File size: 5,728 Bytes
64f479e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61a83a3
 
 
 
 
 
64f479e
 
 
 
61a83a3
 
 
 
 
 
64f479e
 
 
 
 
 
 
 
 
 
61a83a3
64f479e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61a83a3
64f479e
 
 
 
 
 
61a83a3
 
 
 
64f479e
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
library_name: transformers
license: apache-2.0
base_model: mistralai/Mistral-7B-Instruct-v0.3
tags:
- generated_from_trainer
model-index:
- name: mistral-7b-instruct-v0.3-mimic4-adapt-multilabel-classify
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mistral-7b-instruct-v0.3-mimic4-adapt-multilabel-classify

This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the None dataset.
It achieves the following results on the evaluation set:
- F1 Micro: 0.0
- F1 Macro: 0.0
- Precision At 5: 0.1676
- Recall At 5: 0.0597
- Precision At 8: 0.1379
- Recall At 8: 0.0770
- Precision At 15: 0.0926
- Recall At 15: 0.0992
- Rare F1 Micro: 0.0
- Rare F1 Macro: 0.0
- Rare Precision: 0.0
- Rare Recall: 0.0
- Rare Precision At 5: 0.1279
- Rare Recall At 5: 0.0462
- Rare Precision At 8: 0.0938
- Rare Recall At 8: 0.0522
- Rare Precision At 15: 0.0642
- Rare Recall At 15: 0.0700
- Not Rare F1 Micro: 0.5956
- Not Rare F1 Macro: 0.3733
- Not Rare Precision: 0.5956
- Not Rare Recall: 0.5956
- Not Rare Precision At 5: 0.0809
- Not Rare Recall At 5: 0.4044
- Not Rare Precision At 8: 0.0506
- Not Rare Recall At 8: 0.4044
- Not Rare Precision At 15: 0.0270
- Not Rare Recall At 15: 0.4044
- Loss: 0.1050

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | F1 Micro | F1 Macro | Precision At 5 | Recall At 5 | Precision At 8 | Recall At 8 | Precision At 15 | Recall At 15 | Rare F1 Micro | Rare F1 Macro | Rare Precision | Rare Recall | Rare Precision At 5 | Rare Recall At 5 | Rare Precision At 8 | Rare Recall At 8 | Rare Precision At 15 | Rare Recall At 15 | Not Rare F1 Micro | Not Rare F1 Macro | Not Rare Precision | Not Rare Recall | Not Rare Precision At 5 | Not Rare Recall At 5 | Not Rare Precision At 8 | Not Rare Recall At 8 | Not Rare Precision At 15 | Not Rare Recall At 15 | Validation Loss |
|:-------------:|:------:|:----:|:--------:|:--------:|:--------------:|:-----------:|:--------------:|:-----------:|:---------------:|:------------:|:-------------:|:-------------:|:--------------:|:-----------:|:-------------------:|:----------------:|:-------------------:|:----------------:|:--------------------:|:-----------------:|:-----------------:|:-----------------:|:------------------:|:---------------:|:-----------------------:|:--------------------:|:-----------------------:|:--------------------:|:------------------------:|:---------------------:|:---------------:|
| 0.624         | 1.0    | 18   | 0.0      | 0.0      | 0.0059         | 0.0013      | 0.0110         | 0.0037      | 0.0147          | 0.0111       | 0.0           | 0.0           | 0.0            | 0.0         | 0.0103              | 0.0024           | 0.0129              | 0.0059           | 0.0142               | 0.0114            | 0.5956            | 0.3733            | 0.5956             | 0.5956          | 0.0809                  | 0.4044               | 0.0506                  | 0.4044               | 0.0270                   | 0.4044                | 0.2217          |
| 0.1249        | 2.0    | 36   | 0.0      | 0.0      | 0.0088         | 0.0018      | 0.0110         | 0.0038      | 0.0152          | 0.0110       | 0.0           | 0.0           | 0.0            | 0.0         | 0.0088              | 0.0018           | 0.0110              | 0.0047           | 0.0142               | 0.0124            | 0.5956            | 0.3733            | 0.5956             | 0.5956          | 0.0809                  | 0.4044               | 0.0506                  | 0.4044               | 0.0270                   | 0.4044                | 0.1219          |
| 0.1086        | 3.0    | 54   | 0.0      | 0.0      | 0.0471         | 0.0121      | 0.0506         | 0.0238      | 0.0456          | 0.0457       | 0.0           | 0.0           | 0.0            | 0.0         | 0.0368              | 0.0106           | 0.0414              | 0.0198           | 0.0368               | 0.0370            | 0.5956            | 0.3733            | 0.5956             | 0.5956          | 0.0809                  | 0.4044               | 0.0506                  | 0.4044               | 0.0270                   | 0.4044                | 0.1074          |
| 0.1033        | 3.7887 | 68   | 0.0      | 0.0      | 0.1676         | 0.0597      | 0.1379         | 0.0770      | 0.0926          | 0.0992       | 0.0           | 0.0           | 0.0            | 0.0         | 0.1279              | 0.0462           | 0.0938              | 0.0522           | 0.0642               | 0.0700            | 0.5956            | 0.3733            | 0.5956             | 0.5956          | 0.0809                  | 0.4044               | 0.0506                  | 0.4044               | 0.0270                   | 0.4044                | 0.1050          |


### Framework versions

- Transformers 4.49.0
- Pytorch 2.6.0
- Datasets 3.6.0
- Tokenizers 0.21.1