INFO -
302
+ 🚂 Training Metrics (Step 130) 🚂
303
+ +---------------+----------+
304
+ | Metric | Value |
305
+ +===============+==========+
306
+ | loss | 0.0234 |
307
+ +---------------+----------+
308
+ | grad_norm | 0.008039 |
309
+ +---------------+----------+
310
+ | learning_rate | 2.6e-05 |
311
+ +---------------+----------+
312
+ | epoch | 0.495238 |
313
+ +---------------+----------+ - [multilabel_classify.py:2188:on_log]
314
+ 2025-06-13 18:55:17,523 - INFO -
315
+ 🚂 Training Metrics (Step 140) 🚂
316
+ +---------------+----------+
317
+ | Metric | Value |
318
+ +===============+==========+
319
+ | loss | 0.0233 |
320
+ +---------------+----------+
321
+ | grad_norm | 0.007428 |
322
+ +---------------+----------+
323
+ | learning_rate | 2.8e-05 |
324
+ +---------------+----------+
325
+ | epoch | 0.533333 |
326
+ +---------------+----------+ - [multilabel_classify.py:2188:on_log]
327
+ 2025-06-13 18:55:37,253 - INFO -
328
+ 🚂 Training Metrics (Step 150) 🚂
329
+ +---------------+----------+
330
+ | Metric | Value |
331
+ +===============+==========+
332
+ | loss | 0.0227 |
333
+ +---------------+----------+
334
+ | grad_norm | 0.025854 |
335
+ +---------------+----------+
336
+ | learning_rate | 3e-05 |
337
+ +---------------+----------+
338
+ | epoch | 0.571429 |
339
+ +---------------+----------+ - [multilabel_classify.py:2188:on_log]
340
+ 2025-06-13 18:55:56,990 - INFO -
341
+ 🚂 Training Metrics (Step 160) 🚂
342
+ +---------------+----------+
343
+ | Metric | Value |
344
+ +===============+==========+
345
+ | loss | 0.0218 |
346
+ +---------------+----------+
347
+ | grad_norm | 0.015084 |
348
+ +---------------+----------+
349
+ | learning_rate | 3.2e-05 |
350
+ +---------------+----------+
351
+ | epoch | 0.609524 |
352
+ +---------------+----------+ - [multilabel_classify.py:2188:on_log]
353
+ 2025-06-13 18:56:16,703 - INFO -
354
+ 🚂 Training Metrics (Step 170) 🚂
355
+ +---------------+----------+
356
+ | Metric | Value |
357
+ +===============+==========+
358
+ | loss | 0.0216 |
359
+ +---------------+----------+
360
+ | grad_norm | 0.011318 |
361
+ +---------------+----------+
362
+ | learning_rate | 3.4e-05 |
363
+ +---------------+----------+
364
+ | epoch | 0.647619 |
365
+ +---------------+----------+ - [multilabel_classify.py:2188:on_log]
366
+ 2025-06-13 18:56:36,435 - INFO -
367
+ 🚂 Training Metrics (Step 180) 🚂
368
+ +---------------+----------+
369
+ | Metric | Value |
370
+ +===============+==========+
371
+ | loss | 0.0231 |
372
+ +---------------+----------+
373
+ | grad_norm | 0.021338 |
374
+ +---------------+----------+
375
+ | learning_rate | 3.6e-05 |
376
+ +---------------+----------+
377
+ | epoch | 0.685714 |
378
+ +---------------+----------+ - [multilabel_classify.py:2188:on_log]
379
+ 2025-06-13 18:56:56,191 - INFO -
380
+ 🚂 Training Metrics (Step 190) 🚂
381
+ +---------------+----------+
382
+ | Metric | Value |
383
+ +===============+==========+
384
+ | loss | 0.0236 |
385
+ +---------------+----------+
386
+ | grad_norm | 0.004745 |
387
+ +---------------+----------+
388
+ | learning_rate | 3.8e-05 |
389
+ +---------------+----------+
390
+ | epoch | 0.72381 |
391
+ +---------------+----------+ - [multilabel_classify.py:2188:on_log]
392
+ 2025-06-13 18:57:15,942 - INFO -
393
+ 🚂 Training Metrics (Step 200) 🚂
394
+ +---------------+----------+
395
+ | Metric | Value |
396
+ +===============+==========+
397
+ | loss | 0.0231 |
398
+ +---------------+----------+
399
+ | grad_norm | 0.025924 |
400
+ +---------------+----------+
401
+ | learning_rate | 4e-05 |
402
+ +---------------+----------+
403
+ | epoch | 0.761905 |
404
+ +---------------+----------+ - [multilabel_classify.py:2188:on_log]
405
+ 2025-06-13 18:57:35,695 - INFO -
406
+ 🚂 Training Metrics (Step 210) 🚂
407
+ +---------------+----------+
408
+ | Metric | Value |
409
+ +===============+==========+
410
+ | loss | 0.0222 |
411
+ +---------------+----------+
412
+ | grad_norm | 0.007095 |
413
+ +---------------+----------+
414
+ | learning_rate | 4.2e-05 |
415
+ +---------------+----------+
416
+ | epoch | 0.8 |
417
+ +---------------+----------+ - [multilabel_classify.py:2188:on_log]
418
+ 2025-06-13 18:57:55,463 - INFO -
419
+ 🚂 Training Metrics (Step 220) 🚂
420
+ +---------------+----------+
421
+ | Metric | Value |
422
+ +===============+==========+
423
+ | loss | 0.0225 |
424
+ +---------------+----------+
425
+ | grad_norm | 0.012384 |
426
+ +---------------+----------+
427
+ | learning_rate | 4.4e-05 |
428
+ +---------------+----------+
429
+ | epoch | 0.838095 |
430
+ +---------------+----------+ - [multilabel_classify.py:2188:on_log]
431
+ 2025-06-13 18:58:15,215 - INFO -
432
+ 🚂 Training Metrics (Step 230) 🚂
433
+ +---------------+---------+
434
+ | Metric | Value |
435
+ +===============+=========+
436
+ | loss | 0.0238 |
437
+ +---------------+---------+
438
+ | grad_norm | 0.00828 |
439
+ +---------------+---------+
440
+ | learning_rate | 4.6e-05 |
441
+ +---------------+---------+
442
+ | epoch | 0.87619 |
443
+ +---------------+---------+ - [multilabel_classify.py:2188:on_log]
444
+ 2025-06-13 18:58:34,964 - INFO -
445
+ 🚂 Training Metrics (Step 240) 🚂
446
+ +---------------+----------+
447
+ | Metric | Value |
448
+ +===============+==========+
449
+ | loss | 0.0222 |
450
+ +---------------+----------+
451
+ | grad_norm | 0.006233 |
452
+ +---------------+----------+
453
+ | learning_rate | 4.8e-05 |
454
+ +---------------+----------+
455
+ | epoch | 0.914286 |
456
+ +---------------+----------+ - [multilabel_classify.py:2188:on_log]
457
+ 2025-06-13 18:58:54,736 - INFO -
458
+ 🚂 Training Metrics (Step 250) 🚂
459
+ +---------------+----------+
460
+ | Metric | Value |
461
+ +===============+==========+
462
+ | loss | 0.0232 |
463
+ +---------------+----------+
464
+ | grad_norm | 0.011117 |
465
+ +---------------+----------+
466
+ | learning_rate | 5e-05 |
467
+ +---------------+----------+
468
+ | epoch | 0.952381 |
469
+ +---------------+----------+ - [multilabel_classify.py:2188:on_log]
470
+ 2025-06-13 18:59:14,504 - INFO -
471
+ 🚂 Training Metrics (Step 260) 🚂
472
+ +---------------+----------+
473
+ | Metric | Value |
474
+ +===============+==========+
475
+ | loss | 0.023 |
476
+ +---------------+----------+
477
+ | grad_norm | 0.008961 |
478
+ +---------------+----------+
479
+ | learning_rate | 5.2e-05 |
480
+ +---------------+----------+
481
+ | epoch | 0.990476 |
482
+ +---------------+----------+ - [multilabel_classify.py:2188:on_log]
483
+ 2025-06-13 18:59:19,754 - INFO - 💾 Model weights saved in safetensors format: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-262 - [multilabel_classify.py:2445:_save]
484
+ 2025-06-13 18:59:19,756 - INFO - ⚙️ Config saved in checkpoint: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-262 - [multilabel_classify.py:2450:_save]
485
+ 2025-06-13 18:59:19,757 - INFO - 📋 Saved files in ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-262:
486
+ +---------+-------------------+------------+
487
+ | Index | Saved File | Size |
488
+ +=========+===================+============+
489
+ | 1 | training_args.bin | 0.01 MB |
490
+ +---------+-------------------+------------+
491
+ | 2 | model.safetensors | 4600.97 MB |
492
+ +---------+-------------------+------------+
493
+ | 3 | config.json | 0.00 MB |
494
+ +---------+-------------------+------------+ - [multilabel_classify.py:2467:_save]
495
+ 2025-06-13 18:59:20,381 - INFO - Removing 'token_type_ids' from eval_dataset as they are not needed. - [multilabel_classify.py:2352:evaluate]
496
+ 2025-06-13 19:12:32,601 - INFO -
497
+ 🔍 Evaluation Metrics 🔍
498
+ +-------------------------------+----------+
499
+ | Metric | Value |
500
+ +===============================+==========+
501
+ | eval_f1_micro | 0 |
502
+ +-------------------------------+----------+
503
+ | eval_f1_macro | 0 |
504
+ +-------------------------------+----------+
505
+ | eval_precision_at_5 | 0.274921 |
506
+ +-------------------------------+----------+
507
+ | eval_recall_at_5 | 0.063731 |
508
+ +-------------------------------+----------+
509
+ | eval_precision_at_8 | 0.253956 |
510
+ +-------------------------------+----------+
511
+ | eval_recall_at_8 | 0.090858 |
512
+ +-------------------------------+----------+
513
+ | eval_precision_at_15 | 0.190533 |
514
+ +-------------------------------+----------+
515
+ | eval_recall_at_15 | 0.122413 |
516
+ +-------------------------------+----------+
517
+ | eval_rare_f1_micro | 0 |
518
+ +-------------------------------+----------+
519
+ | eval_rare_f1_macro | 0 |
520
+ +-------------------------------+----------+
521
+ | eval_rare_precision | 0 |
522
+ +-------------------------------+----------+
523
+ | eval_rare_recall | 0 |
524
+ +-------------------------------+----------+
525
+ | eval_rare_precision_at_5 | 0.003718 |
526
+ +-------------------------------+----------+
527
+ | eval_rare_recall_at_5 | 0.001292 |
528
+ +-------------------------------+----------+
529
+ | eval_rare_precision_at_8 | 0.004302 |
530
+ +-------------------------------+----------+
531
+ | eval_rare_recall_at_8 | 0.002289 |
532
+ +-------------------------------+----------+
533
+ | eval_rare_precision_at_15 | 0.004905 |
534
+ +-------------------------------+----------+
535
+ | eval_rare_recall_at_15 | 0.00478 |
536
+ +-------------------------------+----------+
537
+ | eval_not_rare_f1_micro | 0 |
538
+ +-------------------------------+----------+
539
+ | eval_not_rare_f1_macro | 0 |
540
+ +-------------------------------+----------+
541
+ | eval_not_rare_precision | 0 |
542
+ +-------------------------------+----------+
543
+ | eval_not_rare_recall | 0 |
544
+ +-------------------------------+----------+
545
+ | eval_not_rare_precision_at_5 | 0.274209 |
546
+ +-------------------------------+----------+
547
+ | eval_not_rare_recall_at_5 | 0.168014 |
548
+ +-------------------------------+----------+
549
+ | eval_not_rare_precision_at_8 | 0.254005 |
550
+ +-------------------------------+----------+
551
+ | eval_not_rare_recall_at_8 | 0.239598 |
552
+ +-------------------------------+----------+
553
+ | eval_not_rare_precision_at_15 | 0.190585 |
554
+ +-------------------------------+----------+
555
+ | eval_not_rare_recall_at_15 | 0.324765 |
556
+ +-------------------------------+----------+
557
+ | eval_loss | 0.020932 |
558
+ +-------------------------------+----------+ - [multilabel_classify.py:2207:on_evaluate]
559
+ 2025-06-13 19:12:36,537 - INFO - 💾 Model weights saved in safetensors format: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-262 - [multilabel_classify.py:2445:_save]
560
+ 2025-06-13 19:12:36,538 - INFO - ⚙️ Config saved in checkpoint: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-262 - [multilabel_classify.py:2450:_save]
561
+ 2025-06-13 19:12:36,540 - INFO - 📋 Saved files in ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-262:
562
+ +---------+--------------------+------------+
563
+ | Index | Saved File | Size |
564
+ +=========+====================+============+
565
+ | 1 | training_args.bin | 0.01 MB |
566
+ +---------+--------------------+------------+
567
+ | 2 | optimizer.pt | 1308.77 MB |
568
+ +---------+--------------------+------------+
569
+ | 3 | model.safetensors | 4600.97 MB |
570
+ +---------+--------------------+------------+
571
+ | 4 | scaler.pt | 0.00 MB |
572
+ +---------+--------------------+------------+
573
+ | 5 | config.json | 0.00 MB |
574
+ +---------+--------------------+------------+
575
+ | 6 | scheduler.pt | 0.00 MB |
576
+ +---------+--------------------+------------+
577
+ | 7 | trainer_state.json | 0.00 MB |
578
+ +---------+--------------------+------------+
579
+ | 8 | rng_state.pth | 0.01 MB |
580
+ +---------+--------------------+------------+ - [multilabel_classify.py:2467:_save]
581
+ 2025-06-13 19:12:37,957 - INFO - 📂 Loading best model from ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-262 - [multilabel_classify.py:2519:_load_best_model]
582
+ 2025-06-13 19:12:37,957 - INFO - 🖥️ Model is on device: cuda:0 - [multilabel_classify.py:2529:_load_best_model]
583
+ 2025-06-13 19:12:38,014 - INFO - 🔑 Key order comparison:
584
+ +---------+--------------------------------------------+--------------------------------------------------------------------------------------+
585
+ | Index | Saved state_dict Keys | Model state_dict Keys |
586
+ +=========+============================================+======================================================================================+
587
+ | 1 | attention.in_proj_bias | boost_mul |
588
+ +---------+--------------------------------------------+--------------------------------------------------------------------------------------+
589
+ | 2 | attention.in_proj_weight | boost_add |
590
+ +---------+--------------------------------------------+--------------------------------------------------------------------------------------+
591
+ | 3 | attention.out_proj.bias | base_model.base_model.model.model.embed_tokens.weight |
592
+ +---------+--------------------------------------------+--------------------------------------------------------------------------------------+
593
+ | 4 | attention.out_proj.weight | base_model.base_model.model.model.layers.0.self_attn.q_proj.base_layer.weight |
594
+ +---------+--------------------------------------------+--------------------------------------------------------------------------------------+
595
+ | 5 | base_model.base_model.model.lm_head.weight | base_model.base_model.model.model.layers.0.self_attn.q_proj.base_layer.weight.absmax |
596
+ +---------+--------------------------------------------+--------------------------------------------------------------------------------------+ - [multilabel_classify.py:2553:_load_best_model]
597
+ 2025-06-13 19:12:39,020 - INFO - ✅ Loaded best model weights from ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-262/model.safetensors - [multilabel_classify.py:2570:_load_best_model]
598
+ 2025-06-13 19:12:39,059 - INFO - ✔️ Weight for boost_mul matches between saved and loaded state_dict - [multilabel_classify.py:2582:_load_best_model]
599
+ 2025-06-13 19:12:39,091 - INFO - ✔️ Weight for boost_add matches between saved and loaded state_dict - [multilabel_classify.py:2582:_load_best_model]
600
+ 2025-06-13 19:12:39,108 - INFO -
601
+ 🚂 Training Metrics (Step 262) 🚂
602
+ +--------------------------+----------+
603
+ | Metric | Value |
604
+ +==========================+==========+
605
+ | train_runtime | 1319.86 |
606
+ +--------------------------+----------+
607
+ | train_samples_per_second | 6.359 |
608
+ +--------------------------+----------+
609
+ | train_steps_per_second | 0.199 |
610
+ +--------------------------+----------+
611
+ | total_flos | 0 |
612
+ +--------------------------+----------+
613
+ | train_loss | 0.062579 |
614
+ +--------------------------+----------+
615
+ | epoch | 0.998095 |
616
+ +--------------------------+----------+ - [multilabel_classify.py:2188:on_log]
617
+ 2025-06-13 19:12:39,108 - INFO - ✨ Training Completed! ✨ - [multilabel_classify.py:2061:on_train_end]
618
+ 2025-06-13 19:12:39,183 - INFO - 📊 Training loss plot saved as '../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/train_loss_plot.png' - [multilabel_classify.py:2257:on_train_end]
619
+ 2025-06-13 19:12:39,237 - INFO - 📊 Evaluation loss plot saved as '../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/eval_loss_plot.png' - [multilabel_classify.py:2271:on_train_end]
620
+ 2025-06-13 19:12:39,297 - INFO - 📊 Evaluation metric plot saved as '../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/eval_precision_at_15_plot.png' - [multilabel_classify.py:2292:on_train_end]
621
+ 2025-06-13 19:12:39,298 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:101:log_section]
622
+ 2025-06-13 19:12:39,298 - INFO - + ✨ MODEL SAVING + - [multilabel_classify.py:102:log_section]
623
+ 2025-06-13 19:12:39,298 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:105:log_section]
624
+ 2025-06-13 19:12:39,298 - INFO - 💾 Saving trained model and pushing to Hugging Face Hub... - [multilabel_classify.py:4069:main]
625
+ 2025-06-13 19:12:39,298 - INFO - 📁 Creating/using output directory: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b - [multilabel_classify.py:3045:save_and_push]
626
+ 2025-06-13 19:12:40,623 - INFO - 💾 Model weights saved in safetensors format: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b - [multilabel_classify.py:2445:_save]
627
+ 2025-06-13 19:12:40,625 - INFO - ⚙️ Config saved in checkpoint: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b - [multilabel_classify.py:2450:_save]
628
+ 2025-06-13 19:12:40,626 - INFO - 📋 Saved files in ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b:
629
+ +---------+-------------------------------+------------+
630
+ | Index | Saved File | Size |
631
+ +=========+===============================+============+
632
+ | 1 | eval_loss_plot.png | 0.02 MB |
633
+ +---------+-------------------------------+------------+
634
+ | 2 | training_args.bin | 0.01 MB |
635
+ +---------+-------------------------------+------------+
636
+ | 3 | model.safetensors | 4600.97 MB |
637
+ +---------+-------------------------------+------------+
638
+ | 4 | config.json | 0.00 MB |
639
+ +---------+-------------------------------+------------+
640
+ | 5 | train_loss_plot.png | 0.02 MB |
641
+ +---------+-------------------------------+------------+
642
+ | 6 | eval_precision_at_15_plot.png | 0.03 MB |
643
+ +---------+-------------------------------+------------+ - [multilabel_classify.py:2467:_save]
644
+ 2025-06-13 19:12:44,632 - INFO - 💾 Model weights saved in safetensors format: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b - [multilabel_classify.py:2445:_save]
645
+ 2025-06-13 19:12:44,634 - INFO - ⚙️ Config saved in checkpoint: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b - [multilabel_classify.py:2450:_save]
646
+ 2025-06-13 19:12:44,635 - INFO - 📋 Saved files in ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b:
647
+ +---------+-------------------------------+------------+
648
+ | Index | Saved File | Size |
649
+ +=========+===============================+============+
650
+ | 1 | eval_loss_plot.png | 0.02 MB |
651
+ +---------+-------------------------------+------------+
652
+ | 2 | training_args.bin | 0.01 MB |
653
+ +---------+-------------------------------+------------+
654
+ | 3 | model.safetensors | 4600.97 MB |
655
+ +---------+-------------------------------+------------+
656
+ | 4 | config.json | 0.00 MB |
657
+ +---------+-------------------------------+------------+
658
+ | 5 | train_loss_plot.png | 0.02 MB |
659
+ +---------+-------------------------------+------------+
660
+ | 6 | eval_precision_at_15_plot.png | 0.03 MB |
661
+ +---------+-------------------------------+------------+ - [multilabel_classify.py:2467:_save]
662
+ 2025-06-13 19:14:09,684 - INFO - 💾 Model saved to: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b - [multilabel_classify.py:3049:save_and_push]
663
+ 2025-06-13 19:14:09,714 - INFO - 🖌️ Tokenizer saved to: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b - [multilabel_classify.py:3053:save_and_push]