File size: 5,726 Bytes
64f479e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f26b46d
 
 
 
 
 
64f479e
 
 
 
f26b46d
 
 
 
 
 
64f479e
 
 
 
 
 
 
 
 
 
f26b46d
64f479e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61a83a3
64f479e
 
 
 
 
 
f26b46d
 
 
 
64f479e
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
library_name: transformers
license: apache-2.0
base_model: mistralai/Mistral-7B-Instruct-v0.3
tags:
- generated_from_trainer
model-index:
- name: mistral-7b-instruct-v0.3-mimic4-adapt-multilabel-classify
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mistral-7b-instruct-v0.3-mimic4-adapt-multilabel-classify

This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the None dataset.
It achieves the following results on the evaluation set:
- F1 Micro: 0.0
- F1 Macro: 0.0
- Precision At 5: 0.2279
- Recall At 5: 0.0949
- Precision At 8: 0.1664
- Recall At 8: 0.1038
- Precision At 15: 0.1137
- Recall At 15: 0.1285
- Rare F1 Micro: 0.0
- Rare F1 Macro: 0.0
- Rare Precision: 0.0
- Rare Recall: 0.0
- Rare Precision At 5: 0.15
- Rare Recall At 5: 0.0645
- Rare Precision At 8: 0.1204
- Rare Recall At 8: 0.0788
- Rare Precision At 15: 0.0873
- Rare Recall At 15: 0.0997
- Not Rare F1 Micro: 0.5956
- Not Rare F1 Macro: 0.3733
- Not Rare Precision: 0.5956
- Not Rare Recall: 0.5956
- Not Rare Precision At 5: 0.0809
- Not Rare Recall At 5: 0.4044
- Not Rare Precision At 8: 0.0506
- Not Rare Recall At 8: 0.4044
- Not Rare Precision At 15: 0.0270
- Not Rare Recall At 15: 0.4044
- Loss: 0.1048

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | F1 Micro | F1 Macro | Precision At 5 | Recall At 5 | Precision At 8 | Recall At 8 | Precision At 15 | Recall At 15 | Rare F1 Micro | Rare F1 Macro | Rare Precision | Rare Recall | Rare Precision At 5 | Rare Recall At 5 | Rare Precision At 8 | Rare Recall At 8 | Rare Precision At 15 | Rare Recall At 15 | Not Rare F1 Micro | Not Rare F1 Macro | Not Rare Precision | Not Rare Recall | Not Rare Precision At 5 | Not Rare Recall At 5 | Not Rare Precision At 8 | Not Rare Recall At 8 | Not Rare Precision At 15 | Not Rare Recall At 15 | Validation Loss |
|:-------------:|:------:|:----:|:--------:|:--------:|:--------------:|:-----------:|:--------------:|:-----------:|:---------------:|:------------:|:-------------:|:-------------:|:--------------:|:-----------:|:-------------------:|:----------------:|:-------------------:|:----------------:|:--------------------:|:-----------------:|:-----------------:|:-----------------:|:------------------:|:---------------:|:-----------------------:|:--------------------:|:-----------------------:|:--------------------:|:------------------------:|:---------------------:|:---------------:|
| 0.6384        | 1.0    | 18   | 0.0      | 0.0      | 0.0368         | 0.0087      | 0.0377         | 0.0174      | 0.0377          | 0.0324       | 0.0           | 0.0           | 0.0            | 0.0         | 0.0294              | 0.0081           | 0.0267              | 0.0107           | 0.0275               | 0.0211            | 0.5956            | 0.3733            | 0.5956             | 0.5956          | 0.0809                  | 0.4044               | 0.0506                  | 0.4044               | 0.0270                   | 0.4044                | 0.2291          |
| 0.1265        | 2.0    | 36   | 0.0      | 0.0      | 0.0412         | 0.0096      | 0.0395         | 0.0166      | 0.0373          | 0.0303       | 0.0           | 0.0           | 0.0            | 0.0         | 0.025               | 0.0048           | 0.0276              | 0.0109           | 0.0284               | 0.0244            | 0.5956            | 0.3733            | 0.5956             | 0.5956          | 0.0809                  | 0.4044               | 0.0506                  | 0.4044               | 0.0270                   | 0.4044                | 0.1216          |
| 0.1092        | 3.0    | 54   | 0.0      | 0.0      | 0.1162         | 0.0391      | 0.1002         | 0.0595      | 0.0814          | 0.0890       | 0.0           | 0.0           | 0.0            | 0.0         | 0.0603              | 0.0208           | 0.0579              | 0.0332           | 0.0564               | 0.0595            | 0.5956            | 0.3733            | 0.5956             | 0.5956          | 0.0809                  | 0.4044               | 0.0506                  | 0.4044               | 0.0270                   | 0.4044                | 0.1069          |
| 0.1033        | 3.7887 | 68   | 0.0      | 0.0      | 0.2279         | 0.0949      | 0.1664         | 0.1038      | 0.1137          | 0.1285       | 0.0           | 0.0           | 0.0            | 0.0         | 0.15                | 0.0645           | 0.1204              | 0.0788           | 0.0873               | 0.0997            | 0.5956            | 0.3733            | 0.5956             | 0.5956          | 0.0809                  | 0.4044               | 0.0506                  | 0.4044               | 0.0270                   | 0.4044                | 0.1048          |


### Framework versions

- Transformers 4.49.0
- Pytorch 2.6.0
- Datasets 3.6.0
- Tokenizers 0.21.1